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Abstract

In this paper, we investigate some versions of d-space, well-filtered space and Rudin space concerning various
countability properties. It is proved that every T0 space with a first-countable sobrification is an ω-Rudin
space and every first-countable T0 space is well-filtered determined. Therefore, every ω-well-filtered space
with a first-countable sobrification is sober. It is also shown that every irreducible closed subset in a first-
countable ω-well-filtered space is countably directed, hence every first-countable ω∗-well-filtered d-space is
sober.
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1. Introduction

In non-Hausdorff topology and domain theory, the d-spaces, sober spaces and well-filtered spaces form
three of the most important classes (see [1,3-5,7-17, 19-25]). In [19, 22, 23], we introduced and studied
the Rudin spaces, well-filtered determined spaces and ω-well-filtered spaces. Some relationships and links
among these new non-Hausdorff topological properties, the well studied sobriety and well-filteredness were
uncovered. In [23], it was proved that in a first-countable ω-well-filtered space X, every irreducible closed
subset of X is directed under the specialization order of X. It follows immediately that every first-countable
ω-well-filtered d-space is sober.

In the current paper, we continue studying some aspects of d-space, well-filtered space and Rudin spaces
concerning countability. Employing countably directed sets, we define two new types of topological spaces —
ω∗-d-spaces and ω∗-well-filtered spaces. It is proved that every T0 space with a first-countable sobrification
is an ω-Rudin space and every first-countable T0 space is well-filtered determined. Therefore, every ω-well-
filtered space with a first-countable sobrification is sober. From these, we obtain that if a T0 space X is
second-countable or first-countable with a countable underlying set, then X is an ω-Rudin space, and X
is sober if it is additionally ω-well-filtered. We also show that in each first-countable ω-well-filtered space,
every irreducible closed subset is countably directed, hence every first-countable ω-well-filtered ω∗-d-space
is sober. Using the topological Rudin Lemma, we prove that a T0 space X is ω∗-well-filtered iff its Smyth
power space is ω∗-well-filtered iff its Smyth power space is an ω∗-d-space.
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2. Preliminaries

In this section, we briefly recall some fundamental concepts and notations that will be used in the paper.
Some basic properties of irreducible sets and compact saturated sets are presented. For further details, we
refer the reader to [5,8,17].

For a poset P and A ⊆ P , let ↓A = {x ∈ P : x ≤ a for some a ∈ A} and ↑A = {x ∈ P : x ≥
a for some a ∈ A}. For x ∈ P , we write ↓x for ↓{x} and ↑x for ↑{x}. A subset A is called a lower set (resp.,
an upper set) if A = ↓A (resp., A = ↑A).

For a set X, |X| will denote the cardinality of X. Let N denote the set of all natural numbers with the
usual order and ω = |N|, and let ω1 denote the smallest cardinal number of all uncountable cardinalities.
For a cardinal number κ and a poset P , let P (<κ) = {F ⊆ P : F is nonempty and |F | < κ}. The set
{↑ F : F ∈ P (<ω)} is denoted by FinP .

A nonempty subset D of a poset P is directed if every two elements in D have an upper bound in D.
The set of all directed sets of P is denoted by D(P ). A subset I ⊆ P is called an ideal of P if I is a directed
lower subset of P . Let Id(P ) be the poset (with the order of set inclusion) of all ideals of P . Dually, we
define the notion of filters and denote the poset of all filters of P by Filt(P ). A poset P is called a directed
complete poset, or dcpo for short, if for any D ∈ D(P ), ∨D exists in P .

As in [5], the upper topology on a poset Q, generated by the complements of the principal ideals of Q,
is denoted by υ(Q). A subset U of Q is Scott open if (i) U = ↑U , and (ii) for any directed subset D ⊆ Q
with ∨D existing, ∨D ∈ U implies D ∩U 6= ∅. All Scott open subsets of Q form a topology, called the Scott
topology on Q and denoted by σ(Q). The space ΣQ = (Q, σ(Q)) is called the Scott space of Q. The upper
sets of Q form the (upper) Alexandroff topology α(Q).

For a T0 space X and A ⊆ X, the closure of A in X is denoted by clXA or simply by A if there is no
confusion. We use ≤X to denote the specialization order on X: x ≤X y iff x ∈ {y}. In the following, when
a T0 space X is considered as a poset, the partial order always means the specialization order provided
otherwise indicated. Let O(X) (resp., C(X)) be the set of all open subsets (resp., closed subsets) of X, and
let Su(X) = {↑x : x ∈ X}. Define Sc(X) = {{x} : x ∈ X} and Dc(X) = {D : D ∈ D(X)}.

A nonempty subset A of X is irreducible if for any F1, F2 ∈ C(X), A ⊆ F1 ∪ F2 implies A ⊆ F1 or
A ⊆ F2. Denote by Irr(X) (resp., Irrc(X)) the set of all irreducible (resp., irreducible closed) subsets of X.
Clearly, every directed subset of X is irreducible. The space X is called sober, if for any F ∈ Irrc(X), there
is a unique point a ∈ X such that F = {a}.

Remark 2.1. In a T0 space X, if x ∈ X and A ⊆ X such that A = {x}, then ∨A exists in X and
x = ∨A =

∨
A.

The following two lemmas on irreducible sets are well-known.

Lemma 2.2. Let X be a space and Y a subspace of X. Then the following conditions are equivalent for a
subset A ⊆ Y :

(1) A is an irreducible subset of Y .

(2) A is an irreducible subset of X.

(3) clXA is an irreducible subset of X.

Lemma 2.3. If f : X −→ Y is continuous and A ∈ Irr(X), then f(A) ∈ Irr(Y ).

A T0 space X is called a d-space (or monotone convergence space) if X (with the specialization order) is
a dcpo and O(X) ⊆ σ(X) (cf. [5, 20]).

Definition 2.4. ([23, Definition 3.7]) A T0 space X is called a directed closure space, DC space for short, if
Irrc(X) = Dc(X), that is, for each A ∈ Irrc(X), there exists a directed subset of X such that A = D.

For any topological space X, G ⊆ 2X and A ⊆ X, let 3GA = {G ∈ G : G
⋂
A 6= ∅} and 2GA = {G ∈

G : G ⊆ A}. The symbols 3GA and 2GA will be simply written as 3A and 2A respectively if no ambiguity
occurs. The lower Vietoris topology on G is the topology that has {3U : U ∈ O(X)} as a subbase, and the
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resulting space is denoted by PH(G). If G ⊆ Irr(X), then {3GU : U ∈ O(X)} is a topology on G. The upper
Vietoris topology on G is the topology that has {2GU : U ∈ O(X)} as a base, and the resulting space is
denoted by PS(G).

Remark 2.5. Let X be a T0 space.

(1) If Sc(X) ⊆ G, then the specialization order on PH(G) is the set inclusion order, and the canonical
mapping ηX : X −→ PH(G), given by ηX(x) = {x}, is an order and topological embedding (cf. [5, 8, 17]).

(2) The space Xs = PH(Irrc(X)) with the canonical mapping ηX : X −→ Xs is the sobrification of X (cf.
[5, 8]).

A subset A of a space X is called saturated if A equals the intersection of all open sets containing
it (equivalently, A is an upper set in the specialization order). We shall use K(X) to denote the set of all
nonempty compact saturated subsets of X and endow it with the Smyth preorder, that is, for K1,K2 ∈ K(X),
K1 v K2 iff K2 ⊆ K1. The space PS(K(X)), denoted shortly by PS(X), is called the Smyth power space
or upper space of X (cf. [9, 17]). It is easy to verify that the specialization order on PS(X) is the Smyth
order (that is, ≤PS(X)=v). The canonical mapping ξX : X −→ PS(X), x 7→ ↑x, is an order and topological
embedding (cf. [9, 10, 17]). Clearly, X is homeomorphic to the subspace Su(X) of PS(X) by means of ξX .

Lemma 2.6. Let X be a T0 space. For any nonempty family {Ki : i ∈ I} ⊆ K(X),
∨
i∈I Ki exists in K(X)

iff
⋂
i∈I Ki ∈ K(X). In this case

∨
i∈I Ki =

⋂
i∈I Ki.

