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I 

I 
Aspects of Mathematical Understanding 

Introduction 

"Teaching for understanding" is often con- 
sidered to be an important educational objec- 
tive. For instance, the Singapore Elementary 
Mathematics Syllabus (1981) states that ". . . 
pupils should know and understand mathe- - - 
matical ideas and principles, including the 
techniques and skills in mathematical computa- 
tion" (p.2). As the computer is used more fre- 
quently in education and society, the aim of 
education should shift from training for specific 
skills to understanding. However, "under- 
standing" may mean different things to dif- 
ferent people. This paper provides an analysis 
of the concept of understanding and reports on 
a survey about mathematical understanding. 

A Theoretical Analysis of Understanding 

First, we have to distinguish between being 
understanding and understanding something. 
In the cognitive aspect, understanding has to be 
linked to some content or knowledge. For each 
specific type of content, understanding may be 
conceived as a mental state of cognition, a 
psychological process, or an ability. These four 
aspects of understanding are discussed briefly 
below with special emphasis on mathematics. 

Content of understanding 

The content of understanding may consist of 
"knowing that, ' ' ''knowing how" and "know- 
ing why" (Woods and Barrow, 1975). 

In mathematics, "knowing that" refers to 
knowledge of facts, concepts, and principles. 
These knowledge items involve the acquisition 
of meaning. Three kinds of meaning are 
evident in mathematics: semantic, syntactic, 

and pragmatic (Van Engen, 1953). For 
example, the semantic meaning of the symbol 
"2" refers to the concept of two-ness. Its syn- 
tactic meaning depends on where it is used; for 
example, ' ' 2 ' ' has different meanings in ' '2x' ' 
and in "x2". The pragmatic meaning evokes 
certain emotional tones that may affect learn- 
ing. For instance, "2" may be linked to the 
idea of "smallness" ; this idea can effectively 
interfere with the learning of the concept of 
limit or infinitesimal. 

"Knowing how" refers to skills, which are 
operations and procedures carried out accord- 
ing to prescribed sets of rules, instructions, or 
algorithms. This is intimately related to the 
common notion that "if you understand the 
rule, then you should know how to do it." 
Skemp (1976, 1979) described knowing what to 
do without reasons as "instrumental" under- 
standing. He pointed out that this kind of 
understanding is likely to be rote, to be com- 
partmentalised into numerous rules, to involve 
direct application, and to be short term in 
effect. The advantage of "instrumental" 
understanding is that the pupil can get the 
correct answer quickly. Normal classroom 
teaching tends to stress this kind of under- 
standing. 

"Knowing why" is justifying "that" and 
"how. ' ' Three kinds of "why" in mathematics 
were proposed by Jones (1969): chronological, 
logical, and pedagogical. ' 'Chronological 
why" communicates the sense of why results 
hang together as they do from a historical per- 
spective. "Logical why," in expunging all the 
mistakes and non-logical processes involved in 
the creation of mathematical knowledge, is 
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necessary for understanding the structures of 
mathematics. Wagner (1980) argued that 
knowledge of logical deduction is the more 
central aspect of mathematical understanding 
than knowledge of meaning or knowledge of 
application. Finally, "pedagogical why" is not 
restricted to rigorous proofs. Quite often, 
acceptance of authority, observation of cases, 
and personal experiences may be used heuris- 
tically at school level, since many pupils do not 
recognise the need for formal proofs of results 
that appear "obvious" to them (Pearson, 
1980). O n  the contrary, pupils should be 
encouraged to ask questions about mathe- 
matical rules. Otherwise, they may apply these 
rules in a mindless manner. 

Skemp (1979) considered "knowing what to 
do and why" as "relational" understanding, 
and "conforming to accepted forms of pre- 
sentation" as "logical" understanding. Byers 
and Herscovics (1977) proposed a tetrahedral 
model, whose vertices correspond to the four 
kinds of understanding: instrumental, rela- 
tional, formal, and intuitive. Haylock (1982) 
suggested that these distinctions are not neces- 
sary. What is important is to make suitable con- 
nections among the four kinds of experiences: 
words, pictures, concrete situations, and 
symbols. These conceptions, though rather 
imprecise, highlight the fact that understanding 
can mean different things to the student and to 
the teacher. Any mismatch in what is to be 
achieved by "learning for understanding", if 
not attended to, can lead to learning difficulties 
(Skemp, 1976). 

