EXISTENCE AND UNIQUENESS OF SOLUTIONS
FOR THREE-POINT BOUNDARY VALUE PROBLEMS
FOR SECOND ORDER DIFFERENCE EQUATIONS

Patricia Wong J. Y.
&
Ravi P. Agarwal

Paper presented at the 2nd International Conference on
Dynamic Systems and Application,
held in Atlanta, USA on 24-27 May 1995;
&
also at the 1st International Conference on
Neural Parallel and Scientific Computations,
held on 28-31 May 1995
EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THREE-POINT BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENCE EQUATIONS

PATRICIA J. Y. WONG and RAVI P. AGARWAL

1Division of Mathematics, Nanyang Technological University, Singapore 1025
2Department of Mathematics, National University of Singapore, Singapore 0511

ABSTRACT: In this paper we shall offer sufficient conditions for the existence and uniqueness of solutions for the three-point boundary value problem

\[\Delta^2 y(n) = f(n, y(n), \Delta y(n)) + e(n), \quad n = 0, 1, \ldots, T - 1 \]

\[y(0) = 0, \quad y(T + 1) = \alpha y(\eta) + b \]

where \(1 \leq \eta \leq T - 1 \) is a fixed integer and \(\alpha, b \) are given finite constants.

AMS (MOS) subject classification. 39A10, 39A12

1. INTRODUCTION

Let \(T \) be a fixed positive integer. We shall denote \([0, T] = \{0, 1, \ldots, T\} \). Also, the symbols \(\Delta^i \) and \(\nabla^j \) denote respectively the \(i \)th forward and backward difference operators with stepsize 1.

In this paper we shall consider the three-point boundary value problem

\[\Delta^2 y(n) = f(n, y(n), \Delta y(n)) + e(n), \quad n \in [0, T - 1] \]

\[y(0) = 0, \quad y(T + 1) = \alpha y(\eta) + b \]

where \(\eta \in [1, T - 1] \) is a fixed integer, \(\alpha, b \) are given finite constants and \(e(n) \) is defined for \(n \in [0, T + 1] \). Throughout the paper the function \(f: [0, T + 1] \times \mathbb{R}^2 \to \mathbb{R} \) is assumed to be continuous.

We remark that the continuous analog of a particular case of (1.1)

\[x''(t) = f(t, x(t), x'(t)) + e(t), \quad 0 < t < 1 \]

\[x(0) = 0, \quad x(1) = \alpha x(\eta) \]

where \(0 < \eta < 1 \) is given, has been studied by Gupta [2,3] and Marano [6] when \(\alpha = 1 \) as well as by Gupta et. al. [4,5] for a general \(\alpha \).

2. EXISTENCE RESULTS

Lemma 2.1. [1, p.24] Suppose that the function \(u(n) \) is defined for \(n \in [a, b] \). Then, there exists a \(c \in [a + 1, b - 1] \) such that

\[\Delta u(c) \leq (\geq) \frac{u(b) - u(a)}{b - a} \leq (\geq) \nabla u(c). \]

Lemma 2.2. [1, p.678] For any function \(u(n) \), \(n \in [0, M] \) satisfying \(u(0) = 0 \) the following inequality hold

\[4 \sin^2 \frac{\pi}{2(2M + 1)} \sum_{n=1}^{M} u^2(n) \leq \sum_{n=0}^{M-1} (\Delta u(n))^2. \]
Theorem 2.1. Suppose that there exist functions \(p(n), q(n) \) and \(r(n) \) defined on \([0, T+1]\) such that for \(n \in [0, T+1] \), \(x_1, x_2 \in \mathbb{R} \),

\[
|f(n, x_1, x_2)| \leq p(n)|x_1| + q(n)|x_2| + r(n) \tag{2.1}
\]

and

\[
(T + 1 - \eta)|\alpha| > (T + 1)|\alpha| - 1. \tag{2.2}
\]

Let

\[
\gamma = \frac{(T + 1 - \eta)|\alpha|}{(T + 1 - \eta)|\alpha| - (T + 1)|\alpha| - 1}. \tag{2.3}
\]

If

\[
[(T + 1)||p||_1 + ||q||_1] \gamma < 1, \tag{2.4}
\]

then (1.1) has at least one solution \(y(n) \) defined on \([0, T+1]\).