Proof. Suppose that {Ki : i ∈ I} ⊆ K(X) is a nonempty family and
∨
i∈I Ki exists in K(X). Let K =∨

i∈I Ki. Then K ⊆ Ki for all i ∈ I, and hence K ⊆
⋂
i∈I Ki. For any x ∈

⋂
i∈I Ki, ↑x is a upper

bound of {Ki : i ∈ I} ⊆ K(X), whence K v ↑x or, equivalently, ↑x ⊆ K. Therefore,
⋂
i∈I Ki ⊆ K. Thus⋂

i∈I Ki = K ∈ K(X).
Conversely, if

⋂
i∈I Ki ∈ K(X), then

⋂
i∈I Ki is an upper bound of {Ki : i ∈ I} in K(X). Let G ∈ K(X)

be any other upper bound of {Ki : i ∈ I}, then G ⊆ Ki for all i ∈ I, and hence G ⊆
⋂
i∈I Ki, that is,⋂

i∈I Ki v G, proving that
∨
i∈I Ki =

⋂
i∈I Ki.

Lemma 2.7. ([17, Proposition 7.21]) Let X be a T0 space.

(1) If K ∈ K(PS(X)), then
⋃
K ∈ K(X).

(2) The mapping
⋃

: PS(PS(X)) −→ PS(X), K 7→
⋃
K, is continuous.

A T0 space X is called well-filtered if it is T0, and for any open set U and filtered family K ⊆ K(X),⋂
K⊆U implies K⊆U for some K∈K.

Remark 2.8. The following implications are well-known (cf. [5]):

sobriety ⇒ well-filteredness ⇒ d-space.

For a T0 space X, let Dω(X) = {D ⊆ X : D is countable and directed} and Dωc (X) = {D : D ∈ Dω(X)}.

Definition 2.9. ([22, Definition 3.1]) A poset P is called an ω-dcpo, if for any D ∈ Dω(P ), ∨D exists.

Definition 2.10. ([22, Definition 3.4]) Let P be a poset. A subset U of P is called ω-Scott open if (i)
U = ↑U , and (ii) for any countable directed set D with ∨D existing, ∨D ∈ U implies that D ∩ U 6= ∅.
All ω-Scott open sets form a topology on P , denoted by σω(P ) and called the ω-Scott topology. The space
ΣωP = (P, σω(P )) is called the ω-Scott space of P .

Clearly, σ(P ) ⊆ σω(P ). The converse need not be true, see Example 6.9 in Section 6.

Definition 2.11. ([22, Definition 3.6]) A T0 space X is called an ω-d-space (or an ω-monotone convergence
space) if for any D ∈ Dω(X), there exists a (unique) point x ∈ X with D = {x}, or equivalently, Dωc (X) =
Sc(X).

Some characterizations of ω-d-spaces were given in [22, Proposition 3.7].
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Definition 2.12. ([22, Definition 3.9]) A T0 space X is called ω-well-filtered, if X is and for any countable
filtered family {Kn : n < ω} ⊆ K(X) and U ∈ O(X), it holds that⋂

n<ω

Kn ⊆ U ⇒ ∃n0 < ω,Kn0
⊆ U.

Proposition 2.13. For an ω-well-filtered space X and a countable filtered family {Kn : n < ω} ⊆ K(X),⋂
n<ωKn ∈ K(X).

Proof. Clearly,
⋂
n<ωKn is saturated and

⋂
n<ωKn 6= ∅ (otherwise,

⋂
n<ωKn = ∅ implies Km = ∅ for

some m < ω, a contradiction). Now we verify that
⋂
n<ωKn is compact. Let {Ui : i ∈ I} be an open

cover of
⋂
n<ωKn. As X is ω-well-filtered, we have Kn0 ⊆

⋃
i∈I Ui for some n0 < ω. By the compactness

of Kn0
, there is J ∈ I(<ω) such that Kn0

⊆
⋃
i∈J Ui, and hence

⋂
n<ωKn ⊆ Kn0

⊆
⋃
i∈J Ui. Thus⋂

n<ωKn ∈ K(X).

Proposition 2.14. For a T0 space X, the following conditions are equivalent:

(1) X is ω-well-filtered.

(2) For every continuous mapping f : X −→ Y from X to a T0 space Y and a countable filtered family
{Kn : n < ω} ⊆ K(X), ↑f

(⋂
n<ωKn

)
=
⋂
n<ω ↑f(Kn).

(3) For every continuous mapping f : X −→ Y from X to a ω-well-filtered Y and a countable filtered family
{Kn : n < ω} ⊆ K(X), ↑f

(⋂
n<ωKn

)
=
⋂
n<ω ↑f(Kn).

(4) For every continuous mapping f : X −→ Y from X to a sober space Y and a countable filtered family
{Kn : n < ω} ⊆ K(X), ↑f

(⋂
n<ωKn

)
=
⋂
n<ω ↑f(Kn).

Proof. (1) ⇒ (2): It is proved in [4, Lemma 8.1] for sober spaces and the proof is valid for ω-well-filtered
(cf. [23, Theorem 5.1]). For the sake of completeness, we present the proof here. It needs only to check⋂
n<ω ↑f(Kn) ⊆ ↑f

(⋂
n<ωKn

)
. Let y ∈

⋂
n<ω ↑f(Kn). Then for each n < ω, {y} ∩ f(Kn) 6= ∅, that is,

Kn ∩ f−1({y}) 6= ∅. Since X is ω-well-filtered, f−1({y}) ∩
⋂
n<ω ↑f(Kn) 6= ∅ (otherwise,

⋂
n<ω ↑f(Kn) ⊆

X \ f−1({y}), which implies that Km ⊆ X \ f−1({y}) for some m < ω, a contradiction). It follows that
{y} ∩ f

(⋂
n<ω ↑f(Kn)

)
6= ∅. This implies that y ∈ ↑f

(⋂
n<ω ↑Kn

)
. So

⋂
n<ω ↑f(Kn) ⊆ ↑f

(⋂
n<ω ↑Kn

)
.

(2) ⇒ (3)⇒ (4): Trivial.
(4) ⇒ (1): Let ηX : X → Xs (= PH(Irrc(X))) be the canonical topological embedding from X into its

soberification. Suppose that {Kn : n < ω} ⊆ K(X) is a countable filtered family, U ∈ O(X), and
⋂
K ⊆ U .

If Kn 6⊆ U for each n < ω, then by Lemma 3.1, X \U contains a minimal irreducible closed subset A that still
meets all Kn. By condition (4) we have

⋂
n<ω ↑Irrc(X)ηX(Kn) = ↑Irrc(X)ηX

(⋂
n<ω ↑Kn

)
⊆ ↑Irrc(X)ηX(U) =

3Irrc(X)U . Clearly, A ∈
⋂
n<ω ↑Irrc(X)ηX(Kn), and whence A ∈ 3Irrc(X)U , that is, A ∩ U 6= ∅, being in

contradiction with A ⊆ X \ U . Thus X is ω-well-filtered.

3. Rudin spaces and well-filtered determined spaces

In Section 3, we recall some results about the topological Rudin Lemma, Rudin spaces, ω-Rudin spaces,
well-filtered determined spaces and ω-well-filtered determined spaces in [10, 15, 22, 23] that will be used in
the next three sections.

Rudin’s Lemma is a useful tool in non-Hausdorff topology and plays a crucial role in domain theory (see
[3,5-9,11]). Heckmann and Keimel [10] presented the following topological variant of Rudin’s Lemma.

Lemma 3.1. (Topological Rudin Lemma) ([10, Lemma 3.1]) Let X be a topological space and A an irre-
ducible subset of the Smyth power space PS(X). Then every closed set C⊆X that meets all members of A
contains a minimal irreducible closed subset A that still meets all members of A.

For a T0 space X and K ⊆ K(X), let M(K) = {A ∈ C(X) : K ∩A 6= ∅ for all K ∈ K} (that is, K ⊆ 3A)
and m(K) = {A ∈ C(X) : A is a minimal member of M(K)}.

Based on the topological Rudin Lemma, Rudin spaces and well-filtered determined spaces were introduced
and studied in [23] (see also [19]).
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Definition 3.2. ([23, Definition 4.6 and Definition 4.7]) Let X be a T0 space and A a nonempty subset of
X.

