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We study the current dynamics of coupled atomic condensates flowing in two ring-shaped optical potentials.
We provide a specific setup where the ring-ring coupling can be tuned in an experimentally feasible way. It
is demonstrated that the imaginary time effective action of the system in a weak coupling regime provides
a two-level-system dynamics for the phase slip across the two rings. Through two-mode Gross- Pitaevskii
mean-field equations, the real-time dynamics of the population imbalance and the phase difference between the
two condensates is thoroughly analyzed analytically, as a function of the relevant physical parameters of the
system. In particular, we find that the macroscopic quantum self-trapping phenomenon is induced in the system
if the flowing currents assume a nonvanishing difference.
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I. INTRODUCTION

Quantum technology has been leading to realistic applica-
tions. To this end, the physical community has been combining
ideas and techniques from many fields, including quantum
optics, quantum information, and condensed matter physics.
Although devising new technological applications remains a
defining goal in the field, quantum technologies allow us also
to explore new physical regimes, disclosing new fundamental
science. Ultracold atoms loaded into optical lattices have been
playing an important role in this context [1–9]: They are precise
and easily accessible quantum simulators [10], assisting both
in the solution of puzzling problems coming from other
fields (like solid-state physics) and in the engineering of new
quantum phases of extended systems; at the same time, they
provide new devices for future technologies, like quantum
metrology and quantum computation.

In the scenario depicted above, it is desirable to work with
different spatial optical lattice configurations. Ring-shaped
optical lattices, in particular, allow us to engineer textbook
periodic boundary conditions in many-body systems, and pave
the way for exploiting the currents in the lattices as “degrees
of freedom” for new quantum devices. Such optical lattices
can be generated by employing Laguerre-Gauss laser beams
[11,12], by using a rapidly moving laser beam that paints a
time-averaged optical dipole potential [13], or by a spatial
light modulator (SLM) which imprints a controlled phase onto
a collimated laser beam [14]. Light fields of different circular
structure have been theoretically proposed [15] by making
use of Bessel laser beams. The currents can be generated
in several ways: by rotating Bose condensates [16,17], by
shining the atoms with electrical fields and making use of so-
called synthetic gauge fields [18,19], by using conical-shaped
magnetic field [11], or by imprinting a Berry phase [20].

Aside from other applications [21], neutral currents in ring-
shaped optical potentials are natural candidates to provide a
realization of Josephson junctions flux qubit analog [22,23].
This would exploit the best features of the superconducting
flux qubits together with the typically low decoherence time

of the cold-atom-based qubits. In Ref. [14] it was evidenced
that the program can be indeed realized, constructing the qubit
with bosons loaded in single-ring lattice interrupted by a weak
link.

In this paper, in contrast, we study a specific device
comprising two homogeneous ring-shaped potentials with
ring-ring coupling. In view of the possible “scalability” of
the system, we provide a feasible way to construct a ring-ring
interaction, mimicking the inductive coupling in the devices
based on charged currents (like before mentioned SQUID-
based devices). Indeed, in our specific setup, the coupling can
be tuned with simple operations. The system is envisaged to
be loaded with bosonic atoms, thus realizing a Bose-Hubbard
ladder. We demonstrate that the imaginary-time dynamics of
the phase difference across the two weakly coupled rings is
controlled by double-well potential. Therefore, the system of
two homogenous tunnel-coupled rings indeed defines a qubit.
The real-time dynamics is studied within mean-field two-mode
Gross-Pitaevskii equations. For the analysis, we benefit from
Refs. [24–26]. We demonstrate that the system is characterized
by macroscopic quantum self-trapping (MQST) [26–28], the
atomic analog of the solid-state polaronic nonlinear self-
localization phenomenon due to the strong electron-lattice
interaction [24,29]. In contrast to the polaron case, the
nonlinearity of the Bose-Einstein condensate self-trapping
arises from the many-particle interactions.

The paper is outlined as follows. In Sec. II, we describe
the experimental setup realizing two homogenous ring-shaped
optical lattices with tunable interaction between them. In
Sec. III, we describe how the phase differences along the wells
of the two rings can be integrated out in the imaginary time
action, this leading to an effective qubit dynamics for the phase
difference across the two rings. In Sec. IV, we investigate
the real-time dynamics for two coupled ring-shaped optical
lattices based on two coupled Gross-Pitaevskii equations, and
describe the various possible regimes. In Sec. IV E, regions of
oscillations with MQST and phase space diagrams are detailed
for the different values of the relevant physical parameters.
Finally, we summarize our results in Sec. V.
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II. BOSONIC ATOMS LOADED IN TWO-RING OPTICAL
POTENTIAL WITH TUNABLE COUPLING

In this section, we describe the experimental setup
for realizing two ring-shaped optical lattices with a tun-
able interaction between them. To achieve the task, we
use Laguerre-Gauss (LG) modes to produce closed opti-
cal lattices [30,31]. The electric field, with frequency ω,
wave vector k, and amplitude E0, which is propagating
along the z axis, can be written in cylindrical coordi-
nates (r,φ,z) as E(r,φ,z) = E0fpl(r)eilφei(ωt−kz), fpl(r) =
(−1)p

√
2p!

π(p+|l|)!ε
lL

|l|
p (ε2)e−ε2

, ε = √
2r/r0, where r0 is the

waist of the beam and L
|l|
p are associated Laguerre polynomials

L
|l|
p (z) = (−1)mdm/dxm[Ln+m(z)], with Ln+m(z)] being the

Laguerre polynomials. The numbers p and l label the radial
and azimuthal quantum coordinates. In this paper we will
consider the case of p = 0. We realize an adjustable distance
between the two rings by changing the standing wave period-
icity in a controllable way [32]: Two beams which are passing
through the lens interfere with each other at the focal plane
and create interference pattern; the periodicity of the obtained
lattice is inversely proportional to the distance between the two
beams. The set-up is depicted in Fig. 1. The potential which is
obtained at the focal plane of lenses has the following form:

Vlatt = 4E2
0[f 2

l cos (kLGz)2 + cos (kGz)2

+ 2fl cos (kLGz) cos (kGz) cos (φl)], (1)

where kLG is the wave vector of the Laguerre-Gauss beam.
kG = 2πD

λf
is the effective wave vector for the Gaussian beams,

where D, λ, and f are, respectively, the distance between
the two beams passing through the lens, the wavelength of
the Gaussian beams, and the focal length of the lens. Using
this equation, we can conclude that a stack of closed rings is
initially obtained, with N = l lattice sites. The depth of the
wells along each ring scales as

√
1/l!. The distance between

FIG. 1. (Color online) Proposed setup for the ring-ring coupling.
Two Gaussian laser beams of wavelength λ and distance D,
pass through a lens and interfere in the focal plane (f is the focal
length). The distance D can be easily controlled by moving the
mirrors. The distance between the fringes is a function of 1/D [32].
The resulting Gaussian laser beam with wave vector kG = 2πD/(λf ),
then, interferes with two counterpropagating Laguerre-Gauss laser
beams of amplitude E0. The inset shows the ring lattice potentials
separated by d = λf/D. Here l = 6 and p = 0.

rings can be controlled by changing the distance between the
two Gaussian beams. This can be realized by moving the mirror
M1. It can be shown that when kG = kLG, Eq. (1) will give the
potential obtained in [11]. So, this potential can be regarded as
a generalization of previously obtained potential for the ring-
shaped optical lattices. The tunneling matrix element between
two rings in the limit V0 � Er , where V0 = 4E2

0 and Er = h̄2k2

2m

is the recoil energy, is given by

g = 4

√
h̄√
2m

V
3/4

0√
d

e−
√

2mV0
πh̄

d , (2)

where d = λf/D is the lattice spacing along z direction. The
physical parameters of the set-up are summarized as follows.
With a laser intensity of I = 5 W/cm2 and the detuning
� = −106 MHz the potential wells are separated by a barrier
of ∼5 μK much larger than the chemical potential of a standard
condensate (whose temperature can reach few nK). With these
parameters the scattering rate is ∼1 photon/s. It is feasible
to have a ring lattice with a radius r0∼5 μm and N = 20
lattice sites. With the laser wavelength λ = 830 nm and lens
with f = 40 mm the separation between two rings can be
adjustable with the setup shown in Fig. 1 in a range of
1.7–6 μm, by changing D from 19.6 to 5.5 mm, whereby
the lattice well spacing within each ring is ∼1.57 μm.

Assuming that the particles occupy the lowest Bloch level
only (low temperature), both the intra-ring and inter-ring
tunneling amplitudes will have a negligible dependence on
the ring’s radial coordinates.

A single-species bosonic condensate is envisaged to be
loaded in the setup described above. Our system is thus
governed by a Bose-Hubbard ladder Hamiltonian:

HBH = Ha + Hb + Hint −
∑

α=a,b

N−1∑
i=0

μαn̂α
i , (3)

with

Ha = −t

N−1∑
i=0

(ei	a/Na
†
i ai+1 + H.c.) + U

2

N∑
i=1

n̂a
i

(
n̂a

i − 1
)
,

Hb = −t

N−1∑
i=0

(ei	b/Nb+
i bi+1 + H.c.) + U

2

N∑
i=1

n̂b
i

(
n̂b

i − 1
)
,

Hint = −g

N−1∑
i=0

(a†
i bi + b

†
i ai), (4)

where Ha,b are the Hamiltonians of the condensates in rings
a and b and the Hint describes the interaction between
rings. Operators n̂a

i = a
†
i ai,n̂

b
i = b

†
i bi are the particle number

operators for the lattice site i. Operators ai and bi obey
the standard bosonic commutation relations. The parame-
ter t = ∫

wa,b(x − xa,b
i )(− h̄2

2m
∇2 + Vlatt)wa,b(x − xa,b

i ) is the
tunneling rate within lattice neighboring sites (in rings a

and b), and g = ∫
wa(x − xa

i )(− h̄2

2m
∇2 + Vlatt)wb(x − xb

i )d3x
is the tunneling rate between the rings, where wa,b(x) and
xa,b

i are the single-particle Wannier functions and site index
for the rings a and b, respectively, and wa,b(x − xa,b

i ) =
w(x − xi)w(y − yi)w(z − zi ± d/2)(where + sign holds for
ring a and − sign for ring b), with d being the distance between
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the rings. Here we assume that Wannier functions for the
two rings are the same. The repulsion between two atoms
on single lattice site is quantified by the on-site interaction
matrix element U = 4πash̄

2

m

∫ |wa,b(x)|4d3x, where as is the
s-wave scattering length of an atom. Finally, the phases 	a

and 	b are the phase twists responsible for the currents
flowing along the rings. They can be expressed through vector
potential of the so-called synthetic gauge fields in the following
way: 	a/N = ∫ xi+1

xi
A(z)dz, 	b/N = ∫ xi+1

xi
B(z)dz, where A(z)

and B(z) are generated vector potentials in rings a and b,
respectively (see Appendix A).

III. EFFECTIVE QUBIT DYNAMICS

In this section, we demonstrate that the effective phase
dynamics of the system indeed defines a qubit. To this end, we
elaborate on the imaginary-time path integral of the partition
function of the model Eq. (4) in the limit of large fluctuations
of the number of bosons at each site. We first perform a local
gauge transformation al → ale

il	a , bl → ble
il	b , eliminating

the contribution of the magnetic field everywhere except at a
given site of the ring (twisted boundary conditions [33]). In
the regime under scrutiny, the partition function of the model
Eq. (4) is [34,35]

Z = Tr(e−βHBH ) ∝
∫

D[{φi}]e−S[{φi }], (5)

where the effective action is

S[{φi}] = S0[{φi}] + Sint[{φi}], (6)

S0[{φi}] =
∫ β

0
dτ

N−2∑
i=0

α={a,b}

[
1

U
(φ̇i,α)2 − EJ cos(φi+1,α − φi,α)

]

+
[

1

U
(φ̇N−1,α)2 − EJ cos(φ0,α − φN−1,α − 	α)

]
,

(7)

Sint[{φi}] = −E′
J

∫ β

0
dτ

N−1∑
i=0

cos

(
φi,a − φi,b − 	a − 	b

N
i

)
,

(8)

with EJ = t〈n〉 and E′
J = g〈n〉.

