Title: Improving the working memory capacity of children: A comparison of two intervention programmes

Author(s): Kerry Lee, Ang Su Yin, Rebecca Bull, Kenneth Poon, Fiona Cheam and Alethea Kerk

Source: Joint NIE, MOE and KKH Symposium on “Beyond the Mainstream: Exploring the Cognitive Development of Children with Special Needs and Children At-Risk of Academic Failure”, Singapore, 4 April 2013
Improving the Working Memory Capacity of Children: A Comparison of two Intervention Programmes

Kerry Lee, Ang Su Yin, Rebecca Bull & Kenneth Poon (NIE)
Fiona Cheam & Alethea Kerk (MOE)
Baddeley’s model of WM (2001)
Role of WM in Mathematics

- **Storage systems**
 - contribute indirectly to mathematics problem solving (Lee et al., 2004)
 - Less associated with scholastic achievement in 11 and 12 year old children than central executive

- **Central Executive**
 - Longitudinal study (Clark et al., 2010)
 - Functioning at age 4 accounted for substantial variability in mathematical achievement age 6, controlled for IQ and reading ability
 - Of those with poor executive functioning at age 4, 63% were later considered below average in mathematics age 6
 - 1-unit advantage in executive functioning at age 4 was associated with an 8-point advantage on a standardised test of mathematics fluency
• Central Executive
 ▫ Inhibition – implicated in
 • word problems (Marzocchi et al., 2002; Passolunghi et al., 2005) and
 • overall mathematics performance (St Clair-Thompson & Gathercole, 2006),
 • but not computation (Censabella & Noel, 2008)
 ▫ Updating – implicated in
 • computation (van der Sluis et al., 2007),
 • word-problem solving (Passolunghi & Pazzaglia, 2004),
 • overall mathematics performance (St Clair-Thompson & Gathercole, 2006)
 ▫ Shifting – mixed findings
In P5 pupils,

- WM explained 21% of variance in P5 pupils’ performance on algebraic tasks (Lee, Ng, Ng & Lim, 2004)
- WM and Updating accounted for about 25% of variance on performance in algebraic tasks (Lee, Ng & Ng, 2009)
Questions

Can we improve academic performance by improving working memory?

▪ How do Cogmed and Updating-based intervention programmes compare in improving working memory?

▪ Do improvements in working memory result in better mathematical performance?
Design

- 4 Conditions: Cogmed, Updating, Active control, Passive control
- 3 Times: Pre-test, Post-test, Follow-up test (6 months)
Participants

P1 children
- $N = 117$
- Mean age = 83.6 months; $SD = 3.2$ months; Range = 75 – 90 months
- 73 boys & 44 girls
- Identified for Learning Support for Mathematics (LSM)
- With WM deficits (as measured by Animal Updating and Corsi Blocks tasks)
Measures

- Short-term and Working Memory
 - Letter Recall
 - Corsi Blocks
 - Backward Letter Recall
 - Letter Rotation
 - Animal Updating

- Mathematics performance
 - WIAT Math Fluency - Addition and Subtraction
 - WIAT Numerical Operations

- Fluid intelligence
 - Raven’s Coloured Progressive Matrices

- Covariates
 - Language: Bilingual Language Assessment Battery (BLAB)
 - Literacy: Schonell Reading Test
Intervention

• Dosage
 ▫ 25 sessions
 ▫ Length of session
 • Updating/ Active control – 30 minutes
 • Cogmed – 45 minutes
 ▫ Average number of sessions attended
 • Cogmed – 24
 • Updating – 23
 • Active Control – 22
Cogmed
Updating & Active control

Monster Smash Game
Key Findings

• Working memory:
 ▫ 4 conditions comparable at pre-test
 ▫ Significant interaction effects for Corsi Blocks and Backward Letter Recall

• Mathematics performance & fluid intelligence:
 ▫ No significant differences at post-test
Estimated Marginal Means of Backward Letter Recall

- Condition Assigned
- Cogmed
- Updating
- Active Control
- Passive Control

Estimated Marginal Means

- Time
 - 1
 - 2
Preliminary Conclusions

- Cogmed training results in improvement on Corsi Blocks task performance
- Both Cogmed and Updating training result in improvement on Backward Letter Recall task performance
- Updating training results in improvement on Letter Rotation task performance
- Working memory training leads to improvement in working memory capacity
Preliminary Conclusions

However...

- Improvements not translated into gains in mathematical performance in the short term
Further Analysis

- Effects of working memory gains on mathematical performance in the longer term (6 months after intervention)
What’s Next?

• Findings of the follow-up test
• Scaling up of the Updating intervention programme
Thank you

Acknowledgements
We would like to thank Ms Juliana Koh for her invaluable contribution to this project, and also our many part-time RAs for their help. This study is supported by grants from the Office of Educational Research, NIE (OER17/11KL) and MOE.
Letter Rotation

Letters used: F, J, L, P, R
Animal Updating
Raven’s Coloured Progressive Matrices