(a) The set A is said to be a Rudin set, if there exists a filtered family K ⊆ K(X) such that A ∈ m(K) (that
is, A is a minimal closed set that intersects all members of K). Let RD(X) denote the set of all closed
Rudin sets of X.

(b) The space X is called a Rudin space, RD space for short, if Irrc(X) = RD(X), that is, every irreducible
(closed) set of X is a Rudin set.

Definition 3.3. ([23, Definition 6.1]) Let X be a T0 space and A a nonempty subset of X.

(a) The set A is called a well-filtered determined set, WD set for short, if for any continuous mapping
f : X −→ Y to a well-filtered space Y , there exists a (unique) yA ∈ Y such that f(A) = {yA}. Denote
by WD(X) the set of all closed well-filtered determined subsets of X.

(b) The space X is called a well-filtered determined space, WD space for short, if all irreducible (closed)
subsets of X are well-filtered determined, that is, Irrc(X) = WD(X).

Proposition 3.4. ([23, Proposition 6.2]) Let X be a T0 space. Then Dc(X) ⊆ RD(X) ⊆WD(X) ⊆ Irrc(X).

In the class of T0 spaces, by Proposition 3.4, we have the following implications:

Sober⇒ DC⇒ RD⇒WD.

A topological space X is locally hypercompact if for each x ∈ X and each open neighborhood U of x,
there is ↑F ∈ FinX such that x ∈ int ↑F ⊆ ↑F ⊆ U (cf. [3]). A space X is called core-compact if (O(X),⊆)
is a continuous lattice (cf. [5]).

Proposition 3.5. ([3, Proposition 3.2]) Let X be a locally hypercompact T0 space and A ∈ Irr(X). Then
there exists a directed subset D ⊆ ↓A such that A = D. Therefore, X is a DC space, and hence a Rudin
space.

Proposition 3.6. ([23, Theorem 6.10 and Theorem 6.15]) Let X be a T0 space.

(1) If X is locally compact, then X is a Rudin space.

(2) If X is core-compact, then X is a WD space.

It is not known wether every core-compact T0 space is a Rudin space. By Proposition 3.6, we immediately
deduce the following result.

Corollary 3.7. ([15, Theorem 3.1], [23, Theorem 6.15]) Every core-compact well-filtered space is sober.

In [22], the following countable versions of Rudin spaces and WD spaces were introduced and studied.

Definition 3.8. ([22, Definition 5.1]) Let X be a T0 space and A a nonempty subset of X.

(a) The set A is said to be an ω-Rudin set, if there exists a countable filtered family K ⊆ K(X) such that
A ∈ m(K). Let RDω(X) denote the set of all closed ω-Rudin sets of X.

(b) The space X is called ω-Rudin space, if Irrc(X) = RDω(X) or, equivalently, all irreducible (closed)
subsets of X are ω-Rudin sets.

Definition 3.9. ([22, Definition 5.4]) Let X be a T0 space and A a nonempty subset of X.

(a) The set A is called an ω-well -filtered determined set, WDω set for short, if for any continuous mapping
f : X −→ Y to an ω-well-filtered space Y , there exists a (unique) yA ∈ Y such that f(A) = {yA}.
Denote by WDω(X) the set of all closed ω-well-filtered determined subsets of X.

(b) The space X is called ω-well -filtered determined, ω-WD space for short, if Irrc(X) = WDω(X) or,
equivalently, all irreducible (closed) subsets of X are ω-well-filtered determined.
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For a T0 space X, it was proved in [22, Proposition 5.5] that Sc(X) ⊆ Dωc (X) ⊆ RDω(X) ⊆WDω(X) ⊆
Irrc(X). Therefore, every ω-Rudin space is ω-well-filtered determined.

Definition 3.10. A T0 space X is called an ω-DC space if Irrc(X) = Dωc (X), that is, for each A ∈ Irrc(X),
there exists a countable directed subset of X such that A = D.

By [22, Theorem 5.11], we have the following result.

Proposition 3.11. For a T0 space X, the following conditions are equivalent:

(1) X is sober.

(2) X is an ω-DC and ω-d-space.

(3) X is an ω-DC and ω-well-filtered space.

(4) X is an ω-Rudin and ω-well-filtered space.

(5) X is an ω-well-filtered determined and ω-well-filtered space.

4. ω∗-Scott topologies and ω∗-d-spaces

We now introduce and study two new types of spaces.

Definition 4.1. A nonempty subset D of a poset P is called countably directed if every nonempty countable
subset of D has an upper bound in D. The set of all countably directed sets of P is denoted by Dω∗

(P ).
The poset P is called a countably directed complete poset, or ω∗-dcpo for short, if for any D ∈ Dω∗

(P ), ∨D
exists in P .

Clearly, {{x} : x ∈ P} ⊆ Dω∗
(P ) ⊆ D(P ).

Example 4.2. For the countable chain N (with the usual order of natural numbers), (N(<ω),⊆) is directed
in 2N, but not countably directed.

Definition 4.3. A subset U of a poset P is ω∗-Scott open if (i) U = ↑U , and (ii) for any countably directed
subset D with ∨D existing, ∨D ∈ U implies D ∩ U 6= ∅. All ω∗-Scott open subsets of P form a topology,
called the ω∗-Scott topology on Q and denoted by σω∗(Q). Let Σω∗Q = (Q, σω∗(Q)).

Clearly, υ(P ) ⊆ σ(P ) ⊆ σω∗(P ) ⊆ α(P ). In general, σ(P ) 6= σω∗(P ) as shown in Example 6.9 below.

Remark 4.4. For a poset P , the ω∗-Scott topology σω∗(P ) on P is at the same time a σ-lattice (of
subsets). A σ-lattice of subsets is a collection of subsets that is closed under countable unions and countable
intersections. Indeed, for any countable family {Un : n < ω} ⊆ σω∗(P ),

⋂
n<ω Un is clearly an upper subset

of P . Let D be a countably directed subset of P for which ∨D ∈
⋂
n<ω Un. Then for each n < ω, ∨D ∈ Un,

whence there is dn ∈ D ∩ Un. As D is countably directed, there is d∗ ∈ D such that d∗ ≥ dn for all n < ω,
and hence d∗ ∈

⋂
n<ω Un. Thus

⋂
n<ω Un ∈ σω∗(P ).

Definition 4.5. A T0 space X is said to be an ω∗-d-space (or an ω∗-monotone convergence space), if every
subset D that is countably directed relative to the specialization order of X has a sup, and the relation
sup D ∈ U for any open set U of X implies D ∩ U 6= ∅.

For a T0 space X (endowed with the specialization order), let Dω∗

c (X) = {D : D ∈ Dω∗
(X)}. Then

Sc(X) ⊆ Dω∗

c (X) ⊆ Dc(X).

Proposition 4.6. For a T0 space X, the following conditions are equivalent:

(1) X is an ω∗-d-space.

(2) Dω∗

c (X) = Sc(X), that is, for any D ∈ Dω∗
(X), the closure of D has a (unique) generic point.

(3) X is an ω∗-dcpo and O(X) ⊆ σω∗(X).

(4) For any D ∈ Dω∗
(X) and U ∈ O(X),

⋂
d∈D
↑d ⊆ U implies ↑d ⊆ U (i.e., d ∈ U) for some d ∈ D.
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Proof. (1) ⇔ (2): Clearly, (2) implies (1). Now we show that (1) implies (2). Let D ∈ Dω∗
(X). Then by

(1), ∨D exists and the relation ∨D ∈ U for any open set U of X implies D ∩U 6= ∅. Therefore, D = {∨D}.
(1) ⇒ (3): Trivial.
(3) ⇒ (4): Suppose that D ∈ Dω∗

(X) and U ∈ O(X) with
⋂
d∈D
↑d ⊆ U . Then by condition (3),

↑ ∨D =
⋂
d∈D
↑d ⊆ U ∈ σω∗(X). Therefore, ∨D ∈ U , whence d ∈ U for some d ∈ D.

(4) ⇒ (2): For each D ∈ Dω∗
(X) and A ∈ C(X) with D ⊆ A, by condition (4), we have D ∩

⋂
d∈D
↑d 6= ∅

(otherwise, D ∩
⋂
d∈D
↑d = ∅ implies

⋂
d∈D
↑d ⊆ X \D, whence ↑d ⊆ X \D for some d ∈ D by condition (4), a

contradiction). Select an x ∈ D ∩
⋂
d∈D
↑d. Then D ⊆ ↓x ⊆ D, and hence D = ↓x. Thus X is an ω∗-d-space.