Proof. Let \(S = \{y(n) : y(n) \text{ is defined for } n \in [0, T+1]\} \) and \(S_1 = \{y(n) \in S : y(0) = 0, y(T+1) = \alpha y(\eta) + b\} \). We define the mappings \(L : S_1 \rightarrow S, N : S \rightarrow S \) and \(K : S \rightarrow S \) respectively by

\[
Ly(n) = \Delta^2 y(n), \quad Ny(n) = f(n, y(n), \Delta y(n))
\]

and

\[
Ky(n) = \sum_{s=0}^{n-1} (n-1-s)y(s) + \frac{\alpha m}{\theta} \sum_{s=0}^{n-1} (\eta-1-s)y(s) - \frac{n}{\theta} \sum_{s=0}^{T} (T-s)y(s) + \frac{bn}{\theta}
\]

where \(\theta = T + 1 - \alpha \eta \). It is clear that \(\theta \neq 0 \) because if \(\theta = 0 \), i.e., \(\alpha = (T + 1)/\eta \), then (2.2) is violated.

We note that \(N \) is a bounded mapping and \(L \) is one-to-one. Moreover, it follows from Arzela-Ascoli theorem that \(KN \) maps a bounded subset of \(S \) into a relatively compact subset of \(S \). Thus, \(KN : S \rightarrow S \) is a compact mapping. Further, it can be easily verified that for \(y \in S \), \(Ky \in S_1 \) and \(LKy = y \); and for \(y \in S_1 \), \(KLy = y \).

Now, equation (1.1) can be written in operator form as

\[
Ly(n) = Ny + e \quad \text{which is equivalent to}
\]

\[
y = KNy + Ke. \tag{2.5}
\]

Hence, to prove existence of solutions for (1.1) is the same as showing existence of solutions for (2.5). For this, we apply the Leray-Schauder continuation theorem [7] and it suffices to show that the set of solutions of the family of boundary value problems

\[
\Delta^2 y(n) = \lambda f(n, y(n), \Delta y(n)) + \lambda e(n), \quad n \in [0, T-1], \quad 0 \leq \lambda \leq 1
\]

\[
y(0) = 0, \quad y(T+1) = \alpha y(\eta) + b \tag{2.6}
\]

is a priori bounded by a constant independent of \(\lambda \).

Let \(y \) be a solution of (2.6) for some \(\lambda \). We have

\[
|y(n)| \leq \sum_{s=0}^{n-1} |\Delta y(s)| \leq n ||\Delta y||_\infty \leq (T+1)||\Delta y||_\infty. \tag{2.7}
\]

Next, using Lemma 2.1 we find that there exists a \(c \in [\eta + 1, T] \) such that

\[
\Delta y(c) \leq (\geq) \frac{y(T+1) - y(\eta)}{T+1 - \eta} = \frac{\alpha - 1}{\alpha(T+1 - \eta)} \leq (\geq) \nabla y(c). \tag{2.8}
\]
Applying (2.8) we get
\[
\Delta y(n) = \sum_{s=c}^{n-1} \Delta^2 y(s) + \Delta y(c) \leq (\geq) \sum_{s=c}^{n-1} \Delta^2 y(s) + \frac{(\alpha - 1)y(T + 1) + b}{\alpha(T + 1 - \eta)} \equiv A \quad (2.9)
\]
and
\[
\Delta y(n) = \sum_{s=c-1}^{n-1} \Delta^2 y(s) + \nabla y(c) \geq (\leq) \sum_{s=c-1}^{n-1} \Delta^2 y(s) + \frac{(\alpha - 1)y(T + 1) + b}{\alpha(T + 1 - \eta)} \equiv B. \quad (2.10)
\]
Coupling (2.9) and (2.10) provides
\[
B \leq (\geq) \Delta y(n) \leq (\geq) A \quad (2.11)
\]
which implies
\[
|\Delta y(n)| \leq \max\{|A|, |B|\} \\
\leq \|\Delta^2 y\|_1 + \frac{|\alpha - 1|}{\alpha(T + 1 - \eta)} \|y\|_\infty + \frac{|b|}{|\alpha|(T + 1 - \eta)} \quad (2.12)
\]
\[
\leq \|\Delta^2 y\|_1 + \frac{(T + 1)|\alpha - 1|}{|\alpha|(T + 1 - \eta)} \|\Delta y\|_\infty + \frac{|b|}{|\alpha|(T + 1 - \eta)} \quad (2.13)
\]
where we have also used (2.7) in the last inequality. In view of (2.2), it follows from (2.13) that
\[
\|\Delta y\|_\infty \leq \gamma \|\Delta^2 y\|_1 + Q \quad (2.14)
\]
where \(\gamma\) is defined in (2.3) and
\[
Q = \frac{|b|}{(T + 1 - \eta)|\alpha| - (T + 1)|\alpha - 1|}. \quad (2.15)
\]
Now, from (2.6) and (2.1) we get
\[
\|\Delta^2 y\|_1 \leq \|p y\|_1 + \|q \Delta y\|_1 + \|r\|_1 + \|e\|_1 \\
\leq \|p\|_1 \|y\|_\infty + \|q\|_1 \|\Delta y\|_\infty + \|r\|_1 + \|e\|_1 \\
\leq [(T + 1)\|p\|_1 + \|q\|_1] \left[\gamma \|\Delta^2 y\|_1 + Q\right] + \|r\|_1 + \|e\|_1 \quad (2.16)
\]
where we have used (2.7) and (2.14). Since (2.4) holds, it follows from (2.16) that
\[
\|\Delta^2 y\|_1 \leq \frac{[(T + 1)\|p\|_1 + \|q\|_1] Q + \|r\|_1 + \|e\|_1}{1 - [(T + 1)\|p\|_1 + \|q\|_1] \gamma} \equiv C.
\]
Therefore, from (2.7) and (2.14) we find
\[
\|y\|_\infty \leq (T + 1)(\gamma C + Q) \equiv D \quad (2.17)
\]
where \(D\) is independent of \(\lambda\). The proof is therefore complete.