Processes of understanding 

A mental process "goes on in time, has dif- 
ferent phases, and may be interrupted . . . . 
and sometimes resumed at the point of inter- 
ruption" (Baker & Hacker, 1983, p.327). 

From the corpus of psychological studies on 
learning, we may deduce the following infer- 
ences about the possible processes of under- 
standing. 

1. The plausible phases of the process of 
understanding are (a) establish learning goals, 
(b) activate relevant prior knowledge, (c) make 
new connections, and (d) look ahead. Various 
teaching models seem to place different 

emphases on the various phases: learning hier- 
archies specify the goals in small steps (Gagne, 
197 7); advance organisers activate the relevant 
prior knowledge (Lesh, 1976); games and 
activities provide concrete experiences to facili- 
tate linking of knowledge (Dienes, 197 1); and a 
spiral approach takes cognizance of future 
development at a higher level of abstraction and 
generality (Bruner, 1960). Writing about the 
processes of mathematical thinking, Davis and 
McKnight (1979) noted the sequence: (a) the 
student learns a visually-moderated sequence 
(VMS), i.e., he or she sees something, which 
leads to the retrieval and execution of some pro- 
cedure; the execution of this procedure yields a 
modified visual input, which leads to the 
retrieval and execution of the next segment of 
procedures, and so on. (p.95) (b) with suffi- 
cient practice, the VMS becomes a frame that 
encodes the whole sequence as a gestalt unit; 
(c) with more experience, additional instruc- 
tion, and possibly deep contemplation, meta- 
language for the frame is created. This meta- 
language consists of appropriate descriptors for 
the frame. 

2. The process can take place at different I 
levels leading to different degrees of under- 
standing. Hence, there is no complete under- 
standing (Buxton, 1978; Byers, 1980; Skemp, 
1971). Polya (1965) identified four levels of 
understanding a rule as: mechanical, induc- 

' I 
tive, rational, and intuitive (when one is totally i 

convinced that the rule is true). By careful 
analysis of pupils' performance on mathe- 
matical tasks, it is possible to identify hier- 
archical levels of understanding (Hart, 1981). l 

3. The process is active. Even though the 
relevant information has been organised in an 
appropriate way, the student must still take an , 
active role in processing the information: 
analyse it into its constituent parts, set it into a 
broader perspective, check for special cases, 
make comparisons, and so on (Michener, 
1978). However, in order that this active 
process can take place, the student must 
recognise the value of understanding in con- 

i trast to reliance on memorised rote procedures. , 
Without such a realisation, the student may I 

continue learning mathematics by rote, i 
imagining that everybody learns mathematics 
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in this way (Davis, Jockusch & McKnight, 
1978, p.283). This active processing is a sort .of 
re-invention (Resnick & Ford, 1981). It 
requires an alternation of meaningful discus- 
sion and quiet contemplation (Davis & 
McKnight, 1979; Skemp, 1979). 

4. The process is dynamic and erratic. The 
student may understand one week, forget the 

l 
next, and remember again (Tall, 1978). Each 

I new encounter with the same material is l 
another chance to promote new understanding. 

5. The process is errpr-prone. Any theory of 
understanding must take into account the pat- 
terns and sources of errors made by students. 
Errors can arise from non-understanding (not 
having any appropriate schema) or mis-under- 
standing (activating the inappropriate 
schema). Quite often, misunderstandings arise 
out of an active process. For instance, Evans 
(1982) suggested that students use reconcilia- 
tion strategies to negotiate through difficult 
areas of understanding when they solve routine 
mathematical problems. Brown and VanLehn 
(1980) argued that, when children are faced 
with an impasse after using incorrect proce- 
dures to solve arithmetic problems, they tend to 
l i repair" the impasse by inventing new pro- 

cedures that allow them to continue with their 
task executions, albeit in a potentially 
erroneous way. 

6. The process may be gradual or sudden. 
Leaps of understanding are often reported, but 
they are not always true (O'Hear, 1981; Ziff, 
1972). 

State of understanding 

The common notion of a state of something 
refers to its conditions. Some educators believe 
that understanding is a mental state from which 
various applications follow (e.g., Woods & 
Barrow, 1975), while others reject this state 
notion of understanding (Baker & Hacker, 
1983). 

