Huang, Debiao

Title
Vibration-rotational structures of hydrogen cyanide (HCN) and carbon disulfide (CS2) using high-resolution Fourier transform infrared (FTIR) spectroscopy

Institute
Thesis (M.Sc.) (Life Sciences) National Institute of Education, Nanyang Technological University

Year
2018

Supervisor(s)
Tan, Augustine Tuck Lee
ABSTRACT

The infrared spectra of the linear molecules: hydrogen cyanide (H\textsubscript{12}C\textsubscript{14}N) and carbon disulfide (\textsuperscript{\textsubscript{12}}C\textsubscript{32}S\textsubscript{2}) were recorded and analyzed. A high-resolution Fourier transform infrared (FTIR) spectroscopy was used to obtain the spectrum with a resolution of 0.0063 cm-1. The ν_1 and ν_2 bands of H\textsubscript{12}C\textsubscript{14}N were recorded from a region of wavenumber 3730 cm-1 to 3930 cm-1 and 620 cm-1 to 810 cm-1, respectively whereas the $2\nu_2 + \nu_3$ and $\nu_1 + 2\nu_2 + \nu_3 - \nu_1$ bands of $\textsuperscript{\textsubscript{12}}C\textsubscript{32}S\textsubscript{2}$ were recorded from wavenumber 2275 cm-1 to 2380 cm-1. In total, a number of 306 rovibrational transitions were assigned using a non-linear least-square fitting analysis. A set of rotation-vibration energy expression and rotational constants were derived for both polyatomic molecules of H\textsubscript{12}C\textsubscript{14}N and $\textsuperscript{\textsubscript{12}}C\textsubscript{32}S\textsubscript{2}$. The root-mean-square (rms) deviation for the fit was 0.000380 cm-1 for ν_1 and ν_2 bands of H\textsubscript{12}C\textsubscript{14}N and the rms deviation of the fit for $2\nu_2 + \nu_3$ and $\nu_1 + 2\nu_2 + \nu_3 - \nu_1$ of $\textsuperscript{\textsubscript{12}}C\textsubscript{32}S\textsubscript{2}$ bands were 0.000341 cm-1 and 0.000772 cm-1, respectively. The band centers of the ν_1 and ν_2 bands of H\textsubscript{12}C\textsubscript{14}N were 713.461523 ± 0.000077 cm-1 and 3311.475567 ± 0.00011 cm-1, respectively. The band centers for $2\nu_2 + \nu_3$ and $\nu_1 + 2\nu_2 + \nu_3 - \nu_1$ bands of $\textsuperscript{\textsubscript{12}}C\textsubscript{32}S\textsubscript{2}$ were found to be 2324.548988 ± 0.000068 cm-1 and 2302.88673 ± 0.00017 cm-1, respectively. The rotational constants for both bands of $\textsuperscript{\textsubscript{12}}C\textsubscript{32}S\textsubscript{2}$ from this work were more accurately determined than those present in the literature.