Because of the gauge transformations, the phase slip is
produced only at the boundary. We define θα

.= φN−1,α − φ0,α .
The goal now is to integrate out the phase variables in the
bulk. Assuming that the two rings are weakly coupled and that
U/EJ � 1, the bulk variables are not involved in the inter-ring
tunneling term because we can take φi,a ≈ φi,b everywhere
except at the boundary:

N−1∑
i=0

cos

(
φi,a − φi,b − 	a − 	b

N
i

)

=
N−2∑
i=0

cos

(
	a − 	b

N
i

)

+ cos

(
θa − θb − 	a − 	b

N
(N − 1)

)
, (9)

where, without loss of generality, we can assume φ0,a ≡
φ0,b. Therefore the nontrivial path integration corresponds
to S0[{φi}] only. To achieve the task we observe that in the
phase-slips-free sites the phase differences are small, so the
harmonic approximation can be applied:

N−1∑
i=0

cos(φi+1,α − φi,α) �→ cos(θα − 	α)

−
N−2∑
i=0

(φi+1,α − φi,α)2

2
. (10)

In order to facilitate the integration in the bulk phases,
we express the single φ0,α and φN−1,α as φ0,α = φ̃0,α +
θα/2, φN−1,α = φ̃0,α − θα/2. We observe that the sum
of the quadratic terms above involves N − 1 fields
with periodic boundary conditions: {φ̃0,α,φ1,α, . . . ,φN−2,α} ≡
{ψ0,α,ψ1,α, . . . ,ψN−2,α}, ψN−1,α = ψ0,α . Therefore,

N−2∑
i=0

(φi+1,α − φi,α)2 =
N−2∑
i=0

(ψi+1,α − ψi,α)2

+ 1

2
θ2
α + θα(ψN−2,α − ψ1,α). (11)

The effective action, S0[{φi}], can be split into two terms
S0[{φi}] = S01[θα] + S02[{ψiα}] with

S01[θα] =
∫ β

0
dτ

[
1

U
(θ̇α)2 + EJ

2
θ2
α − EJ cos(θα − 	α)

]
,

(12)

S02[{ψi,α},θα] =
∫ β

0
dτ

{
1

U
(ψ̇0,α)2

+
N−2∑
i=0

[
1

U
(ψ̇i,α)2 + EJ

2
(ψi+1,α − ψi,α)2

]

+EJ θα(ψN−2,α − ψ1,α)

}
. (13)

The integration of the fields ψi,α proceeds according to
the standard methods (see [36]). The fields that need
to be integrated out are expanded in Fourier series (N
is assumed to be even): ψl,α = 1√

N−1
[ψ0,α + (−)lψN/2,α +∑(N−2)/2

k=1 (ψk,αe
2πikl
N−1 + c.c.)], with ψk,α = ak,α + ibk,α . The

coupling term in Eq. (13) involves only the imag-
inary part of ψk,α: ψN−2,α − ψ1,α = ∑

k bk,αζk , being

ζk = 4√
N − 1

sin(
2πk

N − 1
). Therefore,

S02[{ψi,α},θα]

=
∫ β

0
dτ

1

U

∑
k

[
(ȧk,α)2 + ω2

ka
2
k,α

]

+
∫ β

0
dτ

1

U

∑
k

[
(ḃk,α)2+ ω2

kb
2
k,α+ EJ Uζkθαbk,α

]
, (14)

where ωk =
√

2EJ U [1 − cos ( 2πk
N−1 )]. The integral in {ak,α}

leads to a Gaussian path integral; It does not contain the in-
teraction with θα , and therefore brings a prefactor multiplying
the effective action, that does not affect the dynamics. The
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integral in {bk,α} involves the interaction and therefore leads to
a nonlocal kernel in the imaginary time:

∫
dτdτ ′θα(τ )G(τ −

τ ′)θα(τ ′). The explicit form of G(τ − τ ′) is obtained by
expanding {bk,α} and θα in Matsubara frequencies ωl . The
corresponding Gaussian integral yields to

∫
D[bk,α]e− ∫ β

0 dτS02 ∝ exp

(
− βUE2

J

∞∑
l=0

Ỹ (ωl)|θl|2
)

,

(15)

with Ỹ (ωl) = ∑(N−2)/2
k=1

ζ 2
k

ω2
k+ω2

l

. The τ = τ ′ term is extracted

by summing and subtracting Ỹ (ωl = 0); this compensates the
second term in Eq. (12).

The effective action finally reads as

Seff =
∫ β

0
dτ

[
1

2U

∑
α=a,b

θ̇2
α + U (θa,θb)

]

− EJ

2U (N − 1)

∑
α=a,b

∫ β

0
dτdτ ′θα(τ )Gα(τ − τ ′)θα(τ ′),

(16)

where

U (θa,θb)
.=

∑
α=a,b

[
EJ

2(N − 1)
(θα − 	α)2 − EJ cos(θα)

]

−E′
J cos

[
θa − θb − N − 2

N
(	a − 	b)

]
. (17)

We observe that for large N , the potential U (θa,θb) provides
the effective phase dynamics of Josephson junctions flux
qubits realized by Mooij et al. (large N corresponds to
large geometrical inductance of flux qubit devices) [22]. In
that article, the landscape was thoroughly analyzed. The
qubit is realized by superposing the two states |θ1〉 and |θ2〉
corresponding to the minima of U (θa,θb). The degeneracy
point is achieved at 	b − 	a = π (see Fig. 2). We comment
that the ratio E′

J /EJ controls the relative size of the energy
barriers between minima intra- and minima inter-“unit cells”
of the (θa,θb) phase space, and therefore is important for
designing the qubit. In our system E′

J /EJ can be fine tuned
with the scheme shown in Fig. 1. The kernel in the nonlocal
term is given by Ga(τ ) = Gb(τ ) = G(τ ), with

G(τ ) =
∞∑
l=0

N−2
2∑

k=1

ω2
l

(
1 + cos

[
2πk
N−1

])
2EJ U

(
1 − cos

[
2πk
N−1

]) + ω2
l

eiωlτ . (18)

The external bath vanishes in the thermodynamic limit and the
effective action reduces to the Caldeira-Leggett one [36,37].