In general, information-processing theories 
assume that the degree of understanding of an 
object depends on the nature of the internal 
representation of the object. Greeno (1978) 
provided three characteristics of good under- 
standing of mathematical knowledge and 

procedures: coherence, connectedness, and 
correspondence between the internal repre- 
sentation and the knowledge to be understood. 
Coherence and connectedness refer to how 
individuals organise their knowledge. Such 
individual differences can give rise to different 
degrees of understanding. In confrast to this 
private connection, the third criterion of "cor- 
rectness" implies a publicly agreed version. 
The recognition of understanding in others 
involves coming up to some appropriate public 
standards, and eventually, as 0' Hear (1 98 1) 
argued, sharing the living traditions of the dis- 
cipline. Thus, a "correct" understanding of 
mathematics is not only getting the "correct" 
answers, or obtaining a "good" match 
between the learner's cognitive structure and 
that of the experts', but also learning about the 
historical development of mathematical ideas 
(Byers, 1982; Polya, 1965; Wilder, 1972). 

The internal representation is often 
described in terms of organisation of knowledge 
in the semantic memory. Propositional know- 
ledge (such as "7 is a prime number") is gen- 

- .  

erally organised as nodes representing concepts 
and complex network made up of associations 
among these meaningful concepts. Procedural 
knowledge (such as constructing a triangle with 
compasses) is usually stated in the formalism of 
"production system" made of IF-THEN pairs 
(Anderson, 1982). Various techniques have 
been proposed to assess memory structure, but 
they are still fraught with problems (Preece, 
1978; Stewart, 1980). Hence, Greeno's criteria 
cannot be applied precisely. In spite of such 
difficulties, the role of memory in mathematical 
understanding should be examined in the light - 

of recent research in information-processing 
theories (Byers and Erlwanger, 1985). 

Describing understanding as a mental state 
emphasises its static aspect in terms of 
coherence among knowledge items (structure). 
This complements its dynamic aspect in terms 
of processes (how it operates), as outlined in the 
previous section. Both conceptions are neces- 
sary in understanding "understanding." 

Understanding as an ability 

The most prevalent notion about understand- 
ing is that of an ability. This idea is closely 
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linked to the practical problem of assessing 
objectively and reliably the attainment of 
understanding as a learning outcome. 

Several kinds of ability have been men- 
tioned, but none of them can be taken to be the 
sole criterion of understanding. These include 
the ability to 

l. See relationships 
2. Apply knowledge or skill to appropriate 

situations 
3.  Relate to logical thinking and structure 
4. Know the meaning 
5. Explain to others 
6. Detect errors 
7. Make inferences 
8. Be creative 
9. Be appreciative 

With so many abilities linked to understand- 
ing, it is no wonder that Ziff (1972) wrote, "one 
can no longer avoid the dismal conclusion that 
to understand understanding is a task to be 
attempted and not to be achieved today, or 
even tomorrow" (p.20). However, it is clear 
that this list can be used to design test items to 
measure the various aspects of understanding. 

The above review summarises the four 
aspects that must be considered in thinking 

about understanding. TO what extent these 
conceptions are held by educators remains to be 
investigated in a systematic way. The next 
section describes a survey into the various con- 
ceptions of mathematical understanding held 
by a sample of mathematicians, mathematics 
teachers and Dip. Ed. students in Brisbane, 
Australia. 

A Survey of Mathematical Understanding 

Questionnaire, subjects and administration 

A specially designed "Understanding Ques- 
tionnaire" ( U Q  was developed for this study 
(Wong, 1984). It consisted of four parts. The 
first part asked for biographical information 
about the subjects. The second part consisted of 
50 items about the nature of understanding. 
The third part consisted of a list of 35 tasks that 
could be used to assess a person's understand- 
ing of mathematics. The final part consisted of 
five routine mathematical problems. For each 
problem, several fictitious pupils' answers were 
given. For each pupil's answer, the subjects 
were asked to judge its level of under- 
standing. 

