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Noncyclic geometric phase for neutrino oscillation

Xiang-Bin Wang *, L.C. Kwek, Yong Liu * and C.H. Oh *
Department of Physics,Faculty of Science, National University of Singapore, Lower Kent Ridge Road, Singapore 119260,
Republic of Singapore.

We provide explicit formulae for the noncyclic geometric phases or Pancharatnam phases of
neutrino oscillations. Since Pancharatnam phase is a generalization of the Berry phase, our results
generalize the previous findings for Berry phase in a recent paper [Phys. Lett. B, 466 (1999)
262]. Unlike the Berry phase, the noncyclic geometric phase offers distinctive advantage in terms
of measurement and prediction. In particular, for three-flavor mixing, our explicit formula offers an
alternative means of determining the CP-violating phase. Our results can also be extended easily
to explore geometric phase associated with neutron-antineutron oscillations.

I. INTRODUCTION

Pontecorvo’s suggestion [ nearly half a century ago that neutrinos had finite masses implied that neutrino mass
eigenstates need not be identical with the weak eigenstates and thus may give rise to neutrino oscillations. Indeed,
recent experiments from atmospheric neutrino data in the Super-Kamiokande experiments [E], IMB collaboration [,
Soudan II [[f] and MACRO [[] experiments have provided strong confirmation of such oscillations.

In a recent paper [E], it was found that the geometric phase appears naturally in the standard Pontecorvo formulation
of neutrino oscillations. The Berry phase [ﬂ] for oscillating neutrinos was calculated and found to be a functional of
the mixing angle for the two-flavor neutrinos. Since it is possible in principle to observe the geometric phase, it was
suggested that the mixing angle could then be deduced through the observation of the Berry phase. However, the
measurement of the Berry phase is only applicable for cyclic adiabatic evolution. Thus one can only measure a state
after it has undergone a closed circuit with some period, 7. For neutrinos, this period is relatively long. Thus in
order to measure the Berry phase for neutrinos, we need to place the detector sufficiently distant from the source so
that the neutrinos traverse exact distance corresponding to a complete cycle. Experimentally, this technique can be
difficult.

Three-flavor neutrino oscillations are also particularly interesting due to its physical implications in CP violation.
Nevertheless, based on the formula in ref [E], it may not be easy to determine the CP-violating phase. In this paper,
we generalize the idea of the Berry phase to a non-cyclic geometric phase and discuss how some of the above difficulties
could be circumvented through the generalization. Naturally, our explicit formula for the non-cyclic geometric phase
reduces to the Berry phase formula in ref [B] when the time of measurement is set to the oscillating period of the
neutrino.

The generalization of geometric phase to noncyclic evolution [E,E] dates back to an important seminal paper by
Pancharatnam [@] Experimental results for non-cyclic geometric phase or Pancharatnam phase have been demon-
strated recently in experiments [@,@] Following the idea raised in ref. [H], one can in principle extract information
concerning states of the neutrinos by observing the noncyclic geometric phase at different times.

This paper is organized as follows. In section ﬂ, we briefly describe the notion of non-cyclic phase and consider
two-flavor neutrino oscillation. In section , we extend the same calculation to the three-flavor case and show how
the CP-violating phase can in principle be deduced from the non-cyclic phase. Finally, we summarizes the results in

section m
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II. NONCYCLIC GEOMETRIC PHASE

We first explain how we can compute the non-cyclic geometric phase [E,@] Suppose state |x(0)) evolves to a
state |x(t)) after a certain time ¢. If the scalar product

wlew |1 [ < 5> @ e

can be written as rexp[if], where r is a real number, then we say that the non-cyclic geometric phase due to the
evolution from |x(0)) to |x(t)) is the 8. This non-cyclic geometric phase generalizes the cyclic geometric phase since
the latter can be regarded as a special case of the former for which » = 1.

We first consider the two-flavor oscillating neutrino states as

|6 (0)) = cosB|v1) + sin O|va) (1)
|v,(0)) = —sinf|vy) + cos O|va) (2)

respectively. At time ¢, the states |v.) and |v,) evolve to the states

Ve () = e H v (0)) = e cos O|vy) + e~ 2! sin O|ws) (3)
[u(t)) = e ™, (0)) = —e 1 Esin f|vy) + e 2" cos O|vy) (4)

To calculate the noncyclic geometric phase for the evolution from |v.(0)) to |ve(t)), we define a new state, |De(t)),
given by

|7 (t)) = exp {z /Ot < E > (t’)dt’} [ve(t)) (5)