IV. REAL-TIME DYNAMICS: TWO COUPLED
GROSS-PITAEVSKII EQUATIONS

In this section we study the dynamics of the number
and phase imbalance of two bose condensates confined in
the ring-shaped potential. For this goal, we assume that the
system described by a Bose-Hubbard ladder Eq. (4), is in a
superfluid regime, with negligible quantum fluctuations. The
order parameters can be defined as the expectation values of

5 0 5

5

0

5

Θa

Θb

1 0.5 0.5 1 Θa

1.38

1.34

1.3
U Θa

FIG. 2. (Color online) (Top) The effective potential landscape.
(Bottom) The double well for θa = −θb. The parameters are
E′

J /EJ = 0.8 and 	a − 	b = π .

boson operators in the Heisenberg picture:

ϕa,i(s) = 〈ai(s)〉,ϕb,i(s) = 〈bi(s)〉, (19)

implying that the Heisenberg equations for the operators ai

and bi are simplified into the Gross-Pitaevskii equations for
the corresponding expectation values:

ih̄
∂ϕa,i

∂s
= −t(ei	a/Nϕa,i+1 + e−i	a/Nϕa,i−1)

+U |ϕa,i |2ϕa,i − μaϕa,i − gϕb,i , (20)

ih̄
∂ϕb,i

∂s
= −t(ei	b/Nϕb,i+1 + e−i	b/Nϕb,i−1)

+U |ϕb,i |2ϕb,i − μbϕb,i − gϕa,i . (21)

We assume that ϕa,i+1 − ϕa,i = ϕa (s)√
N

and ϕb,i+1 − ϕb,i = ϕb(s)√
N

for all i,j = 0,..,N , where N is a total number of ring-lattice
sites. From Eqs. (20) and (21) we obtain

ih̄
∂ϕa

∂s
= −2t cos (	a/N )ϕa + U

N
|ϕa|2ϕa − μaϕa − gϕb,

(22)

ih̄
∂ϕb

∂s
= −2t cos (	b/N)ϕb + U

N
|ϕb|2ϕb − μbϕb − gϕa.

(23)

Employing the standard phase-number representation, ϕa,b =√
Na,be

iθa,b , two pairs of equations are obtained for imaginary
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and real parts:

h̄
∂Na

∂s
= −2g

√
NaNb sin (θb − θa),

(24)

h̄
∂Nb

∂s
= 2g

√
NaNb sin (θb − θa),

h̄
∂θa

∂s
= −2t cos 	a/N − UNa

N
+ μa + g

√
Nb

Na

cos (θb − θa),

h̄
∂θb

∂s
= −2t cos 	b/N − UNb

N
+μb + g

√
Na

Nb

cos (θb − θa).

(25)

From Eq. (24) it results that ∂Na

∂s
+ ∂Nb

∂s
= 0, reflecting the

conservation of the total bosonic number NT = Na + Nb.
From Eqs. (24) and (25) we get

∂Z

∂s̃
= −

√
1 − Z2 sin �, (26)

∂�

∂s̃
= � + λρZ + Z√

1 − Z2
cos �, (27)

where we introduced new variables: the dimensionless
time 2gs/h̄ → s̃, the population imbalance Z(s̃) = (Nb −
Na)/(Na + Nb), and the phase difference between the two
condensates �(s̃) = θa − θb. It is convenient to characterize
the system with a new set of parameters: external driving force
� = (2t(cos 	a/N − cos 	b/N) + μb − μa)/2g, the effec-
tive scattering wavelength λ = U/2g, and the total bosonic
density ρ = NT /N . The exact solutions of Eqs. (26) and (27)
in terms of elliptic functions [26] can be adapted to our case
and it is detailed in Appendix A. As it has been noticed in [26]
equations can be derived as Hamilton equations with

H (Z(s̃),�(s̃)) = λρZ2

2
+ �Z −

√
1 − Z2cos�, (28)

by considering Z and � as conjugate variables. Since
the energy of the system is conserved, H (Z(s̃),�(s̃)) =
H (Z(0),�(0)) = H0.

The dynamics can be visualized with the help of the
mechanical system provided by a rotator of length of

√
1 − Z2

driven by the external force �. In this picture, Z is considered
to be an angular momentum of the rotator and λρ its moment
of inertia. For � = 0, the dynamics of the rotator depends on
the value of initial angular momentum Z(0). For small initial
kinetic energy λρZ(0)2

2 , the rotator makes small oscillations and
its trajectory is an opened curve, thus 〈Z〉 = 0. For the critical
value Zc the rotator reaches the equilibrium vertical position
corresponding to φ = π . For Z0 > Zc the rotator performs
revolutions around his fixed point with �θ = 2π and 〈Z〉 = 0.
In the case of nonvanishing �, the dynamics of the rotator
depends on Z(0) and external force �. Because of the �, the
system oscillates around a shifted equilibrium value (which
leads to an asymmetry into the system) and 〈Z〉 �= 0 for all the
cases.

Below, we discuss the different regimes for population
imbalance, emerging from Eqs. (26) and (27) depending on
the values of parameters λρ and Z0 (see Appendix A for

technical details). For each physical regime we further discuss
the solution for both cases of vanishing and nonvanishing �.

A. Population imbalance and oscillation frequencies
for λρ = 0

(I-A.) � = 0. For noninteracting atoms, the solution of
Eqs. (26) and (27) is

Z(s̃) =
√

1 − H 2
0 sin (s̃ + s̃0), (29)

where s̃0 = arcsin Z0√
1−H 2

0

and H0 = −
√

1 − Z2
0 cos �0 is an

initial energy of the system. Equation (29) describes sinusoidal
Rabi oscillations between the two traps with frequency ω0 =
2g. These oscillations are equivalent to single atom dynamics,
rather than a Josephson effect arising from the interacting
superfluid condensate.