TABLE l: MEANS OF CONCEPTION ITEMS ARRANGE BY TOTAL MEANS 

No Item T Ma Te St 

Nature of Understanding 

6 Conceptual understanding without details 4.2 4.5 4.0 4.3 * 
48 There are central ideas in understanding a topic 3.9 4.1 4.0 3.8 
17 Can have complete understanding in context 3.9 3.9 4.0 3.9 
10 Able to judge answers to problems as reasonable 3.8 3.9 3.7 3.8 
1 1  See relationships between an idea and other ideas 3.7 3.6 3.7 3.8 
12 Knowing Why more important than knowing How 3.5 3.4 3.4 3.8 
20 To understand is to discover or to reconstruct 3.3 3.1 3.4 3.4 I 
8 We have little knowledge of how people understand 3.3 3.6 3.1 3.4 

15 Understanding is a tested generalised insight 3.2 2.9 3.3 3.1 
13 Cannot define understanding 3.2 2.8 3.2 3.2 
2 No complete understanding, only different degrees 3.2 3.3 3.1 3.2 
9 Understanding is a slow process 3.1 3.5 3.0 3.3 
4 Understanding arises automatically 2.9 2.8 2.8 3.0 I 

7 Understanding accompanied by flash of insight 2.7 2.8 2.7 2.7 
1 Understanding is an all or none process 2.0 1.5 2.1 2.0 l 
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Contd. TABLE 1: MEANS OF CONCEPTION ITEMS ARRANGE BY TOTAL MEANS 

No Item T Ma Te 

Teaching and Learning related to Understanding 

Train students to ask own questions 
Explaining to other helps to foster understanding 
Shows different ways of solving same problem 
Interact with concrete materials then abstraction 
Students need to rearrange materials in own ways 
Do a lot of similar exercises to master skill 
Students understand better through self-discovery 
Insist on neat work develops understanding 
Different ways confuse weak students 
Teacher explanation is best way to understanding 
Know principles before practice skill 
History of maths helps understanding 
Memorise exactly facilitates understanding 
Textbook explanations little help to students 
Student explanations more helpful than teacher's 
Perfect skill before knowing underlying concepts 
Simplify maths leads to superficial understanding 
Students reminded that problem has correct answer 

Conditions and Barriers to Understanding 

Prerequisite knowledge is essential 4.2 4.0 4.3 
Positive attitude to maths is essential 4.1 4.1 3.9 
Students have trouble because of lack of effort 3.7 3.5 3.8 
Low motivation a major cause in failure 3.7 3.6 3.6 
Lack of confidence in numbers a barrier 3.6 3.2 3.6 
Ability to visualise is essential 3.5 3.1 3.5 
Understand maths requires hard thinking 3.5 4.3 3.4 
Student can't understand maths because no innate ability 3.0 2.8 3.2 
Understand maths independent of language ability 3.0 3.0 2.7 
Too many symbols hinder understanding 2.7 2.9 2.8 
Great memory for details is essential 2.4 2.1 2.5 
Girls have more difficulty in understanding maths 2.2 2.6 2.2 
Harder to understand maths as one gets older 2.2 2.2 2.2 
Can or cannot do maths, work hard no difference 2.0 2.2 2.1 

Compare Mathematical Understanding with other contexts 

36 Different abilities from understanding story 3.5 3.6 3.3 
39 Similar to playing chess 3.0 2.8 3.0 
27 Similar abilities to understand music 3.0 2.6 3.0 

Note: T = Total (N = go), Ma = Mathematicians (N = 16), 
Te = Teachers (N = 46), St = Dip Ed students (N = 28). 
Items range from 1 (Strongly disagree) to 5 (Strongly agree). 
Items with significant F ratios are indicated. *p < .0.5, *p < .01. 
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The U Q  was answered by 16 mathemati- 
cians at the Mathematics Department of the 
University of Queensland, Australia, 49 
secondary mathematics teachers in Brisbane, 
and 28 Dip. Ed. students at the University of 
Queensland, who took mathematics as one of 
their teaching areas. 

Conception of understanding 

The means of the 50 Conception items are 
given in Table 1. Only the abbreviated forms of 
the items are given here, the full statements 
being available from the author. 

Based on the Total means, it is clear that the 
subjects agreed strongly that understanding is 
related to central ideas rather than to details 
about rules and formulae. The ability to judge 
whether answers are reasonable or not and see- 
ing relationships were also important aspects 
of understanding. Neutral opinions were 
expressed about the elusiveness of understand- 
ing as described by its automatic occurrence, 
accompanied by a flash of insight, little know- 
ledge about how people understand, and diffi- 
culty in defining understanding. Differing 
opinions were expressed about the complete- 
ness of understanding: an apparent rejection of 
a simple dichotomy between all or nothing in 
understanding (item l),  strong agreement on 
complete understanding in certain context 
(item 17), but divided opinions on different 
levels of understanding (item 2, SD = l .3). 