Theorem 2.2. Suppose that (2.1) and (2.2) hold. Let
\[
\beta^{-1} = 2 \left| \sin \frac{\pi}{2(2(T + 1) + 1)} \right|. \quad (2.18)
\]
If
\[\left[\beta \sqrt{T+1} \|p\|_2 + \|q\|_1 \right] \gamma < 1, \tag{2.19} \]
then (1.1) has at least one solution \(y(n) \) defined on \([0, T+1]\).

Proof. Let \(y \) be a solution of (2.6) for some \(\lambda \). As in Theorem 2.1, it suffices to show that \(y \) is a priori bounded by a constant independent of \(\lambda \). Since \(y(0) = 0 \), from Lemma 2.2 we have
\[\|y\|_2 \leq \beta \|\Delta y\|_2 \leq \beta \sqrt{T+1} \|\Delta y\|_\infty, \tag{2.20} \]
where \(\beta \) is defined in (2.18).

It follows from (2.6), (2.1), Swartz’s inequality, (2.20) and (2.14) that
\[\|\Delta^2 y\|_1 \leq \|p\|_2 \|y\|_2 + \|q\|_1 \|\Delta y\|_\infty + \|r\|_1 + \|e\|_1 \]
\[\leq \left[\beta \sqrt{T+1} \|p\|_2 + \|q\|_1 \right] \|\Delta y\|_\infty + \|r\|_1 + \|e\|_1 \]
\[\leq \left[\beta \sqrt{T+1} \|p\|_2 + \|q\|_1 \right] \left[\gamma \|\Delta^2 y\|_1 + Q \right] + \|r\|_1 + \|e\|_1 \]
which in view of (2.19) leads to
\[\|\Delta^2 y\|_1 \leq \frac{\left[\beta \sqrt{T+1} \|p\|_2 + \|q\|_1 \right] Q + \|r\|_1 + \|e\|_1}{1 - \left[\beta \sqrt{T+1} \|p\|_2 + \|q\|_1 \right] \gamma} \equiv C. \]

Hence, from (2.7) and (2.14) we get (2.17) and this completes the proof.

Theorem 2.3. Suppose that (2.1) and (2.2) hold. If
\[\left((T+1)\|p\|_1 + \sqrt{T+1} \|q\|_2 \right) \gamma < 1, \tag{2.21} \]
then (1.1) has at least one solution \(y(n) \) defined on \([0, T+1]\).