By Proposition 4.6, every d-space is an ω∗-d-space, and for any ω∗-dcpo P , Σω∗P is an ω∗-d-space. Let
Q = (N(<ω),⊆). Then Q is an ω∗-dcpo but not a dcpo, whence Σω∗Q is an ω∗-d-space but not a d-space.

Definition 4.7. A T0 space X is called a countably directed closure space, or ω∗-DC space for short, if
Irrc(X) = Dω∗

c (X), that is, for each A ∈ Irrc(X), there exists a countably directed subset D of X such that
A = D.

Now we introduce another countable version of well-filtered spaces.

Definition 4.8. A T0 space X is called ω∗-well -filtered, if for any countably filtered family {Ki : i ∈ I} ⊆
K(X) (that is, {Ki : i ∈ I} ∈ Dω∗

(K(X))) and U ∈ O(X), it satisfies⋂
i∈I

Ki ⊆ U ⇒ ∃j ∈ I,Kj ⊆ U.

Clearly, every well-filtered space is ω∗-well-filtered. The converse implication does not hold in general,
as shown by the following example.

Example 4.9. Let P = (N(<ω),⊆). Then P is countable and every countably directed subset of P has
a largest element, whence σω∗(P ) = α(P ). It is well-known that in an Alexandroff space of a poset, the
compact saturated sets are exactly the upward closures of finite sets (see, for example, the first paragraph
of Section 3.2 of [10]). So K(Σω∗P ) = {↑F : F ∈ P (<ω)}. Hence every family of elements of K(Σω∗P )
is countable, and consequently, any countably filtered family of elements of K(Σω∗P ) has a least element.
Therefore, Σω∗P is ω∗-well-filtered. Since P is not a dcpo (P is directed but has no largest element), Σω∗P
is not a d-space, and hence not well-filtered.

Proposition 4.10. Every ω∗-well-filtered space is an ω∗-d-space.

Proof. Let X be an ω∗-well-filtered space and D ∈ Dω∗
(X). Then {↑d : d ∈ D} ∈ Dω∗

(K(X)). By the
ω∗-well-filteredness of X, we have

⋂
d∈D ↑d * X \D or, equivalently,

⋂
d∈D ↑d ∩D 6= ∅. Therefore, there is

x ∈
⋂
d∈D ↑d ∩D, and hence D = {x}.

Proposition 4.11. For an ω∗-well-filtered X and a countably filtered family {Ki : i ∈ I} ⊆ K(X),
⋂
i∈I Ki ∈

K(X).

Proof. The proof is similar to that of Proposition 2.13 and so is omitted.

In the following, using the topological Rudin Lemma, we prove that a T0 space X is ω∗-well-filtered
iff the Smyth power space of X is ω∗-well-filtered iff the Smyth power space of X is an ω∗-d-space. The
corresponding results for well-filteredness and ω-well-filteredness are proved in [21, 22, 23].

Theorem 4.12. For a T0 space X, the following conditions are equivalent:
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(1) X is ω∗-well-filtered.

(2) PS(X) is an ω∗-d-space.

(3) PS(X) is ω∗-well-filtered.

Proof. (1)⇒ (2): Suppose that X is an ω∗-well-filtered space. For any countably filtered family K ⊆ K(X),
by Proposition 4.11,

⋂
K ∈ K(X). Therefore, by Lemma 2.6, K(X) is an ω∗-dcpo. Clearly, by the ω∗-well-

filteredness of X, 2U ∈ σω∗(K(X)) for any U ∈ O(X). Thus PS(X) is an ω∗-d-space.
(2)⇒ (3): Suppose that {Ki : i ∈ I} ⊆ K(PS(X)) is countably filtered, U ∈ O(PS(X)), and

⋂
i∈I Ki ⊆ U .

Then {Ki : i ∈ I} is directed in K(PS(X)) (with the specialization order, i.e., the Smyth order), whence
{Ki : i ∈ I} ∈ Irr(PS(PS(X))). If Ki 6⊆ U for all i ∈ I, then by Lemma 3.1, K(X) \ U contains an irreducible
closed subset A that still meets all Ki (i ∈ I). For each i ∈ I, let Ki =

⋃
↑K(X)(A ∩ Ki) (=

⋃
(A ∩ Ki)).

Then by Lemma 2.7, {Ki : i ∈ I} ⊆ K(X) is countably filtered, and Ki ∈ A for all i ∈ I since A = ↓K(X)A.
Let K =

⋂
i∈I Ki. Then K ∈ K(X) and K =

∨
K(X){Ki : i ∈ I} ∈ A by Lemma 2.6 and condition (2).

We claim that K ∈
⋂
i∈I Ki. Suppose, on the contrary, that K 6∈

⋂
i∈I Ki. Then there is a j ∈ I such that

K 6∈ Kj . Select a G ∈ A ∩ Kj . As G ∈ Kj = ↑K(X)Kj and K 6∈ Kj , we have G 6v K, i.e., K 6⊆ G. It follows

that g ∈ Ki =
⋃

(A∩Ki) for all i ∈ I and G 6∈ 3K(K){g}. For each i ∈ I, by g ∈ Ki =
⋃

(A∩Ki), there is a

Kg
i ∈ A∩Ki such that g ∈ Kg

i , whence Kg
i ∈ 3K(K){g}∩A∩Ki. Thus 3K(K){g}∩A∩Ki 6= ∅ for all i ∈ I.

By the minimality of A, we have A = 3K(K){g} ∩ A, and consequently, G ∈ A ∩ Kj = 3K(K){g} ∩ A ∩ Kj ,
which is a contradiction with G 6∈ 3K(K){g}. Thus K ∈

⋂
i∈I Ki ⊆ U ⊆ K(X) \ A, being a contradiction

with K ∈ A. Therefore, PS(X) is ω∗-well-filtered.

(3) ⇒ (1): Suppose that K ⊆ K(X) is countably filtered, U ∈ O(X), and
⋂
K ⊆ U . Let K̃ = {↑K(X)K :

K ∈ K}. Then K̃ ⊆ K(PS(X)) is countably filtered and
⋂
K̃ ⊆ 2U . By the ω∗-well-filteredness of PS(X),

there is a K ∈ K such that ↑K(X)K ⊆ 2U , whence K ⊆ U , proving that X is ω∗-well-filtered.

Definition 4.13. A T0 space X is called a countably directed closure space, ω∗-DC space for short, if
Irrc(X) = Dω∗

c (X), that is, for each A ∈ Irrc(X), there exists a countably directed subset of X such that
A = D.

By Remark 2.8, Proposition 4.6 and Proposition 4.10, we deduce the following result.

Proposition 4.14. For any T0 space X, the following conditions are equivalent:

(1) X is sober.

(2) X is an ω∗-DC and ω∗-well-filtered space.

(3) X is an ω∗-DC and ω∗-d-space.

Finally, it is worth mentioning that some discussions in Section 4 can be carried out for a general (infinite)
cardinal number ℵ. Explicitly, for an arbitrary cardinal number ℵ, a nonempty subset D of a poset P is
called ℵ-directed if every E ∈ D(<ℵ) has an upper bound in D. The set of all ℵ-directed sets of P is denoted
by Dℵ∗(P ). The poset P is called an ℵ-directed complete poset, or ℵ∗-dcpo for short, if for any D ∈ Dℵ∗(P ),
∨D exists in P . So one get the ω∗-directedness by taking ℵ = ω1 and the directedness by taking ℵ = ω. We
would gain in generality this way. In fact, instead of mere cardinals, one may even consider arbitrary subset
selections consisting of (some) directed subsets of a poset P (cf. [2]) and carry out some similar discussions
for an arbitrary subset selection of P .

5. First-countability of sobrifications and ω-Rudin spaces

In this section, we prove that if the sobrification of a T0 space X is first-countable, then X is a ω-Rudin
space. Hence every ω-well-filtered space having a first-countable sobrification is sober.