With respect to the instructional processes, 
the subjects generally agreed that students 
should ask own questions about the materials, 
-explain things to others, interact with concrete 
materials followed by abstraction, and arrange 
materials in own ways. The teachers more than 
the mathematicians and the trainees believed 
that learning different ways of solving the same 
problem is confusing to the weaker students. 

Memorisation has always been a difficult 
issue in mathematics learning. The trainees - 

considered memorisation not important to 
achieve understanding, but some mathemati- 
cians saw merits in this approach (item 44). 
Although the substitution of meaning by 
memorisation can lead to a lack relational 
understanding,there are certain advantages in 
memorising definitions and algorithms: the 
exactness leading to fewer errors and its avail- 

ability so that the thinking process is not unduly 
disrupted by having to look things up. (See 
Cockcroft, 1982, p.69 & p.179; Byers, & 
Erlwanger, 1985). The danger, according to 
Wilder (1968), is that, although mathemati- 
cians engage in "symbolic initiative" beha- 
viours when they develop formulae and short- 
cut procedures as labour-saving devices, the 
pupils generally memorise these formulae (via 
the drill type of teaching) at the "symbolic 
reflex" level without knowing the purpose of 
these formulae or why they work. 

On  the sequence of skill mastery before 
understanding principles or the reverse (items 
23 and 32), the trainess agreed that principlks 
should be taught before practising skills. O n  
teaching the history of mathematics, the mathe- 
maticians had slightly more positive responses 
than the other two groups. These subjects 
did not quite share the enthusiasm of some 
mathematics educators on the use of history of 
mathematics in teaching. Finally, the subjects 
generally agreed that pre-requisite knowledge, 
positive attitude, effort, and motivation are 
important conditions for achieving under- 
standing. 

Assessment of Understanding 

The sub-jects rated how important each of the 
35 tasks was in assessing understanding on a 
5-point scale from 0 (not important) to 4 (essen- 
tial). The means for these tasks are given in 
Table 2. The result thus provides an empirical 
ranking of these tasks in order of importance for 
assessing understanding. 

According to this sample, the most impor- 
tant assessment task was the ability to write 
down the conditions under which the result is 
valid/can be used. Knowing when the result 
cannot be used was also important. Other 
evidence, however, suggests that these two 
abilities have not been given the necessary 
attention in school practice (Galbraith, 1982). 
Next was the ability to translate results from 
one form to another, an important ability for 
comprehending mathematics problems. The 
routine problem solving task, used very fre- 
quently in school tests, was also considered 
important by these subjects. However, solving 
problems within a certain time limit was con- 
sidered less important, thus suggesting that 

5 0 .  SINGAPORE JOURNAL O F  EDUCATION 



TABLE 2: MEANS OF ASSESSMENT ITEMS ARRANGE BY TOTAL MEANS 

No Item 

Nature of Understanding 

27 Know valid conditions of using result 
12 Use result to solve 4 routine problems 
4 Translate result from one form to another 

16 Think of appropriate ways to solve problems 
3 Describe result in own words 

28 Know invalid conditions of using result 
19 Estimate a numerical answer to a problem 
14 Use result to solve 4 novel problems 
1 1 Explain result to others 
32 Write down a generalisation of result 
5 Identify examples and non-examples 

18 Solve novel problems under open-book condition 
24 lllustrate proof with numerical example 
10 Describe use of result 
35 Recall, recognise, use result after a long time 
22 Write down proof in own way 
34 State contrapositive, converse or inverse 
13 Use result to solve 4 routine problems with 

time limit 
26 Illustrate result with concrete materials 
3 1 Detect errors 
17 Think of ways to solve problems with time limit 
9 Describe relationships in own words 

33 Write down a conjecture of result 
6 State 3 examples of a result 

29 State reasons why to learn result 
8 Select best description of relating results 
1 Select best description of a result 
2 Write down result as learnt 

15 Use result to solve 4 novel problems with time limit 
21 Write down proof as learnt 
23 Arrange given steps of proof in correct sequence 
20 Select most elegant solution 
7 State 3 non-examples of a result 