Proof. Let \(y \) be a solution of (2.6) for some \(\lambda \). It follows from (2.6), (2.1), Swartz’s inequality, (2.7) and (2.14) that
\[\|\Delta^2 y\|_1 \leq \|p\|_1 \|y\|_\infty + \|q\|_2 \|\Delta y\|_2 + \|r\|_1 + \|e\|_1 \]
\[\leq \left[(T+1)\|p\|_1 + \sqrt{T+1} \|q\|_2 \right] \|\Delta y\|_\infty + \|r\|_1 + \|e\|_1 \]
\[\leq \left[(T+1)\|p\|_1 + \sqrt{T+1} \|q\|_2 \right] \left[\gamma \|\Delta^2 y\|_1 + Q \right] + \|r\|_1 + \|e\|_1 \]
which in view of (2.21) provides
\[\|\Delta^2 y\|_1 \leq \frac{\left[(T+1)\|p\|_1 + \sqrt{T+1} \|q\|_2 \right] Q + \|r\|_1 + \|e\|_1}{1 - \left[(T+1)\|p\|_1 + \sqrt{T+1} \|q\|_2 \right] \gamma} \equiv C. \]

Again, from (2.7) and (2.14) we obtain (2.17) and the proof is complete.

Theorem 2.4. Suppose that (2.1) and (2.2) hold. If
\[\gamma \sqrt{T+1} \left[\beta \|p\|_2 + \|q\|_2 \right] < 1, \tag{2.22} \]
then (1.1) has at least one solution \(y(n) \) defined on \([0, T+1]\).
Proof. Let \(y \) be a solution of (2.6) for some \(\lambda \). Using Swartz's inequality, (2.20) and (2.14), from (2.6) we find
\[
\| \Delta^2 y \|_1 \leq \|p\|_2 \|y\|_2 + \|q\|_2 \|\Delta y\|_2 + \|r\|_1 + \|e\|_1 \\
\leq [\beta \|p\|_2 + \|q\|_2] \|\Delta y\|_2 + \|r\|_1 + \|e\|_1 \\
\leq [\beta \|p\|_2 + \|q\|_2] \sqrt{T+1} [\gamma \|\Delta^2 y\|_1 + Q] + \|r\|_1 + \|e\|_1.
\]
Since (2.22) holds, it follows that
\[
\| \Delta^2 y \|_1 \leq \frac{[\beta \|p\|_2 + \|q\|_2] \sqrt{T+1} [\gamma \|\Delta^2 y\|_1 + Q] + \|r\|_1 + \|e\|_1}{1 - \gamma \sqrt{T+1}} = C.
\]
As before we obtain (2.17) from (2.7) and (2.14) and this completes the proof.

Theorem 2.5. Suppose that (2.1) and (2.2) hold. If
\[
\frac{\gamma}{\sqrt{2}} \frac{(T+1)}{\sqrt{2}} [\beta \|p\|_\infty + \|q\|_\infty] < 1, \tag{2.23}
\]
then (1.1) has at least one solution \(y(n) \) defined on \([0, T+1]\).

Proof. Let \(y \) be a solution of (2.6) for some \(\lambda \). As in the proof of Theorem 2.1, we have (2.11) which provides
\[
\| \Delta y \|_2 \leq \max\{\|A\|_2, \|B\|_2\}. \tag{2.24}
\]
To obtain an upper bound for the right side of (2.24), we note that
\[
\left| \frac{(\alpha - 1) y(T + 1) + b}{\alpha(T + 1 - \eta)} \right| \leq \left| \frac{(\alpha - 1)}{\alpha(T + 1 - \eta)} \right| \sum_{s=0}^{T} \Delta y(s) + \left| \frac{b}{\alpha(T + 1 - \eta)} \right| \\
\leq \left| \frac{(\alpha - 1)}{\alpha(T + 1 - \eta)} \right| \| \Delta y \|_1 + \left| \frac{b}{\alpha(T + 1 - \eta)} \right| \\
\leq \sqrt{T+1} \left| \frac{(\alpha - 1)}{\alpha(T + 1 - \eta)} \right| \| \Delta y \|_2 + \left| \frac{b}{\alpha(T + 1 - \eta)} \right|. \tag{2.25}
\]
Next, using Swartz's inequality we get
\[
\left\| \sum_{s=c}^{n-1} \Delta^2 y(s) \right\|_2^2 = \sum_{n=0}^{T} \left\{ \sum_{s=c}^{n-1} \Delta^2 y(s) \right\}^2 \\
\leq \sum_{n=0}^{T} \left\{ \left[\sum_{s=c}^{n-1} (\Delta^2 y(s))^2 \right]^{1/2} \left[\sum_{s=c}^{n-1} 1^2 \right]^{1/2} \right\}^2 \\
= \sum_{n=0}^{T} \left\{ \sum_{s=c}^{n-1} (\Delta^2 y(s))^2 \cdot |n - c| \right\} \\
\leq \| \Delta^2 y \|_2^2 \cdot \sum_{n=0}^{T} |n - c| \leq \frac{1}{2} (T+1)^2 \| \Delta^2 y \|_2^2. \tag{2.26}
\]
Similarly, it can be verified that
\[
\left\| \sum_{s=c-1}^{n-1} \Delta^2 y(s) \right\|_2 \leq \frac{T+1}{\sqrt{2}} \left\| \Delta^2 y \right\|_2. \tag{2.27}
\]