We first give two useful lemmas. Our proof arguments (and also the proof argument of Theorem 5.6
below) are inspired by those of [15, Theorem 3.1] and [1, Proposition 4.1] (see also [22, Theorem 4.1]), such
constructions originate from M. Schröder [18].
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Lemma 5.1. Let X be a T0 space and A ∈ C(X). For {Un : n ∈ N} ⊆ O(X) with U1 ⊇ U2 ⊇ ... ⊇ Un ⊇
Un+1 ⊇ ..., if A ∈ m({Un : n ∈ N}) and xn ∈ Un ∩ A for each n ∈ N, then any subset of {xn : n ∈ N} is
compact.

Proof. Suppose E is a nonempty subset of ⊆ {xn : n ∈ N} and {Vi : i ∈ I} is an open cover of E, that is,
E ⊆

⋃
i∈I Vi.

Case 1. E ∩ (X \ Vj) is finite for some j ∈ I.
Then there is Ij ∈ I(<ω) such that E ∩ (X \ Vj) ⊆

⋃
i∈Ij Vi, and hence E ⊆ Vj ∪

⋃
i∈Ij Vi.

Case 2. E ∩ (X \ Vi) is infinite for all i ∈ I.
For each i ∈ I, since U1 ⊇ U2 ⊇ ... ⊇ Un ⊇ Un+1 ⊇ ... and xn ∈ Un ∩ A for each n ∈ N, we have that

Un ∩ A ∩ (X \ Vi) 6= ∅ for all n ∈ N, and hence A ∩ (X \ Vi) = A by the minimality of A. It follows that
A ⊆

⋂
i∈I(X \ Vi) = X \

⋃
i∈I Vi. Therefore, E ⊆ A ∩

⋃
i∈I Vi = ∅, which is impossible.

By Case 1 and Case 2, E is compact.

Lemma 5.2. Let X be a T0 space and A ∈ Irrc(X). For any open neighborhood base {3Ui : i ∈ I} of A in
Xs, A ∈ m({Ui : i ∈ I}).

Proof. Clearly, A ∈ M({Ui : i ∈ I}). Suppose B ∈ C(X) and B ⊆ A. If B 6= A, then A ∩ (X \ B) 6= ∅,
and hence A ∈ 3(X \B). Since {3Ui : i ∈ I} is an open neighborhood base at A in Xs, there is j ∈ I such
that 3Uj ⊆ 3(X \B) or, equivalently, Uj ⊆ X \B. Therefore, Uj ∩B = ∅. So B /∈M({Ui : i ∈ I}). Thus
A ∈ m({Ui : i ∈ I}).

Proposition 5.3. For a T0 space X, the following two conditions are equivalent:

(1) X is second-countable.

(2) Xs is second-countable.

Proof. Clearly, the correspondence U ↔ 3U is a lattice isomorphism between O(X) and O(Xs) (recall
that Xs = PH(Irrc(X))). Whence, for a B ⊆ O(X), B is a base (or a subbase) of X iff 3B = {3U : U ∈ B}
is a base (or a subbase) of Xs. Therefore, X is second-countable iff Xs is second-countable.

For a countable T0 space X, it is easy to see that X is second-countable iff X is first-countable. Suppose
that X is first-countable. Let X = {xn : n ∈ N}. For each n ∈ N, by the first-countability of X, there is a
countable base Bn at xn. Let B =

⋃
n∈N Bn. Then B is a countable base of X. Thus X is second-countable.

Therefore, by Proposition 5.3, we deduce the following corollary.

Corollary 5.4. If a T0 space X is first-countable and |X| ≤ ω, then Xs is second-countable.

Since first-countability is a hereditary property, by Remark 2.5, we have the following result.

Proposition 5.5. For a T0 space X, if Xs is first-countable, then X is first-countable.

The converse of Proposition 5.5 does not hold in general, as shown in Example 5.12 below. It is worth
noting that the Scott topology on a countable complete lattice may not be first-countable, see [22, Example
4.8].

Now we give one of the main results of this paper.

Theorem 5.6. Every T0 space with a first-countable sobrification is an ω-Rudin space.

Proof. Suppose that X is a T0 space and Xs is first-countable. Now we show that X is an ω-Rudin space.
Let A ∈ Irrc(X). By the first-countability of Xs, there is an open neighborhood base {3Un : n ∈ N} of A
such that

3U1 ⊇ 3U2 ⊇ . . . ⊇ 3Un ⊇ . . . ,

or equivalently, . . . ⊆ Un ⊆ . . . ⊆ U2 ⊆ U1. By Lemma 5.2, A ∈ m({Un : n ∈ N}). For each n ∈ N, choose
an xn ∈ Un ∩A, and let Kn = ↑{xm : m ≥ n}. Then K1 ⊇ K2 ⊇ . . . ⊇ Kn ⊇ . . ., and {Kn : n ∈ N} ⊆ K(X)

9



by Lemma 5.1. Clearly, A ∈ M({Kn : n ∈ N}). For any B ∈ C(X), if B is a proper subset of A, that is,
A ∩ (X \B) = A \B 6= ∅, then A ∈ 3(X \B) ∈ O(Xs) (= O(PH(Irrc(X)))). Therefore, 3Um ⊆ 3(X \B)
for some m ∈ N, and hence Um ⊆ X \B or, equivalently, Um ∩B = ∅. Thus B /∈M({Kn : n ∈ N}), proving
A ∈ m({Kn : n ∈ N}). So X is an ω-Rudin space.

By Proposition 5.3, Corollary 5.4 and Theorem 5.6, we deduce the following two results.

Corollary 5.7. Every second-countable T0 space is an ω-Rudin space.

Corollary 5.8. Every countable first-countable T0 space is an ω-Rudin space.

Theorem 5.9. Every ω-well-filtered space with a first-countable sobrification is sober.

Proof. For A ∈ Irrc(X), by Theorem 5.6, there is a countable filtered family {Kn : n ∈ N} ⊆ K(X) such
that A ∈ m({Kn : n ∈ N}). Since X is ω-well-filtered,

⋂
n∈NKn * X \A, that is,

⋂
n∈NKn ∩A 6= ∅. Choose

x ∈
⋂
n∈NKn ∩ A. Then {x} ∈M({Kn : n ∈ N}) and {x} ⊆ A. By the minimality of A, we have A = {x}.

Thus X is sober.

By Corollary 5.7, Corollary 5.8 and Theorem 5.9, we get the following two corollaries.

Corollary 5.10. Every second-countable ω-well-filtered space is sober.

Corollary 5.11. Every countable first-countable ω-well-filtered space is sober.

In Theorem 5.6 and Theorem 5.9, the first-countability of Xs can not be weakened to that of X as shown
in the following example (see also Example 6.9 in Section 6).

Example 5.12. Let ω1 be the first uncountable ordinal number and P = [0, ω1). Then

(a) C(ΣP ) = {↓t : t ∈ P} ∪ {∅, P}.
(b) ΣP is compact since P has a least element 0.

(c) ΣP is first-countable.

(d) (ΣP )s is not first-countable. In fact, it is easy to verify that (ΣP )s is homeomorphic to Σ[0, ω1]. Since
sup of a countable family of countable ordinal numbers is still a countable ordinal number, Σ[0, ω1] has
no countable base at the point ω1.

(e) P is an ω-dcpo but not a dcpo (note that P is directed and ∨P does not exist). So ΣP is an ω-d-space
but not a d-space, and hence not a sober space.

(f) K(ΣP ) = {↑x : x ∈ P}. For K ∈ K(ΣP ), we have inf K ∈ K, and hence K = ↑inf K.

(g) ΣP is a Rudin space. One can easily check that Irrc(ΣP ) = {↓ x : x ∈ P} ∪ {P}. Clearly, ↓ x is a
Rudin set for each x ∈ P . Now we show that P is a Rudin set. First, {↑s : s ∈ P} is filtered. Second,
P ∈ M({↑s : s ∈ P}). For a closed subset B of ΣP , if B 6= P , then B = ↓t for some t ∈ P , and hence
↑(t+ 1) ∩ ↓t = ∅. Thus B /∈M({↑s : s ∈ P}), proving that P is a Rudin set.