(II-A.) � �= 0. Depending on the value of the determi-
nant D = 1 − H 2

0 /(�2 + 1) of the equation f (Z) = −(�2 +
1)Z2 + 2H0�Z + 1 − H 2

0 , the population imbalance is either
oscillating around a nonzero average, reflecting the MQST
phenomenon, or staying constant in time. A numerical analysis
shows that D � 0. Therefore, there are two different subcases.
When D = 0 (which can be satisfied only if sin �0 = 0), the
population imbalance stays constant and takes on the value,

Z = Z0 = − �√
1 + �2

= const. (30)

For this value of the initial population imbalance, � = const.
In the case when D > 0, the subsequent expression for Z(t) is
obtained:

Z(s̃) = B − C

A
sin [a(s̃ − s̃0)], (31)

where s̃0 = 1
A

arcsin [ A
C

(Z0 − B)],A = √
1 + �2,B = �H0

A2 ,

and C =
√

1 − H 2
0

A2 . As it is seen from Eq. (31), the system
is oscillating about a nonzero average value B with frequency,

ω = ω0

√
1 + �2. (32)

All the regimes discussed for this case are
displayed in Fig. 3.

0 2 4 6 8 10
0.4
0.2
0.0
0.2
0.4

0 2 4 6 8 10
1.0
0.8
0.6
0.4
0.2
0.0
0.2

Time units of 2g

Z

FIG. 3. (Color online) The population imbalance in two coupled
rings for the case λρ = 0. Solid and dashed lines correspond to the
cases D = 0 and D > 0 accordingly in the regime of nonzero �. An
inset shows behavior of Z(s̃) for vanishing �. Here λρ = 0, � = 2,
�0 = 0 implying that ω � 3.16ω0.
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Z

FIG. 4. (Color online) The population imbalance in two coupled
rings for the case λρ � 1. Solid and dashed lines correspond to the
cases δ = 0 and δ < 0 accordingly in the regime of nonzero �. An
inset shows behavior of Z(s̃) for the vanishing �. Here λρ = 0.1,
�0 = 0, and � = 1.

B. Population imbalance and oscillation frequencies
in the limit λρ � 1

(I-B.) � = 0. The qualitative behavior of the dynamics for
this subcase depends on the elliptic modulus k which is given
by Eq. (B8). For λρ � 1,

k = Z(0)λρ

(
1 − λρ

2

√
1 − Z(0)2

)
. (33)

So k ∼ 0 and therefore Z(t) displays only one regime given
by

Z(s̃) � Z(0)(cos ω(s̃ − s̃0) + k

4
(ω(s̃ − s̃0) − sin 2ω(s̃ − s̃0))

× sin ω(s̃ − s̃0)), (34)

where ω � 2g(1 + λ
2 ρ

√
1 − Z(0)2) and s̃0 is fixing initial

condition. Therefore, in this regime the population imbalance
is characterized by almost sinusoidal oscillations about zero
average (see the inset of Fig. 4).

(II-B.) � �= 0. In this case behavior of Z(t) is governed
by determinant δ of the cubic equation Eq. (B15). There are
two different regimes depending on the initial value of the
population imbalance which are given by the value of δ. All
the regimes can be discussed by expressing the Weierstrass
function in Eq. (B11) using Jacobian elliptic functions. In the

1.0 0.5 0.0 0.5 1.0
0.0
0.2
0.4
0.6
0.8
1.0

0 1 2 3 4 5

1.5

1.0

0.5

0.0

0.5

Time units of 2g

Z

FIG. 5. (Color online) The population imbalance in two coupled
rings for the intermediate value of λρ and � = 0. Dotted line,
dashed line, and solid line, respectively, correspond to the cases
k < 1,k = 1,k > 1. Inset shows dependence of the elliptic modulus
k̃ (k̃ = k for k < 1; 1 for k = 1; and 1/k for k > 1) from the
value of Z0. Here λρ = 10, �0 = 0.

1 0 1
0.00006

0

0.00008

0 1 2 3 4 5
1.5

1.0

0.5

0.0

0.5

Time units of 2g

Z

FIG. 6. (Color online) The population imbalance in two coupled
rings for the intermediate value of λρ and � = 1. Dotted line,
dashed line, and solid line, respectively, correspond to the cases
δ < 0,δ = 0,δ > 0. Inset shows dependence of determinant δ of the
characteristic cubic equation from the value of Z0. Here λρ = 10,
�0 = 0.

limit of δ = 0, the population imbalance takes the form,

Z(s̃) = Z(0) + f ′[Z(0)]/4

−c + 3c
[

sin
(−√

3c
λρ

2 s̃
)]−2 − f ′′[Z(0)]/24

.

(35)

For the parameters discussed in the article, f ′[Z(0)] ∼ 10−14;
so the population imbalance is staying constant due to the same
reason as for the subcase D = 0 of the previous section. In the
limit of δ < 0, the population imbalance takes the form,

Z(s̃) = Z(0) + f ′[Z(0)]/4

e2 + H2
1+cos (λρ

√
H2 s̃)

1−cos (λρ
√

H2 s̃)
− f ′′[Z(0)]/24

, (36)

FIG. 7. (Color online) Dependence of the characteristic function
f (Z) on population imbalance (top) and phase space diagram
(bottom) for the case � = 0. Oscillations can occur only in the
regions where f (Z) � 0. Dotted, dashed, and solid lines, respectively,
correspond to the values Z0 = 0.4,0.6,0.8 (for these values k <

1,k = 1, and k > 1, respectively). Here �0 = 0 and λρ = 10.

063627-6



EFFECTIVE DYNAMICS OF COLD ATOMS FLOWING IN . . . PHYSICAL REVIEW A 88, 063627 (2013)

where e2,H2 are defined in Appendix A. Equation (36) is cor-
rect when 1/2 − 3e2/4H2 � 0 (for the parameters considered
in the article m � 10−7).

As one can see from this formula, the population imbalance
is oscillating about nonzero average (MQST regime) with
frequency given by

ω = 2g

(√
1 + �2 + (Z(0)� −

√
1 − Z(0)2)(2�2 − 1)

2(1 + �2)3/2
λρ

)
.

(37)

This two regimes are shown in Fig. 4.

C. Population imbalance and oscillation frequencies for the
intermediate values of λρ

(I-C.) � = 0. The population imbalance can be expressed
in terms of Jacobi functions “cn” and “dn” [Eq. (B7)] and
behavior of the solutions (which is summarized in Fig. 5) is
governed by elliptic modulus k [Eq. (B8)].