30 Describe how result arose historically 
25 Write down at least 2 proofs of same result 

Note: T = Total (N = 83), Ma = Mathematicians (N = g), 
Te = Teachers (N = 46), St = Dip Ed students (N = 28). 
Items range from 0 (not important) to 4 (essential). 
Items with significant F ratios are indicated. *p < .0.5, **p < .01. 

time was not an important factor for assessing 5, mean 2.6), the ability to state examples (item 
understanding. 6, mean 2.2) and non-examples (item 7, mean 

In mathematics teaching, the use of exam- 1.6) was less important. 
ples and non-examples is a common practice. 
Although the ability to identify examples and At the other end, three unimportant tasks 
non-examples was moderately important (item were: select an elegant solution, history of 
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mathematics, and know at least 2 proofs of the 
same result. The lack of importance for know- 
ledge of alternative proofs may reflect a 
common teaching approach that deals only 
with "the" proof in the deductive fashion. His- 
torical knowledge was considered unimportant, 
hence not supporting the philosophical view 
that "really" understanding a discipline 
includes sharing the cultural traditions of that 
discipline. Finally, the search for elegance 
resides more in the aesthetic aspect of under- 
standing than in the cognitive aspect. 

Levels of Understanding 

For this part of the questionnaire, the subjects 
were asked to award an integral score between 
0 (no understanding) and 4 (good understand- 
ing) to each of 23 pupils' answers to 5 mathe- 
matical problems. Responses to only two pro- 
blems are reported here. These answers are 
arranged below in descending order by the 
Total means. Total standard deviation and 
means for the mathematicians, teachers, and 
trainees are also given in parentheses at the end 
of each answer. Significant F-ratios for dif- - 

ferences in group means are indicated: 
*p< .05, **p< .01. 

Case 2 

What is the next term of the sequence ( 7, 16, 
25, 34, 43, 52. . . ) ? 

Answer (i) 

This is an AP of common difference = 9. The 
next term is 6 1. 
(3.8, 0.4; 3.3, 3.8, 3.9)** 

Answer (iii) 

If it is an AP, the next term is 61. It can also be 
59 because the sum of the digits of each term is 
divisible by 7. 
(3.5, 0.8; 3.6, 3.4, 3.6) 

Answer (ii) 

Don't know the next term. 
(0.5, 0.7; 0.7, 0.4, 0.5) 

Answer (i) is the "expected" one after the 
pupil has studied arithmetic progression, and 
hence was given the highest overall score. 
However, compare the group means for (i) and 
(iii). The mathematicians considered the extra 
solution given in (iii) as better than (i), while 
the teachers and the trainees had the opposite 
view. The last two groups tended to treat 
answers other than the expected one as a sign of 
poorer understanding rather than flexibility in 
problem solving. Indeed, some subjects may 
have the wrong concept of sequence, as one 
trainee wrote, "Sequences are concerned with 
integers and not with digits." 

Answer (ii) is correct theoretically, but was 
not accepted by most of the subjects. One 
teacher wrote, "Helshe is right but is failing to 
see the point of the exercise." Others com- 
mented that the pupil was trying to hide his 
ignorance, or that 6 terms were sufficient to 
determine the rule. The latter comment shows 
misunderstanding among some subjects of 
sequences. A similar misunderstanding could 
arise from the use of similar questions in I Q  
tests. 

Answer (iv) illustrates a potential source of 
misunderstanding when the same symbol is 
used to represent different mathematical 
concepts. 

Case 4 

In a certain town, there are 6 families each of 
which has 2 radios, and there are 8 families 
each of which has 4 radios. Find the average 
number of radios per family of all the families 
taken together. 

Amwer (ii) 

Average = 6 X 2 + 8 ~ 4  - 1 
- 3 - .  

It can be anything. You can't tell from six (3.9, 0.4; 4.0, 3.9, 3.8) 
terms only. You must be given the rule. 
(0.9, 1.1; 2.6, 0.7, 0.8)** Amwer (iv) 
Answer (iv) Average = + =3.1429. - 

This is a set. In set, you can arrange the terms 6 + 8  
inanywayyoulike,say(7,34,52,16 , . . .  ) .  (3.7,0.5;3.7,3.7,3.6) 



Answer (iii) 

Average = 
6 x 2 + 8 x 4  - 1 

-3 - .  