(h) ΣP is not an ω-Rudin space. We prove that the irreducible closed set P is not an ω-Rudin set. For any
countable filtered family {↑αn : n ∈ N} ⊆ K(ΣP ), let β = sup{αn : n ∈ N}. Then β is still a countable
ordinal number. Clearly, ↓β ∈M({↑αn : n ∈ N}) and P 6= ↓β. Therefore, P /∈ m({↑αn : n ∈ N}). Thus
P is not an ω-Rudin set, and hence ΣP is not an ω-Rudin space.

(i) ΣP is ω-well-filtered. If {↑xn : n ∈ N} ⊆ K(ΣP ) is countable filtered family and U ∈ σ(P ) with⋂
n∈N ↑xn ⊆ U , then {xn : i ∈ N} is a countable subset of P = [0, ω1). Since sup of a countable family

of countable ordinal numbers is still a countable ordinal number, we have β = sup{xn : n ∈ N} ∈ P ,
and hence ↑β =

⋂
n∈N ↑xn ⊆ U . Therefore, β ∈ U , and consequently, xn ∈ U for some n ∈ N or,

equivalently, ↑xn ⊆ U , proving that ΣP is ω-well-filtered.
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6. First-countability and well-filtered determined spaces

In this section, we prove that any continuous mapping f : X → Y from a first-countable T0 space X to an
ω-well-filtered space Y maps any irreducible subset of X to a Rudin set of Y , hence any first-countable ω-well-
filtered space is a Rudin space. We also show that any first-countable T0 space is well-filtered determined.
In [22], it was proved that in a first-countable ω-well-filtered T0 space X, all irreducible closed subsets of
X are directed (see [22, Theorem 4.1]). In the following we will strengthen this result by proving that in a
first-countable ω-well-filtered space X, every irreducible closed subset of X is countably directed.

First, we give the following key lemma.

Lemma 6.1. Let X be a first-countable T0 space and A ∈ Irr(X). Then for any {an : n ∈ N} ⊆ A, there
exists a sequence (cn)n∈N in A such that the following three conditions hold:

(1) ∀n ∈ N,Kn = ↑{cm : m ≥ n} ∈ K(X).

(2)
⋂
n∈NKn =

⋂
n∈N ↑cn.

(3)
⋂
n∈NKn ⊆

⋂
n∈N ↑an.

Proof. For each x ∈ X, since X is first-countable, there is an open neighborhood base {Un(x) : n ∈ N} of
x such that

U1(x) ⊇ U2(x) ⊇ . . . ⊇ Uk(x) ⊇ . . . ,

that is, {Un(x) : n ∈ N} is a decreasing sequence of open subsets.
For any m ∈ N and any {(li, ki) ∈ N× N : 1 ≤ i ≤ m}, since {an : n ∈ N} ⊆ A and A ∈ Irr(X), we have

m⋂
i=1

Uli(aki) ∩A 6= ∅.

Choose c1 ∈ U1(a1) ∩ A. Now suppose we already have a set {c1, c2, . . . , cn−1} such that for each
2 ≤ i ≤ n− 1,

ci ∈
i−1⋂
j=1

Ui(cj) ∩
i⋂

j=1

Ui(aj) ∩A.

By the irreducibility of A, we have
n−1⋂
j=1

Un(cj) ∩
n⋂
j=1

Un(aj) ∩ A 6= ∅. So we can choose cn ∈
n−1⋂
j=1

Un(cj) ∩
n⋂
j=1

Un(aj) ∩A.

For each n ∈ N, let Kn = ↑{cm : m ≥ n}. Now we verify that the sequence (cn)n∈N satisfies the three
conditions in Lemma 6.1.

Claim 1: {Kn : n ∈ N} ⊆ K(X) and {Kn : n ∈ N} is a decreasing sequence.
Suppose that n ∈ N and {Ui : i ∈ I} is an open cover of Kn, i.e., Kn ⊆

⋃
i∈I Ui. Then there is

i0 ∈ I such that cn ∈ Ui0 , and thus there is m ≥ n such that cn ∈ Um(cn) ⊆ Ui0 . It follows that
ck ∈ Uk(cn) ⊆ Um(cn) ⊆ Ui0 for all k ≥ m. Thus {ck : k ≥ m} ⊆ Ui0 . For each ck, where n ≤ k < m,
choose a Uik such that ck ∈ Uik . Then the finite family {Uik : n ≤ k < m} ∪ {Ui0} covers Kn. So Kn is
compact. Clearly, Kn ⊇ Kn+1 for all n ∈ N, that is, {Kn : n ∈ N} is a decreasing sequence.

Claim 2:
⋂
n∈NKn =

⋂
n∈N ↑cn.

Clearly,
⋂
n∈N ↑cn ⊆

⋂
n∈NKn. Now we show

⋂
n∈NKn ⊆ ↑cm for every m ∈ N. Suppose U ∈ O(X)

with cm ∈ U . Then Un(m)(cm) ⊆ U for some n(m) ∈ N. For any l ≥ max{m,n(m)}, we have Kl = ↑{ck :
k ≥ l} ⊆

⋃
k≥l Uk(cm) ⊆ Un(m)(cm) ⊆ U . It follows that

⋂
n∈NKn ⊆

⋂
{U : cm ∈ U ∈ O(X)} = ↑cm. Thus⋂

n∈NKn ⊆
⋂
n∈N ↑cn.

Claim 3:
⋂
n∈NKn ⊆

⋂
n∈N ↑an.

For m ∈ N and W ∈ O(X) with am ∈ W , we have Uk(m)(am) ⊆ W for some k(m) ∈ N. For any
l ≥ max{m, k(m)}, we have Kl = ↑{ck : k ≥ l} ⊆

⋃
k≥l Uk(am) ⊆ Uk(m)(am) ⊆ W , and consequently,

↑Kl ⊆W . It follows that
⋂
n∈NKn ⊆

⋂
{W : am ∈W ∈ O(X)} = ↑am. Thus

⋂
n∈NKn ⊆

⋂
n∈N ↑an.

Therefore, the sequence (cn)n∈N satisfies the all three conditions in Lemma 6.1.
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We shall call the countable family {Kn : n ∈ N} ⊆ K(X) in the above proof a decreasing sequence of
compact saturated subsets related to {an : n ∈ N} via the sequence (cn)n∈N.

Remark 6.2. Suppose that X is a first-countable T0 space and f : X → Y is a continuous mapping from
X to a T0 space Y . Let A ∈ Irr(X) and {an : n ∈ N} ⊆ A. Then any sequence (cn)n∈N of A obtained in the
proof of Lemma 6.1 and {Kn = ↑{cm : m ≥ n} : n ∈ N} satisfy the following additional conditions:

(a)
⋂
n∈N ↑f(Kn) =

⋂
n∈N ↑f(cn).

(b)
⋂
n∈N ↑f(Kn) ⊆

⋂
n∈N ↑f(an).

Proof. By the continuity of f , f is order-preserving (with the specialization orders of X and Y ), whence
↑f(Kn) = ↑{f(cm) : m ≥ n} for each n ∈ N.

First, we show that
⋂
n∈N ↑f(Kn) =

⋂
n∈N ↑f(cn). Clearly,

⋂
n∈N ↑f(cn) ⊆

⋂
n∈N ↑f(Kn). Now we show⋂

n∈N ↑f(Kn) ⊆ ↑f(cm) for each m ∈ N. Suppose V ∈ O(Y ) with f(cm) ∈ V . Then cm ∈ f−1(V ) ∈ O(X),
whence Un(m)(cm) ⊆ f−1(V ) for some n(m) ∈ N. For any l ≥ max{m,n(m)}, we have Kl = ↑{ck : k ≥ l} ⊆⋃
k≥l Uk(cm) ⊆ Un(m)(cm) ⊆ f−1(V ), and consequently, ↑f(Kl) ⊆ V . It follows that

⋂
n∈N ↑f(Kn) ⊆

⋂
{V :

f(cm) ∈ V ∈ O(Y )} = ↑f(cm). Thus
⋂
n∈N ↑f(Kn) ⊆

⋂
n∈N ↑f(cn).