(II-C.) � �= 0. The population imbalance can be written
in terms of Weierstrass elliptic function [Eq. (B11)] behavior
of the solutions is governed by determinant δ [Eq. (B15)]
of the characteristic cubic equation. The dynamics for this
subcase is given by Fig. 6. In both cases oscillation periods
can be expressed in terms of elliptic integral of the first
kind [Eqs. (B10) and (B20)]. When δ = 0 oscillations are
exponentially suppressed or there are sinusoidal oscillations
depending on the relative sign between g2 and g3 [Eqs. (B16)
and (B17)]. Because it is possible to express Weierstrass
function through Jacobian functions “sn” and “cn” [Eqs. (B18)
and (B19)] we are coming to conclusion that in general
population imbalance can be written in terms of Jacobian
functions.

D. Population imbalance and oscillation
frequencies for λρ → ∞

In analogy to a nonrigid pendulum, it is expected that in this
regime, no oscillations occur and the population imbalance
stays constant: The parameter λρ is playing the role of
the moment of inertia and when it is very big it is not
possible to force the pendulum to rotate by providing it with
a finite amount of angular momentum (which is Z0) or by
acting on it with finite driving force �. It is also possible to
arrive at this conclusion from the analytical solutions shown in
Appendix A.

(I-D.) � = 0. We see that k → ∞ and Z(s̃) =
Cdn[(Cλρ/k(s̃ − s̃0),0) = Z0 = const].

(II-D.) � �= 0. In this case δ = 0 and the solution is given by
Eq. (B17). But because in this limit f ′(Z1) → 0 and Z1 = Z0

we conclude that Z(s̃) = Z0 = const.

E. MQST and phase space diagrams

In this section, it is shown how it is possible to find the
values of the population imbalance which takes the system and
the regions of MQST depending on Z0. The phase diagrams in
the �/π,Z(s̃) space for the cases of zero and nonzero values
of the � are introduced as well.

As it is seen from Eq. (B5), if the characteristic quartic
equation [which is given be Eq. (B6)] f (Z) < 0, then the time
takes imaginary values. So we conclude that allowed regions
of Z(s̃) are given by the condition,

f (Z) � 0, (38)

Eq. (B4), derived from the Gross-Pitaevskii Eqs. (26) and
(27), can be written as an equation of motion of a classical
particle with a coordinate Z, potential energy U (Z), and total
energy E:

Ż2(s̃) + U (Z) = E, (39)

where the first term is playing the role of kinetic energy. The
second term and the total energy are given by

U (Z) = Z2

(
(λρ)2Z2

4
+ 1 + �2 − H0λρ

)
+Z(λρ�Z2 − 2H0�)

E = Ż2(0) + U (Z(0)) = 1 − H 2
0 . (40)

Within the classical mechanics analogy, f (Z) plays the role
of E − U . The motion of the particle lies within the regions
of the classical turning points in which the total energy equals
to the potential energy. So Eq. (38) has a simple physical
meaning: Classical particle can only move in the regions where
total energy is equal or bigger than potential energy. From the
upper graphs of Figs. 7 and 8, one can see that when all values
of parameters are fixed, and we start to change the value of
Z0 then the function f (Z) changes from parabolic to double
well.

When � = 0 then for the parabolic potential Z(s̃) oscillates
about an average of zero value, and when Z(0) > Zc (Zc = 0.6
in our case) the particle is forced to oscillate about a nonzero
average in one of the two wells as it is seen from Fig. 7 which
is evidence of the MQST. Indeed such a phenomenon occurs
in the system for Z(0) > Zc, where

Zc = ±
√

2

λρ
− 1 + cos 2�0

(λρ)2
+

√
(1 + cos 2�0)(cos 2�0 + 2(λρ − 1)2 − 1)

(λρ)2
, (41)

which reduces to

Zc = ±2

√
λρ − 1

λρ
(42)

for sin �0 = 0. For the Z0 = Zc, the particle moves from Z0

to the point Z = 0 where it stays for an infinite time because
at this point f ′(Z) = 0 which means there is no force acting
on the particle [U ′(Z) = 0].
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FIG. 8. (Color online) Dependence of the characteristic function
f (Z) on population imbalance (top) and phase space diagram
(bottom) for the case � �= 0. Oscillations can occur only in the
regions where f (Z) � 0. Dotted, dashed, and solid lines, respectively,
correspond to the values Z0 = −0.5,0.509117,0.6 (for these values
δ < 0,δ = 0, and δ > 0, respectively). Here �0 = 0 and λρ = 10.

When � �= 0, all the regimes are the same but with the
difference that the external force � breaks the symmetry at the
point Z = 0, with the following two consequences: (1) Z(s̃)
is always oscillating about a nonzero average, and (2) for the
critical value Zc, the oscillations are damping to the nonzero
value of population imbalance as one can see from Fig. 8. So
for the all values of Z0 (excepting the values for which δ = 0)
the effect of MQST occurs in the system.

The lower graphs of Figs. 7 and 8 display corresponding
phase versus population imbalance. After expressing the phase
using the population imbalance from Eq. (28), we get

� = arccos

[
H0 − λρZ2

2 − �Z√
1 − Z2

]
. (43)

From Fig. 7 it is seen that when Z < Zc, the phase diagram is
a closed curve and the phase is oscillating about zero average
value. At the critical point, the phase diagram starts to split
into the two open curves and for Z > Zc it consists of two
open curves and the phase takes any value in the interval
[−∞,∞]. In the case when � �= 0 the phase diagram is
changing depending on Z0 in a similar way but with the
difference that the external force � is breaking the symmetry
about the origin of Z axis as demonstrated in Fig. 8.