= expli(w cos? O + wa sin® 0)t]|ve () (6)
so that
(ve(0)[7e(t)) = exp[i(wy cos? @ + wo sin® 0)¢] [cos® fe 1" + sin® fe~ 2] (7)
= rexplif] (8)
Denoting ) = —% and ¢ = —%, we have
(V6(0)|7(t)) = expli(w cos® 6 + wo sin? § + Q)] [cos® et + sin? 967i¢t} (9)
This can also be written as
(Ve(0)|7(t)) = exp[—i¢t cos26] [cos® Be'®" + sin® fe~¢'] = re (10)

where the explicit expressions for r and § are then given by

r= \/1 — sin? 20 sin? ¢t (11)

and
B = —pt cos 20 + tan ! [cos 26 tan(¢t)]. (12)
We can see that there is indeed a nonzero geometric phase under non-cyclic evolution. In particular, this phase
reduces to the value of 27 sin? 6 if the time ¢ is set to the period of the oscillating neutrinos, that is ¢ = ﬁ,

upon choosing the appropriate branch. Thus one recovers the result in ref [H] for the Berry phase. However, since
the noncyclic geometric phase can be measured at arbitrary time ¢, there is no need to restrict the time, ¢, of the
measurement to exactly one period, T = wf_”wl . From the experimental point of view, such relaxation would facilitate
the measurement of the geometric phase. Hence, from eq(@), one can see that it is possible in principle to deduce
the mixing angle either by measuring the value of r (which can be done by counting the neutrino flux) or detecting
the geometric phase at two different times and then solving the resulting simultaneous equations for  and ¢t.




It is also possible to compute the other components, namely (v.(0)|7,(t)), (v.(0)|7c(t)) and (v, (0)|7,(t)) and their
associated noncyclic geometric phases. The results are summarized in the following tables.

component |expression

(V(0)]7,(1)) | (exp[—2igt sin® 0] — exp[2i¢t cos? 0]) cos O sin O

(1,,(0)|Ze(t)) | (exp[—2i¢t cos? 6] — exp[2ipt sin® 0]) cos O sin O

(,(0)[7,.(1)) |exp[igt cos 20] [cos® fe ¢t + sin® e'%?]

component |r 16}

(Ve (0)]7,,(t)) | sin 20 sin ¢t ot cos 20 — g

(,,(0)|7 (£)) | sin 20 sin ¢t — ¢t cos20 — g

v, (0)]7, (1)) |r = /1 — sin® 20 sin? ¢t | Bt cos 20 — tan~" [cos 26 tan(¢t)]

III. THREE-FLAVOR OSCILLATION

The noncyclic geometric phase for the case of three-flavor mixing can also be computed using the same method. In
the case of three-flavor mixing, the electron neutrino state at time ¢ is

|ve(t)) = e~ 1t cog 15 cos O13|11) + e~ 2t gin 015 cos O13|v2)
+€7iw3t6i5 sin 913|I/3> (13)

where 612 and 6,3 are the appropriate mixing angles. More generally, one can consider the mixing in terms of the
Cabibbo-Maskawa-Kobayashi (CKM) matrix,U, using the parametrization

is
C12€13 $12C13 €513
_ —is —is
U= | —s12c23 — c12523513¢" "  C12C23 — 512523513€ " 823C13 (14)
—is —is
512823 — C12€23513€~ "0 —C12523 — 512C23513€ 0 C23C13

where s;; = sinf;;, ¢;j = cosf;; and J is the CP violating phase of the CKM matrix.
Moreover, as in the two-flavor case, for the electron neutrino,

t
|7 (b)) = exp[z'/ < E > (t")dt'|ve(t)) (15)
0
with
<E>({t)=uw cos? 015 cos? 015 + wo sin? 615 cos? 013 + w3 sin? 015.
A straightforward calculation yields

(Ve (0)| 7 (t)) = expli(wi cos? B2 cos? B3 + wa sin® O3 cos? O3 + ePws sin’ 03)1]
[cos2 015 cos? B13e =1t 4 gin? By cos? O15e 2t + 2 sin? 913671.“)3)5]
= reeew“ (16)

where r¢. and .. are the modulus and phase of the inner product in eq(@) between v, — v, states respectively. The
left hand side of eq([l§) can be written as

(16(0)|7e(t)) = expli(w cos? B2 cos? O3 + wa sin? O15 cos® O3 + e®wssin® O3 — #)t]