Second, we verify that
⋂
n∈N ↑f(Kn) ⊆

⋂
n∈N ↑f(an). For m ∈ N and W ∈ O(Y ) with f(am) ∈

W , we have am ∈ f−1(W ) ∈ O(X), whence Uk(m)(am) ⊆ f−1(W ) for some k(m) ∈ N. For any l ≥
max{m, k(m)}, we have Kl = ↑{ck : k ≥ l} ⊆

⋃
k≥l Uk(am) ⊆ Uk(m)(am) ⊆ f−1(W ), and consequently,

↑f(Kl) ⊆W . It follows that
⋂
n∈N ↑f(Kn) ⊆

⋂
{W : f(am) ∈W ∈ O(Y )} = ↑f(am). Thus

⋂
n∈N ↑f(Kn) ⊆⋂

n∈N ↑f(an).

Definition 6.3. Let X be a T0 space and f : X → Y a continuous mapping from X to a T0 space Y , and
let A ∈ Irr(X) and {an : n ∈ N} ⊆ A. A countable family {Kn : n ∈ N} ⊆ K(X) is said to be

(i) a decreasing sequence of compact saturated subsets related to {an : n ∈ N}, provided that there is a
sequence (cn)n∈N in A such that Kn = ↑{cm : m ≥ n} for each n ∈ N and conditions (1)–(3) of Lemma 6.1
hold. Let Kω({an : n ∈ N}) denote the set of all decreasing sequences of compact saturated subsets related
to {an : n ∈ N} and let Kω(A) =

⋃
{Kω({an : n ∈ N}) : {an : n ∈ N} ⊆ A}.

(ii) a decreasing sequence of compact saturated subsets related to {an : n ∈ N} and f , provided that
there is a sequence (cn)n∈N in A such that Kn = ↑{cm : m ≥ n} for each n ∈ N and both conditions
(1)–(3) of Lemma 6.1 and conditions (a), (b) of Remark 6.2 hold. Let Kωf ({an : n ∈ N}) denote the
set of all decreasing sequences of compact saturated subsets related to {an : n ∈ N} and f , and let
Kωf (A) =

⋃
{Kωf ({an : n ∈ N}) : {an : n ∈ N} ⊆ A}.

Proposition 6.4. Let X be an ω-well-filtered T0 space, Y a T0 space and f : X → Y a continuous mapping.
Then for any A ∈ Irr(X) and {an : n ∈ N} ⊆ A, we have {f(an) : n ∈ N} ⊆ f(A) ∈ Irrc(Y ), and f induces
a mapping f∗ : Kω({an : n ∈ N}) → Kω({f(an) : n ∈ N}), where f∗({Kn : n ∈ N} = {↑f(Kn) : n ∈ N}
for each {Kn : n ∈ N} ∈ Kω({an : n ∈ N}). Whence, f induces a natural mapping fA : Kω(A) →
Kω(f(A)), {Kn : n ∈ N} 7→ {↑f(Kn) : n ∈ N}.

Proof. By the continuity of f and Lemma 2.3, {f(an) : n ∈ N} ⊆ f(A) ∈ Irrc(Y ) and f is order-preserving.
Suppose {Kn : n ∈ N} ∈ Kω({an : n ∈ N}). Then there is a sequence (cn)n∈N in A such that Kn = ↑{cm :
m ≥ n} for all n ∈ N and conditions (1)–(3) of Lemma 6.1 hold. Since f is order-preserving, ↑f(Kn) =
↑{f(cm) : m ≥ n} for each n ∈ N. Now we verify that {↑f(Kn) : n ∈ N} ∈ Kω({f(an) : n ∈ N}); more
precisely, {↑f(Kn) : n ∈ N} is a decreasing sequence of compact saturated subsets related to {f(an) : n ∈ N}
via the sequence (f(cn))n∈N.

Claim 1: ∀n ∈ N, ↑f(Kn) = ↑{f(cm) : m ≥ n} ∈ K(Y ).
For each n ∈ N, since Kn ∈ K(X) and f is continuous, we have ↑f(Kn) ∈ K(Y ). Clearly, {↑f(Kn) : n ∈

N} is a decreasing sequences of compact saturated subsets of Y .
Claim 2:

⋂
n∈N ↑f(Kn) =

⋂
n∈N ↑f(cn).

Clearly,
⋂
n∈N ↑f(cn) ⊆

⋂
n∈N ↑f(Kn). On the other hand, by

⋂
n∈NKn =

⋂
n∈N ↑cn and Proposition 2.14,

we have
⋂
n∈N ↑f(Kn) = ↑f(

⋂
n∈NKn) = ↑f(

⋂
n∈N ↑cn) ⊆

⋂
n∈N ↑f(cn). Thus

⋂
n∈N ↑f(Kn) =

⋂
n∈N ↑f(cn).

Claim 3:
⋂
n∈N ↑f(Kn) ⊆

⋂
n∈N ↑f(an).
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By
⋂
n∈NKn ⊆

⋂
n∈N ↑an and Proposition 2.14,

⋂
n∈N ↑f(Kn) = ↑f(

⋂
n∈NKn) ⊆ ↑f(

⋂
n∈N ↑an) ⊆⋂

n∈N ↑f(an).
By Claims 1–3, {↑f(Kn) : n ∈ N} is a decreasing sequence of compact saturated subsets related to

{f(an) : n ∈ N} via the sequence (f(cn))n∈N of f(A).

Proposition 6.5. Suppose that X is a first-countable T0 space, Y is an ω-well-filtered T0 space and f : X →
Y is a continuous mapping. Then for any A ∈ Irr(X) and {an : n ∈ N} ⊆ A,

⋂
n∈N ↑ f(an)

⋂
f(A) 6= ∅.

Proof. By Lemma 6.1 and Remark 6.2, there exists a sequence (cn)n∈N in A such that (cn)n∈N and {Kn =
↑{cm : m ≥ n} : n ∈ N} satisfy conditions (1)–(3) of Lemma 6.1 and conditions (a), (b) of Remark 6.2. As f is
continuous, {↑f(Kn) : n ∈ N} is a decreasing sequence of K(Y ). By Proposition 2.13,

⋂
n∈N ↑f(Kn) ∈ K(Y ).

Now we show that
⋂
n∈N ↑f(Kn) ∩ f(A) 6= ∅. Assume, on the contrary, that

⋂
n∈N ↑f(Kn) ∩ f(A) = ∅

or, equivalently,
⋂
n∈N ↑f(Kn) ⊆ Y \ f(A). Then by the ω-well-filteredness of Y , ↑f(Kn) ⊆ Y \ f(A) for

some n ∈ N, which is in contradiction with {cm : m ≥ n} ⊆ A ∩Kn. Thus
⋂
n∈N ↑f(Kn) ∩ f(A) 6= ∅. As⋂

n∈N ↑f(Kn) ⊆
⋂
n∈N ↑f(an), we have

⋂
n∈N ↑f(an) ∩ f(A) 6= ∅.

Corollary 6.6. In a first-countable ω-well-filtered T0 space X, every irreducible closed subset of X is
countably directed. Therefore, X is an ω∗-DC space.

Proof. Applying Proposition 6.5 to A ∈ Irrc(X) and the identity idX : X −→ X.

By Remark 2.8, Proposition 4.14 and Corollary 6.6, we get the following result.

Theorem 6.7. For a first-countable T0 space X, the following conditions are equivalent:

(1) X is a sober space.

(2) X is a well-filtered space.

(3) X is an ω-well-filtered d-space.

(4) X is an ω-well-filtered ω∗-d-space.

A first-countable d-space may not be sober as shown in the following example.

Example 6.8. Let X be a countably infinite set and Xcof the space equipped with the co-finite topology
(the empty set and the complements of finite subsets of X are open). Then

(a) C(Xcof ) = {∅, X} ∪X(<ω), Xcof is T1 and hence a d-space.

(b) K(Xcof ) = 2X \ {∅}.
(c) Xcof is first-countable.

(d) Xcof is locally compact and hence a Rudin space by Proposition 3.6.

(e) Xcof is non-sober. KX = {X \ F : F ∈ X(<ω)} ⊆ K(Xcof ) is countable filtered and
⋂
KX = X \⋃

X(<ω) = X \ X = ∅, but X \ F 6= ∅ for all F ∈ X(<ω). Thus Xcof is not ω-well-filtered, and
consequently, Xcof is not well-filtered and not sober by Remark 2.8.

A topological space Y is said to be a Noetherian space if every open subset is compact (see [8, Definition
9.7.1]). As K(Xcof ) = 2X \ {∅}, the space Xcof is a Noetherian space. So Example 6.8 shows that a
Noetherian first-countable T0 space (and hence a locally compact first-countable T0 space) need not be
ω-well-filtered.