Using (2.25), (2.26), (2.27) and Swartz’s inequality, it follows from (2.24) that
\[
\| \Delta y \|_2 \leq \frac{T+1}{\sqrt{2}} \| \Delta^2 y \|_2 + \left[\sqrt{T+1} \left| \frac{\alpha - 1}{\alpha(T + 1 - \eta)} \right| \| \Delta y \|_2 + \left| \frac{b}{\alpha(T + 1 - \eta)} \right| \right] \sqrt{T + 1}
\]
or
\[
\| \Delta y \|_2 \leq \frac{\gamma(T + 1)}{\sqrt{2}} \| \Delta^2 y \|_2 + Q \sqrt{T + 1}. \tag{2.28}
\]

Now, using (2.20) and (2.28) from (2.6) we get
\[
\| \Delta^2 y \|_2 \leq \| p y \|_2 + \| q \Delta y \|_2 + \| r \|_2 + \| e \|_2
\]
\[
\leq \| p \|_{\infty} \| y \|_2 + \| q \|_{\infty} \| \Delta y \|_2 + \| r \|_2 + \| e \|_2
\]
\[
\leq \| p \|_{\infty} + \| q \|_{\infty} \| \Delta y \|_2 + \| r \|_2 + \| e \|_2
\]
\[
\leq \left[\| p \|_{\infty} + \| q \|_{\infty} \right] \left[\frac{\gamma(T + 1)}{\sqrt{2}} \| \Delta^2 y \|_2 + Q \sqrt{T + 1} \right] + \| r \|_2 + \| e \|_2
\]
which in view of (2.23) implies
\[
\| \Delta^2 y \|_2 \leq \frac{[\| p \|_{\infty} + \| q \|_{\infty}]Q \sqrt{T + 1} + \| r \|_2 + \| e \|_2}{1 - \frac{\gamma(T + 1)}{\sqrt{2}}} \equiv C.
\]

Hence, it follows from (2.7), (2.14) and Swartz’s inequality that
\[
\| y \|_{\infty} \leq (T + 1) \left(\gamma \| \Delta^2 y \|_2 + Q \right) \leq (T + 1) \left(\gamma \sqrt{T} \| \Delta^2 y \|_2 + Q \right)
\]
\[
\leq (T + 1) \left(\gamma \sqrt{T} \right) (C + Q) \equiv D
\]
where D is independent of \(\lambda \). This completes the proof.

3. UNIQUENESS RESULTS

Theorem 3.1. Suppose that there exist nonnegative constants \(c, d \) such that for \(n \in [0, T + 1] \), \(x_1, x_2, y_1, y_2 \in \mathbb{R} \),
\[
|f(n, y_1, y_2) - f(n, x_1, x_2)| \leq c|y_1 - x_1| + d|y_2 - x_2|.
\tag{3.1}
\]

Further, suppose that (2.2) holds. If
\[
\frac{\gamma(T + 1)}{\sqrt{2}} (c\beta + d) < 1,
\tag{3.2}
\]
then (1.1) has a unique solution \(y(n) \) defined on \([0, T + 1]\).
Proof. The existence of a solution for (1.1) follows from Theorem 2.5. Let \(y_1 \) and \(y_2 \) be two solutions of (1.1). Then, we have

\[
\Delta^2(y_1 - y_2)(n) = f(n, y_1(n), \Delta y_1(n)) - f(n, y_2(n), \Delta y_2(n)), \quad n \in [0, T - 1]
\]

\[
(y_1 - y_2)(0) = 0, \quad (y_1 - y_2)(T + 1) = \alpha(y_1 - y_2)(\eta).
\]