X [cos2 015 cos? B15¢"t + sin® 05 cos? 03¢t + €20 gin? 91361.(2(171)@5}
= explwy sin 82,5 (e — 1) + i(2¢ sin® O15 cos? 613 + 2qpe’ sin® 613 — ¢)t]
X [cos2 615 cos 013e"?? + sin? 015 cos? 013t + sin? 6‘1362i‘5€i(2q_1)¢t} (17)

w3 — w
2l and ¢ = —
Wy — W1

tions, the geometric phase can be found to be

W1 — w2

where g = as defined previously for the two-flavor case. After some algebraic manipula-



Bee = B = wy sin 074(cos(26) — 1) + (2¢sin? O12 cos? 13 + 2q¢ cos(28) sin® 013 — @)t
4 €08 2015 cos? 013 sin ¢t — sin? 013 sin[(2q — 1)¢t — 26]
cos? 03 cos Pt + sin” 013 cos[(2q — 1)pt — 20

+ tan (18)

In general, we do not expect the CP-violating phase, §, to be zero. However if we take the CP violating phase to be
zero, as in ref @, then we get

B = (2¢sin” 015 cos? O3 + 2qpsin® 13 — @)t

_1 cos26;2 cos? 013 sin ¢t — sin® 013 sin(2q — 1)¢t

+ tan
cos?2 013 cos Pt + sin” B3 cos(2q — 1)t

(19)

If we take ¢ to be a rational number and ¢ to be the cyclic period, namely t = %, we recover the result in
ref [[il. However, from the formula in ref [fJ], it is difficult to deduce the mixing anlgles ezven if we can measure the
Berry phase because the formula involves too many unknowns. Clearly, our explicit formula in eq(@) provides in
principle a better means of deducing the mixing angles and, more importantly, the CP-violating phase through the
measurement of the noncyclic geometric phases at several different times and then solving the resulting simultaneous
equations. If necessary, errors in the measurement can also be reduced by using some form of least square fit. Since
three flavor mixing is very important in CP violation, our formula offers an invaluable tool for resolving the issue
through the measurement of geometric phase.

For completeness, we have also computed the other eight possible components and their noncyclic geometric phase.
These results are summarized as follows.

Bep = witsin® 013 sin? fa3(cos(28) — 1) — ¢t — 2q¢t
+2q¢t cos? 015 sin? a3 + 2¢t(cos B12 cos O3 — cos d sin O sin 013 sin 923)2
— sin? § sin? 615 sin? 65 sin® O3
{ sin 013 sin f23 (sin(pt + §) — sin? @12 sin ¢_ }

— cos? 012 sin ¢+)
— cos 623 cos(2q¢t) sin(¢t) sin(26012)

+tan™? - - - -
{ sin 013 sin fa3 (cos(¢pt + &) — sin? O12 sin ¢ }

(20)

— cos? 012 sin ¢+)
— cos 023 sin(2q¢t) sin(¢t) sin(2012)

Ber = witsin® 03 sin? O3 (cos(28) — 1) — ¢t — 2q¢t
+2q¢t cos? 015 sin? a3 + 2¢t(cos B12 cos a3 — cos § sin B sin 013 sin 923)2
— sin2 0 sin2 912 sin2 913 sin2 923
{ sin 013 cos 023 (sin(pt + §) — sin? @12 sin ¢_ }

— cos? 012 sin ¢+)
— sin 623 cos(2q¢t) sin(¢t) sin(2012)

+tan~? - - -
{ sin 013 cos B3 (cos(¢t + &) — sin? B12 sin ¢ }

— cos? 015 sin ¢+)
— sin 623 sin(2q¢t) sin(¢t) sin(26012)

Bue = w1t sin? 013(cos(20) — 1) — ¢t + 2qot sin® ;5 cos(20) + 2 sin? 015 cos® 0120t



sin 013 sin 023 (sin2 012 sin(¢t + )

— cos? 12 sin(pt — §) — sin¢—

ttan-! — cos 623 sin(¢t) sin(2612) (22)

sin 013 sin O23 (sin2 012 sin(¢t + )
+ cos? B2 sin(¢t — 6)

+ cos (—

Bup = wit sin? 03 sin? fa3(cos(20) — 1) + ¢t
+2qpt cos? 013 sin? fas + 2¢t(cos B12 cos faz — cos & sin 5 sin O3 sin faz)?
— sin? d sin? 01 sin® 05 sin? O3

sin? 013 sin? a3 (COS2 012 sin(¢t — 26)

— sin? 12 sin(pt + 20)

— cos? 623 cos(2612) sin(¢t)
— cos? f13 sin? fa3 sin(2q — 1)t

1 + cos d sin 013 sin(2612) sin(2623) sin(pt)
+tan

(23)
sin? 013 sin? a3 (c052 012 sin(¢pt — 26)

+ sin? 015 sin(¢t + 26)