V. CONCLUSIONS

In this paper, we study the dynamics of a physical system of
two Bose-Einstein condensates, flowing in ring-shaped optical
potentials, and mutually interacting through tunnel coupling.
The experimental setup, provided in Fig. 1, allows us to tune
the tunneling in an experimentally feasible way. The system
is governed by a Bose-Hubbard two-leg ladder Hamiltonian,

pierced by a synthetic magnetic field, effectively twisting
the boundary conditions of the two rings. We remark that
the Galilean symmetry is broken in such a system, along the
ring-ring coupling direction. In the weak ring-ring coupling
regime, the microscopic degrees of freedom (the phase slips
between adjacent wells along the rings) are integrated out,
leading to an effective action of a two-level system for the
ring-ring phase slip. This implies that such physical system
provides indeed a qubit, analogous to the flux qubit built with
superconductor Josephson junctions. It would be interesting
to study the effective dynamics beyond the weak coupling
approximation.

The real-time evolution of population imbalance and phase
difference between the two flowing condensates is analyzed,
through two coupled Gross-Pitaevskii equations obtained from
the Bose-Hubbard ladder in the mean-field equations. The
dynamics is thoroughly analyzed in the different regimes
depending on the values of the s-wave scattering, tunneling
rate, synthetic “magnetic fluxes,” and initial population imbal-
ances (λρ, g, �, and Z0, respectively). It is evidenced how
the macroscopic quantum self-trapping occurs in our system.
It is shown that population imbalance takes values in only
classically allowed regions of oscillation.

It would be interesting to describe our system including the
quantum fluctuations around the mean-field solution [38,39].
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APPENDIX A: PEIERLS SUBSTITUTION FOR THE
BOSE-HUBBARD LADDER MODEL

In this appendix we review the “Peierls substitution” in
the Bose-Hubbard ladder, corresponding to applying of two
different “magnetic fluxes” to the two-ring lattice system [see
Eq. (4)].

The hopping element t can be expressed through Wannier
functions φ(x − Ri) and single-particle Hamiltonian h1 in the
subsequent form:

t0 =
∫

dx3φ∗(x − Ri)h1φ(x − Ri+1). (A1)

The Wannier functions φ(x − Ri) are localized around Ri

lattice sites. In the absence of “electromagnetic fields” the
single-particle Hamiltonian is given by

h1 = p2

2m
+ V (x), (A2)

where the first term is kinetic energy and second term is a one-
body potential energy. Once the synthetic gauge field A(x,t)
is generated we can take it into account by substitution p →
p − A(x,t) in the single-particle Hamiltonian. We can rewrite
the hopping element in the presence of the synthetic gauge
field in the following form:

t =
∫

dx3φ̃∗(x − Ri)h1φ̃(x − Ri+1), (A3)
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where φ̃(x − Ri) = e−i�(x,t)φ∗(x − Ri) with �(x,t) =∫ x
x0

A(x,t)dx, where x0 is an arbitrary point. Assuming that
A(x,t) is a slowly varying function on an atomic scale,

φ̃(x − Ri) ≈ e−i�(Ri ,t)φ∗(x − Ri), (A4)

By substituting Eq. (A4) in Eq. (A3) we finally get

t = ei	t0, 	 =
∫ Ri+1

Ri

A(x,t)dx. (A5)

The idea, that all the effect of electromagnetic field in the
lattice can be absorbed in the hopping matrix element is called
Peierls substitution. We would like to emphasize that the
inter-ring hopping element g is not affected by the Peierls
substitution because the synthetic gauge field is assumed to
have components longitudinal to the rings only.

APPENDIX B: SOLUTION IN TERMS OF ELLIPTIC
FUNCTIONS

As it was shown in Sec. IV, the dynamics of the population
imbalance and the phase difference of the condensates in the
two coupled rings is given by

∂Z

∂s̃
= −

√
1 − Z2 sin �, (B1)

∂�

∂s̃
= � + λρZ + Z√

1 − Z2
cos �. (B2)

In this appendix we discuss the analytical solutions of the
equations above, for the two different cases: � = 0 and � �= 0.

Equations (B1) and (B2) can be derived from the Hamilto-
nian,

H (Z(s̃),�(s̃)) = λρZ2

2
+ �Z −

√
1 − Z2cos�

= H0, (B3)

where Z and � are canonically conjugate variables. Indeed,
H (Z(t),�(t)) = H (Z(0),�(0)) = H0 because the energy of
the system is conserved. Combining Eqs. (B1) and (B3) � can
be eliminated, obtaining

Ż2 +
[
λρZ2

2
+ �Z − H0

]2

= 1 − Z2, (B4)

that is solved by quadratures:

λ�s̃

2
=

∫ Z(s̃)

Z(0)

dZ√
f (Z)

, (B5)

where f (Z) is the following quartic equation,

f (Z) =
(

2

λρ

)2

(1 − Z2) −
[
Z2 + 2Z�

λρ
− 2H0

λρ

]2

. (B6)

There are two different cases: � = 0 and � �= 0.
(I.) � = 0. In this case the solution for the Z(t) can be

expressed in terms of “cn” and “dn” Jacobian elliptic functions
as ([26])

Z(s̃) = Ccn[(Cλρ/k(s̃ − s̃0),k)] f or 0 < k < 1

= Csech(Cλρ(s̃ − s̃0)), f or k = 1

= Cdn[(Cλρ/k(s̃ − s̃0),1/k)] f or k > 1; (B7)

k =
(

Cλρ√
2ζ (λρ)

)2

= 1

2

[
1 + (H0λρ − 1)

(λρ)2 + 1 − 2H0λρ

]
, (B8)

where

C2 = 2

(λρ)2
((H0λρ − 1) + ζ 2),

α2 = 2

(λρ)2
(ζ 2 − (H0λρ − 1)), (B9)

ζ 2(λρ) = 2
√

(λρ)2 + 1 − 2H0λρ,

and s̃0 fixing Z(0). Jacobi functions are defined in
terms of the incomplete elliptic integral of the first kind
F (φ,k) = ∫ φ