Using (3.1), (2.20) and (2.28) (with \(b = 0 \)), it follows from (3.3) that

\[
\|\Delta^2 y_1 - \Delta^2 y_2\| \leq c\|y_1 - y_2\|_2 + d\|\Delta y_1 - \Delta y_2\|_2
\]

\[
\leq \frac{\gamma(T + 1)}{\sqrt{2}} (c\beta + d)\|\Delta^2 y_1 - \Delta^2 y_2\|_2
\]

which in view of (3.2) gives rise to

\[
\|\Delta^2 y_1 - \Delta^2 y_2\|_2 = 0.
\]

Now, using (2.20), (2.28) (with \(b = 0 \)) and (3.4), we have

\[
\|y_1 - y_2\|_2 \leq \beta\|\Delta y_1 - \Delta y_2\|_2 \leq \beta \frac{\gamma(T + 1)}{\sqrt{2}}\|\Delta^2 y_1 - \Delta^2 y_2\|_2 = 0
\]

which implies \(\|y_1 - y_2\|_2 = 0 \) and hence

\[
y_1(n) = y_2(n), \quad 0 \leq n \leq T + 1.
\]

Theorem 3.2. Suppose that (3.1) and (2.2) hold. If

\[
\left[(T + 1)(T + 2)c + \sqrt{(T + 1)(T + 2)} \right] \gamma < 1,
\]

then (1.1) has a unique solution \(y(n) \) defined on \([0, T + 1]\).

Proof. The existence of a solution for (1.1) follows from Theorem 2.3. If \(y \) is a solution of (1.1), then we have

\[
|y(n)| \leq \sum_{s=0}^{n-1} |\Delta y(s)| \leq \|\Delta y\|_1
\]

which also implies

\[
\|y\|_1 \leq (T + 2) \|\Delta y\|_1.
\]

Using (3.7), it follows from (2.12) that

\[
|\Delta y(n)| \leq \|\Delta^2 y\|_1 + \frac{|\alpha - 1|}{|\alpha|(T + 1 - \eta)} \|\Delta y\|_1 + \frac{|b|}{|\alpha|(T + 1 - \eta)}
\]

which on summing from 0 to \(T \) gives

\[
\|\Delta y\|_1 \leq \gamma(T + 1)\|\Delta^2 y\|_1 + (T + 1)Q.
\]

Now, to show uniqueness once again let \(y_1 \) and \(y_2 \) be two solutions of (1.1). Using (3.1), (3.8) and (3.9) (with \(b = 0 \)), it follows from (3.3) that

\[
\|\Delta^2 y_1 - \Delta^2 y_2\|_1 \leq c\|y_1 - y_2\|_1 + d\|\Delta y_1 - \Delta y_2\|_1
\]

\[
\leq [c(T + 2) + d]\gamma(T + 1)\|\Delta^2 y_1 - \Delta^2 y_2\|_1
\]
which in view of (3.6) provides
\[\|\Delta^2 y_1 - \Delta^2 y_2\|_1 = 0. \]

(3.10)

Next, using (3.8), (3.9) (with \(b = 0 \)) and (3.10), we get
\[\|y_1 - y_2\| \leq (T + 2)\|\Delta y_1 - \Delta y_2\| \leq \gamma(T + 1)(T + 2)\|\Delta^2 y_1 - \Delta^2 y_2\|_1 = 0 \]
which implies \(\|y_1 - y_2\|_1 = 0 \) and hence (3.5) follows. This completes the proof.

Example 3.1. Consider the boundary value problem
\[\Delta^2 y(n) = \frac{2}{2n + 1} \Delta y(n) + 2n + 3, \quad y(0) = 0, \quad y(10) = 4y(5), \quad n \in [0, 8]. \]

The general solution is given by
\[y(n) = c_1 + c_2 n^2 + \frac{1}{6} n(n - 1)(4n + 1). \]

We see that the boundary conditions lead to some inconsistency and so this problem has no solution. In fact, (2.2) is not satisfied and this illustrates Theorems 2.1-2.5.

Example 3.2. The boundary value problem
\[\Delta^2 y(n) = \frac{y(n)}{100(n + 10)} + \frac{\Delta y(n)}{10(n + 200)} + e(n), \quad y(0) = 0, \quad y(7) = 3y(2) + b, \quad n \in [0, 5] \]
where \(b \) and \(e(n) \) are arbitrary but fixed, satisfies Theorems 3.1-3.2. Hence, a unique solution exists.

REFERENCES