— cos? 623 cos(¢pt)
— cos? 013 sin? Oa3 cos(2g — 1)t
+ sin § sin 613 sin(26012) sin(26023) sin(¢t)

6#7 = wlt sin2 913 sin2 923(COS(25) - 1) - gf)t
+2qpt cos? 013 sin? fas + 2¢t(cos B12 cos faz — cos & sin 5 sin O3 sin faz)?
— sin? d sin? 01 sin® 05 sin? O3
% sin(2623) (c052 013 sin(2q — 1)@t 4 cos(26012) sin(¢pt)
+ sin? 013 cos? 012 sin(¢t — 26)
— sin2 013 sin? 012 sin(¢t + 26)

1 + cos d sin 013 sin(2612) cos(2623) sin(pt)
+tan

(24)
% sin(2623) (cos2 013 cos(2q — 1)t — cos(pt)

+ cos? 013 cos? 012 cos(¢t — 29)

— cos? 013 sin? 012 cos(¢t + 29)

+ sin d sin 613 sin(2612) cos(2623) sin(pt)

Bre = witsin? 013(cos(20) — 1) — ¢t + 2qot sin® ;5 cos(20) + 2 sin? 015 cos® 0120t



sin @23 sin(2612) sin(¢t)
+ sinf13 cos Ba3 [ cos? 012 sin(¢pt — 9)

+ sin2 015 sin(¢t + 0) + sin C)

+tan (25)

sin 013 cos O23 <0052 012 cos(¢t — 6)

+ sin2 015 cos(¢t + 6) + cos C)

67# = wlt sin2 913 sin2 923(COS(25) - 1) - gf)t
+2q¢pt cos? 013 sin? fas + 2¢t(cos B12 cos Bz — cos & sin b5 sin O3 sin faz)?
— sin2 0 sin2 912 sin2 913 sin2 923
% sin(2023) [ — cos? A13 sin(2q — 1)t + cos(2012) sin(¢t)
+ sin? 013 cos? 012 sin(¢t — 26)
+ sin? 013 sin2 012 sin(¢t + 26)

+ cos d sin 013 sin(2612) cos(2623) sin(pt)

+tan™?
% sin(2023) [ cos? 013 cos(2q — 1)t — cos(¢t)

+ cos? 012 sin? 013 cos(pt — 26)
+ sin? B12 sin® O3 cos (gt + 26)

+ sin § sin 013 sin(2612) cos(2623) sin(pt)

67'7' = wt sin2 913 sin2 923(COS(25) — 1) — gf)t
+2q¢t cos? 015 sin? a3 + 2¢t(cos O1 cos faz — cos & sin O1o sin B3 sin fa3)?
— sin? § sin? 01 sin® ;5 sin? O3

sin2 013 sin2 023 (cos2 012 sin(¢t — 26)

— sin? 612 sin(¢t + 26)

+ cos? 623 cos(2612) sin(¢t)
+ cos? 013 cos? B3 sin(2q — 1)t
1 + cos d sin 013 sin(2612) sin(2623) sin(pt)

—tan™
sin? 013 sin? a3 (c052 012 sin(¢pt — 26)

+ sin? 12 sin(pt + 20)

+ sin? a3 cos(¢t)
+ cos? 013 cos? a3 cos(2g — 1)¢t
— sind sin 013 sin(2012) sin(26023) sin(¢t)

where (4 = (2¢ £ 1)¢t — 4.

IV. DISCUSSION AND CONCLUSION

Although we have restricted our computation to neutrino oscillations, the results can be extended easily to the
case of neutron-anti-neutron oscillation [@] Under certain circumstances, the measurement of geometric phase can



be obtained more robustly in experiments and this idea of extending the noncyclic geometric phases of neutrino
oscillation to n — 7 oscillation may provide an alternative experimental basis for detecting baryon number violation.
Moreover, our results holds for oscillations of any mixed state bosons, for example Kaons, 7 and so forth.

It is noteworthy to remark that Berry phase has recently been shown to exhibit essentially fault-tolerant behavior in
quantum computation through NMR experiments . In general, this fault-tolerant behavior holds for any geometric
phase, be it adiabatic or non-adiabatic, cyclic or non-cylic. In a similar context, it has also been shown to be suitable
for analyzing entangled quantum states [@]

In summary, we have calculated the non-cyclic geometric phases with both two-flavor and three-flavor mixing for
the neutrino oscillations. If we set the time of measurement to the period of the oscillation, we recover the previous
results found in ref @ Thus, our formulae naturally generalize the results for the Berry phase [E] Finally, our
formulae could have a potential application for determining the mixing angles of oscillating neutrinos and the CP
violating phase.
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