Since you can't have fractional radio, the aver- 
age is 3. 
(3.1, 0.8; 2.7, 3.0, 3.4)* 

Answer (v) 

Should take the median. Average = 4. 
(1.2, 1.1; 1.7, 1.5, 0.6)** 

There are more families having 4 radios each. 
Average = 4. 
(0.9, 1.0; 1.2, 1.0, 0.6) 

Answer (i) 

There are two types. 
Average = (2 + 4)/2 = 3. 
(0.8, 0.5; 0.5, 0.8, 0.8) 

From the first three responses, it appears that 
the mathematicians tended to expect more 
accurate results. In (iii), where the fraction was 
approximated to a whole number, the interpre- 
tation was more acceptable to the trainees than 
to the mathematicians. A trainee commended 
the pupil by writing, "He was really thinking 
about the context of the problem." On the 
other hand, some mathematicians, while not 
considering the interpretation completely - 

wrong, felt that averages can take fractional 
values irrespective of the "real world" 
situations. 

On the other hand, using median or mode as 
an interpretation of "average" was not well 
accepted by these subjects, especially the 
trainees. The Modern Maths approach to 
statistics typically stresses that there are three 
types of averages, namely mean, median, and 
mode, and that pupils should understand which 
is the more appropriate one to use in any given 
situation. Despite nearly twenry years of 
modern mathematics in schoils, the above 
responses suggest that the predominant mean- 
ing attached to "average" may still be the 
arithmetic mean. 

To summarise, tb, subjects were in general 
agreement in awarding marks to expected 
answers. However, when confronted with less 
clear-cut situations, such as different interpre- 
tations of the problem situation or solution, 

there was greater variation in giving partial 
credit. Although these subjects tended to 
believe in a relational interpretation of under- 
standing, these responses seem to suggest that 
judging the levels of understanding is based on 
an instrumental criterion of what is to be 
"expected" under certain context. If this inter- 
pretation of the results is valid, then it points to 
an apparent gap between theoretical thinking 
and practical judgement of understanding. 

Implications 

Although the sample size is small, it is still 
possible to draw several implications for 
research and classroom instruction from this 
study. 

The survey has identified some consensual 
agreements among mathematicians, mathe- 
matics teachers, and teacher trainees in their 
thinking about understanding. In particular, 
understanding is closely linked to seeing rela- 
tionships in a global sense rather than being 
restricted to details about formulae and defi- 
nitions. Hence, to assess understanding, more 
emphasis should be placed on higher mental 
processes like knowing when to use or not to use 
a rule, translating information from one form 
to another, judging the reasonableness of 
obtained answers, and making generalisations. 
However, the ability to apply learnt rules to 
routine problems is still essential since without 
such a fundamental ability, the higher pro- 
cesses may not be developed. Thus, mathe- 
matics teachers should encourage their pupils 
to actively process mathematical information so 
that the pupils do not always consider mathe- 
matics to be rote manipulation of rules and 
symbols. To ensure that relational understand- 
ing shall prevail, the teacher should design tests 
that reflect this perception. The empirical rank- 
ing of tasks given in Table 2 provides a possible 
guide to the construction of such a test. 

Results in judging the levels of understand- 
ing point to a probable gap between theoretical 
thinking and practice. One possible cause for 
such a gap is that the concept of understanding 
is commonly used without much deliberation of 
its nature. AS a start, the above review and the 
survey data can be used to design a workshop 
on the nature of understanding for teacher 
trainees. The results also point to a possible lack 
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of mastery of certain mathematical concepts 
among teacher trainees. Hence, to teach for 
understanding, teacher educators should 
ensure that the trainees possess the necessary 
mastery of the subject matter. 

For theoretical analysis of understanding, 
the review suggests an approach for viewing 
understanding under four components: con- 
tent, process, state, and ability. This approach 
helps to provide an organising model that can 
link diverse ideas about understanding 
expounded by philosophers, psychologists, 
mathematicians, and mathematics educators. 
A similar approach may be applied to other 
subject matter. 

This research provides an example of using a 
statistical approach to analyse a theoretical 
construct. As such, it is a novel way of 
supplementing rational analysis with empirical 
findings. With concerted efforts in both rational 
analyses and statistical studies, we may gain a 
better understanding of "understanding" so 
that it becomes a meaning-ful educational con- 
struct for all disciplines. 
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