0 dθ (1 − k sin2 θ )−1/2 by the following expres-
sions: sn(u|k) = sin φ,cn(u|k) = cos φ, and dn(u|k) = (1 −
k sin2 φ)1/2 [40]. The Jacobian elliptic functions sn(u|k),
cn(u|k), and dn(u|k) are periodic in the argument u with
period 4K(k), 4K(k), and 2K(k), respectively, where K(k) =
F (π/2,k) is the complete elliptic integral of the first kind. For
small elliptic modulus k � 0 such functions behave as trigono-
metric functions; for k � 1 they behave as hyperbolic func-
tions. Accordingly, the character of the solution of Eqs. (B1)
and (B2) can be oscillatory or exponential, depending on k.
For k � 1, cn(u|k) ≈ cos u + 0.25k(u − sin (2u)/2) sin u is
almost sinusoidal and the population imbalance is oscillating
around zero average value. When k increases, the oscillations
become nonsinusoidal and for 1 − k � 1 the time evolution
is nonperiodic: cn(u|k) ≈ sec u − 0.25(1 − k)(sinh (2u)/2 −
u) tanh u sec u. From the last expression we can see that
at k = 1, cn(u|k) = sec u so oscillations are exponentially
suppressed and Z(s̃) taking 0 asymptotic value. For the
values of the k > 1 such that [1 − 1/k] � 1 and Z(s) is still
nonperiodic and is given by dn(u|1/k) ≈ sec u + 0.25(1 −
1/k)(sinh (2u)/2 + u) tanh u sec u. Finally when k � 1 then
the behavior switches to sinusoidal again, but Z(s̃) does oscil-
lates around a nonzero average: dn(u|1/k) ≈ 1 − sin2 u/2k.
This phenomenon accounts for the MQST.

The periods of oscillations in the regimes considered above
result to be

τ = 4kK(k)

Cλρ
for 0 < k < 1,

= log(4/
√

1 − k) for k = 1,

= 2K(1/k)

Cλρ
for k > 1. (B10)

For k → 1 the period becomes infinite and diverging logarith-
mically.

(II.) � �= 0. In this case Z(s) is expressed in terms of the
Weierstrass elliptic function ( [24,26]):

Z(s̃) = Z1 + f ′(Z1)/4

�( λρ

2 (s̃ − s̃0); g2,g3) − f ′′(Z1)
24

, (B11)

where f (Z) is given by an expression (B6), Z1 is a root
of quartic f (Z) and s̃0 = (2/λρ)

∫ Z(0)
Z1

dZ′√
f (Z′) . For sin �0 =

0 (which is the case discussed in the text), Z1 = Z0 and
consequently s0 = 0. The Weierstrass elliptic function can be
given as the inverse of an elliptic integral �(u; g2,g3) = y,
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where

u =
∫ ∞

y

ds√
4s3 − g2s − g3

. (B12)

The constants g2 and g3 are the characteristic invariants of �:

g2 = −a4 − 4a1a3 + 3a2
2,

(B13)
g3 = −a2a4 + 2a1a2a3 − a3

2 + a2
3 − a2

1a4,

where the coefficients ai , where i = 1,..,4, are given as

a1 = − �

λρ
; a2 = 2

3(λρ)2
(λρH0 − (�2 + 1)),

(B14)

a3 = 2H0�

(λρ)2
; a4 = 4(1 − H 2

0 )

(λρ)2
.

In the present case � �= 0, the discriminant,

δ = g3
2 − 27g2

3, (B15)

of the cubic h(y) = 4y3 − g2y − g3 governs the behavior
of the Weierstrass elliptic functions (we contrast with the
case � = 0, where the dynamics is governed by the elliptic
modulus k).

At first we consider the case δ = 0.
If g2 < 0,g3 > 0 then ([40])

Z(s̃) = Z1 + f ′(Z1)/4

c + 3c sinh−2
[√

3cλρ

2 (s̃ − s̃0)
] − f ′′(Z1)

24

.

(B16)

Namely, the oscillations of Z are exponentially suppressed and
the population imbalance decay (if Z0>0) or saturate (if Z0<0)
to the asymptotic value given by Z(s̃) = Z1 + f ′(Z1)/4

c−f ′′(Z1)/24 .
If g2 > 0, g3 > 0 then ([40])

Z(s̃) = Z1 + f ′(Z1)/4

−c + 3c sin−2
[√

3cλρ

2 (s̃ − s̃0)
] − f ′′(Z1)

24

,

(B17)

where c = √
g2/12. We see that the population imbal-

ance oscillates around a nonzero average value Z
.= Z1 +

f ′(Z1)/4
2(2c−f ′′(Z1)/24) , with frequency ω = 2g

√
3cλρ.

We express the Weierstrass function in terms of Jacobian
elliptic functions. This leads to significant simplification for
the analysis of these regimes.

For δ > 0, it results

Z(s̃) = Z1 + f ′(Z1)/4

e3 + e1−e3

sn2[
λρ

√
e1−e3
2 (s̃−s̃0),k1]

− f ′′(Z1)
24

, (B18)

where k1 = e2−e3
e1−e3

and ei are solutions of the cubic equation
h(y) = 0. In this case the population imbalance oscillates
about the average value Z = Z1 + f ′(Z1)/4

2(e1−f ′′(Z1)/24) .
The asymptotics of the solution is extracted through:

k � 1, sn(u|k) ≈ sin u − 0.25k(u − sin (2u)/2) cos u. When
k increases oscillation starts to become nonsinusoidal and
when 1 − k � 1 it becomes nonperiodic and takes the form,
cn(u|k) ≈ tanh u − 0.25(1 − k)(sinh (2u)/2 − u) sec2 u.

For δ < 0 the following expression for Z(s) is obtained:

Z(s̃) = Z1 + f ′(Z1)/4

e2 + H2
1+cn[λρ

√
H2(s̃−s̃0),k2]

1−cn[λρ
√

H2(s̃−s̃0),k2]
− f ′′(Z1)

24

, (B19)

where k2 = 1/2 − 3e2
4H2

and H2 =
√

3e2
2 − g2

4 . The asymptoti-
cal behavior of the function cn(u|k) has been discussed in the
previous subsection. As it it seen from this expression Z(s̃)
oscillates about the average value Z = Z1 + f ′(Z1)/4

2(e2−f ′′(Z1)/24) .
The period of the oscillations of the Z(s̃) in this case is

given by

τ = K(k1)

λρ
√

e1 − e3
for δ > 0,

= K(k2)

λρ
√

H2
for δ < 0. (B20)

The inter-ring tunneling Josephson current is given by

I = ŻNT

2
= I0

√
1 − Z2 sin �. (B21)
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