Title: Mathematical Progress and Value for Everyone (MProVE)
Author(s): Tay Eng Guan, Quek Khiok Seng, Yap Sook Few and Leong Yew Hoong
Source: Symposium on "Mathematical Development, Learning and Intervention from Preschool to Secondary School", Singapore, 13 March 2014
Organised by: Centre for Research in Pedagogy and Practice (CRPP), National Institute of Education (Singapore)

This document may be used for private study or research purpose only. This document or any part of it may not be duplicated and/or distributed without permission of the copyright owner.

The Singapore Copyright Act applies to the use of this document.
Mathematical Progress and Value for Everyone (MProVE)

Tay Eng Guan, Quek Khiok Seng, Yap Sook Fwe, Leong Yew Hoong
Our starting points

- Our background as mathematicians, mathematics teachers, mathematics teacher educators, ...
- Should trial (and refine) our joint experiences and theoretical ideas in the testbed of actual mathematics classrooms
- View task of changing classroom practice as a complex process – teacher change, curriculum redesign, school structures ...
Our starting points

- Our background as mathematicians, mathematics teachers, mathematics teacher educators, ...

- Should trial (and refine) our joint experiences and theoretical ideas in the testbed of actual mathematics classrooms

- View task of changing classroom practice as a complex process – teacher change, curriculum redesign, school structures ...

[In short: “Hard and unglamorous” (Schoenfeld, 2007) research]
What we do

- Design “Replacement Units” (RU) for Normal (Academic) Lower Secondary mathematics in one school
- Work closely with teachers in the design process
- Trial the theory-design in the classroom
- Learn from the results of implementation and make changes for subsequent trials
What we do

- Design “Replacement Units” (RU) for Normal (Academic) Lower Secondary mathematics in one school
- Work closely with teachers in the design process
- Trial the theory-design in the classroom
- Learn from the results of implementation and make changes for subsequent trials

[In short: Design Research]
What we intend to achieve

- Improvements in the quality of mathematics instruction in the secondary NA classrooms
- Growth in teachers’ SCK and PCK
- Take the RUs to a ‘stable’ state – for subsequent diffusion to other schools
- Authentic experiences incorporated into pre-/in-service courses in NIE
What we intend to achieve

- Improvements in the quality of mathematics instruction in the secondary NA classrooms
- Growth in teachers’ SCK and PCK
- Take the RUs to a ‘stable’ state – for subsequent diffusion to other schools
- Authentic experiences incorporated into pre-/in-service courses in NIE

[In short: direct impact on students and teachers]
What we attend to in the design of RUs

- Curriculum planning: (1) Disciplinarity; (2) Procedural fluency; (2) Problem solving disposition; (3) Study habits; (4) Motivation

- Teacher development: (1) Support from KPs and opinion-shapers; (2) Teachers’ involvement in every phase of the design – including observation of lessons; (3) Gradual broadening to more teachers implementing the RUs
Model for overall design of RUs

Overall development guided by “Disciplinarity” and “PSD” or “SH”

Lesson 1 2 3 4 … n – 1 n

Insert at various points “Motivation” and “Procedural fluency”
<table>
<thead>
<tr>
<th>PD process for each RU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers’ participation</td>
</tr>
<tr>
<td>Discussion on Replacement Unit (RU)</td>
</tr>
<tr>
<td>Estimated duration</td>
</tr>
</tbody>
</table>
Examples of RUs

- 1NA: Addition/subtraction involving negative numbers
- 1NA: Number patterns
- 2NA: Expansion and factorisation of quadratic expressions
- 2NA: solving simultaneous linear equations in two variables
- 3NA: Indices