The following example shows that a first-countable ω-well-filtered T0 space need not be sober. So in
Theorem 6.7, condition (4) (and so condition (3)) cannot be weakened to the condition that X is only an
ω-well-filtered space.

Example 6.9. Let L be the complete chain [0, ω1]. Then

(a) σ(L) 6= σω(L). Since sups of all countable families of countable ordinal numbers are still countable
ordinal numbers, we have that {ω1} ∈ σω(L) but {ω1} /∈ σ(L) (note that ω1 = sup [0, ω1)).

(b) ΣωL is first-countable.
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(c) σ(L) 6= σω∗(L). It is easy to check that [ω, ω1] ∈ σω∗(L) but [ω, ω1] /∈ σ(L) (note that ω = sup N).

(d) K(ΣωL) = {↑α : α ∈ [0, ω1]}. In fact, for K ∈ K, we have inf K ∈ K, and hence K = ↑inf K.

(e) ΣωL is not an ω-Rudin space. It is easy to check that [0, ω1) ∈ Irrc(ΣωL) (note that {ω1} ∈ σω(L)).
If [0, ω1) ∈ RDω(ΣωL), then by (d), there is a countable subset {αn : n ∈ N} ⊆ [0, ω1) such that
[0, ω1) ∈ m({↑αn : n ∈ N}). Let β = sup{αn : n ∈ N}. Then β ∈ [0, ω1), and hence ↓β ∈ C(ΣωL) and
↓β ∈M({↑αn : n ∈ N}), which is in contradiction with [0, ω1) ∈ m({↑αn : n ∈ N}).

(f) ΣωL is ω-well-filtered. Suppose that {↑αn : n ∈ N} ⊆ K(ΣωL) is countable filtered and U ∈ σω(L) with⋂
n∈N ↑αn ⊆ U . Let α = sup{αn : n ∈ N}. Then {αn : n ∈ N} is a countable directed subset of L and

α ∈ U since ↑α =
⋂
n∈N ↑αn ⊆ U . It follows that αn ∈ U or, equivalently, ↑αn ⊆ U for some n ∈ N.

Thus ΣωL is ω-well-filtered, and hence an ω-d-space.

(g) ΣωL is not well-filtered. {↑t : t ∈ [0, ω1)} ⊆ K(ΣωL) is filtered and
⋂
t∈[0,ω1)

↑t = {ω1} ∈ σω(L), but

↑t * {ω1} for all t ∈ [0, ω1). Therefore, ΣωL is not well-filtered, and hence it is not sober.

(h) ΣωL is not a d-space. [0, ω1) ∈ Irrc(ΣωL) and [0, ω1) is directed, but [0, ω1) 6= clσω(L){α} = [0, α] for all
α ∈ L. Thus ΣωL is not a d-space.

(i) ΣωL is not an ω∗-d-space. In fact, by (a), {ω1} ∈ σω(L) but {ω1} /∈ σω∗(L), and hence by Proposition
4.6, ΣωL is not an ω∗-d-space.

Now we give the second main result of this paper that any continuous mapping f : X → Y from a
first-countable T0 space X to an ω-well-filtered space Y maps any irreducible subset of X to a Rudin set of
Y .

Theorem 6.10. Let X be a first-countable T0 space and Y an ω-well-filtered T0 space. Then for any
continuous mapping f : X → Y and A ∈ Irr(X), f(A) ∈ RD(Y ).

Proof. Let KA = {
⋂
n∈N ↑f(Kn) : {Kn : n ∈ N} ∈ Kωf (A)}. Then by Proposition 2.13, Lemma 6.1 and

Remark 6.2, we have
1◦ KA 6= ∅ and KA ⊆ K(Y ).
2◦ ↑f(a) ∈ KA for all a ∈ A.
For {an : n ∈ N} ⊆ A with an ≡ a, as carried out in the proof of Lemma 6.1, choose cn ≡ a for all n ∈ N.

Then K1 = K2 = ... = Kn = ... = ↑a, and hence ↑f(a) = ↑f(↑a) =
⋂
n∈N ↑f(Kn) ∈ KA.

3◦ KA is filtered.
Suppose that {Kn : n ∈ N}, {Gn : n ∈ N} ∈ Kωf (A). Then there are two countable subsets {an : n ∈ N}

and {bn : n ∈ N} of A such that {Kn : n ∈ N} ∈ Kωf ({an : n ∈ N}) and {Gn : n ∈ N} ∈ Kωf ({an : n ∈ N});
whence, there are two sequences (cn)n∈N and (dn)n∈N in A such that Kn = ↑{cm : m ≥ n} and Gn = ↑{dm :
m ≥ n} for all n ∈ N, and (cn)n∈N and (dn)n∈N satisfy conditions (1)–(3) of Lemma 6.1 and conditions (a),
(b) of Remark 6.2, respectively. Consider {sn : n ∈ N} = {c1, d1, c2, d2, ..., cn, dn, ...} ⊆ A, that is,

sn =

{
ck n = 2k − 1

dk n = 2k.

Then by Lemma 6.1 and Remark 6.2, there is {Hn : n ∈ N} ∈ Kωf ({sn : n ∈ N}) ⊆ Kωf (A), and hence⋂
n∈N ↑f(Hn) ⊆

⋂
n∈N ↑f(sn) =

⋂
n∈N ↑f(cn) ∩

⋂
n∈N ↑f(dn) =

⋂
n∈N ↑f(Kn) ∩

⋂
n∈N ↑f(Gn). Thus KA is

filtered.
4◦ f(A) ∈M(KA).
For {Kn : n ∈ N} ∈ Kωf (A), we show

⋂
n∈N ↑f(Kn) ∩ f(A) 6= ∅. Assume, on the contrary, that⋂

n∈N ↑f(Kn) ∩ f(A) = ∅ or, equivalently,
⋂
n∈N ↑f(Kn) ⊆ Y \ f(A). As {↑f(Kn) : n ∈ N} ⊆ K(Y ) is

a decreasing family and Y is ω-well-filtered, we have ↑f(Km) ⊆ Y \ f(A) for some m ∈ N, which is in
contradiction with A ∩Km 6= ∅. Therefore,

⋂
n∈N ↑f(Kn) ∩ f(A) 6= ∅. Thus f(A) ∈M(KA).

5◦ f(A) ∈ m(KA).
If B is a closed subset with B ∈M(KA), then for each a ∈ A, by 2◦, we have ↑f(a) ∩B 6= ∅, and hence

f(a) ∈ B. It follows that f(A) ⊆ B, and hence f(A) ⊆ B. Thus f(A) ∈ m(KA).
By 1◦, 3◦ and 5◦, f(A) ∈ RD(Y ).
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Corollary 6.11. Every first-countable ω-well-filtered T0 space is a Rudin space.

Proof. Applying Theorem 6.10 to A ∈ Irrc(X) and the identity idX : X −→ X.

By Theorem 6.10, we get another main result of this paper.

Theorem 6.12. Every first-countable T0 space is a well-filtered determined space.

Proof. Let X be a first-countable T0 space and A ∈ Irrc(X). We need to show A ∈WD(X). Suppose that
f : X −→ Y is a continuous mapping from X to a well-filtered space Y . By Theorem 6.10, f(A) ∈ RD(Y ),
whence by the well-filteredness of Y and Proposition 3.4, there is a (unique) yA ∈ Y such that f(A) = {yA}.
Thus A ∈WD(X).

Corollary 6.13. ([22, Theorem 4.2]) Every first-countable well-filtered T0 space is sober.

Remark 6.14. (1) In [16, Example 4.15], a well-filtered space, non-Rudin space X was given. By Corollary
6.13, X is not first-countable.

(2) Let L be the complete chain [0, ω1]. Then by Example 6.9, ΣωL is a first-countable ω-well-filtered space
but not a sober space. Therefore, by by Proposition 3.11 and Corollary 6.11, ΣωL is a Rudin space but
is not ω-well-filtered determined. So first-countability does not imply ω-well-filtered determinedness in
general.

Finally, by Theorem 5.6, Corollary 6.11 and Theorem 6.12, we naturally pose the following problem.

Problem 6.15. Is every first-countable T0 space a Rudin space?
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