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Contextuality is one way of capturing the nonclassicality of quantum theory. The contextual nature of a
theory is often witnessed via the violation of noncontextuality inequalities—certain linear inequalities involving
probabilities of measurement events. Using the exclusivity graph approach (one of the two main graph theoretic
approaches for studying contextuality), it was shown [Cabello et al. Phys. Rev. A 88, 032104 (2013); Chud-
novsky et al. Ann. Math. 164, 51 (2006)] that a necessary and sufficient condition for witnessing contextuality
is the presence of an odd number of events (greater than three) which are either cyclically or anticyclically
exclusive. Thus, the noncontextuality inequalities the underlying exclusivity structure of which is as stated,
either cyclic or anticyclic, are fundamental to quantum theory. We show that there is a unique noncontextuality
inequality for each nontrivial cycle and anticycle. In addition to the foundational interest, we expect this
to aid the understanding of contextuality as a resource to quantum computing and its applications to local
self-testing.
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I. INTRODUCTION

A. Motivation

In an attempt to conceptually understand the departure
of the predictions of quantum mechanics (QM) from that of
classical physics, the notion of contextuality was introduced.
It is one of the most general ways of capturing this divergence
[1,2]; the celebrated Bell nonlocality can be viewed as a
special case of contextuality where the context is provided via
spacelike separation of the parties involved [3,4]. More gen-
erally, a context is defined by a set of compatible observables,
viz., jointly measurable observables.

Investigations into these fundamental questions have also
reaped practical benefits. Bell nonlocality has found many
applications in quantum key distribution [5], randomness
certification [6], self-testing [7–9], and distributed computing
[10], to name a few [11]. Recently, contextuality has also been
applied more directly to quantum key distribution [12,13] and
variants of randomness certification [14] and self-testing [15].
Further, it has been uncovered to be the resource powering the
measurement based model and a class of fault tolerant models
of quantum computation [16,17], among others [1,16–23].

B. Bell nonlocality or contextuality

The idea at the heart of this discussion can be traced back to
Einstein, who expressed his discomfort with the probabilistic
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nature of quantum mechanics by providing a striking argu-
ment against it [24] using a notion of realism (element of
physical reality) for two spatially separated experiments. He
believed that there must exist local hidden variables which,
once supplied, make QM deterministic. Such completions are
referred to as local hidden variable models. Bell constructed a
linear inequality which is violated by QM and yet it can never
be violated by any such completion [3], falsifying Einstein’s
belief [25]. It may be said that the Bell inequality witnesses
the nonlocality of (any such completion of) QM.

General discussions on this topic are facilitated by cor-
respondingly considering general probabilistic assignments
to the various observable events. The set of probabilistic
assignments, which admit a local hidden variable description,
form a convex polytope (a bounded set the boundaries of
which are defined by hyperplanes). The facet-defining Bell
inequalities are the characterizing hyperplanes of the aforesaid
polytope. Once formalized, this becomes a general framework
for studying Bell inequalities (which can and has been refined
to facilitate computations). This can, however, be further gen-
eralized if an underlying principle which is correspondingly
more general than that of local realism is used. In the Bell
scenario, there was a clear role of spatial separation and
therefore there were at least two parties involved. It turns out
that one can study nonclassicality even for a single indivis-
ible quantum system. To this end, one uses noncontextual
completions of probabilistic assignments where the phrase
noncontextual emphasizes that there is a precise value as-
signed to each observable by the completion. This is because
it is possible to define completions where the value assigned
depends on the context (i.e., the set of compatible observables
it is measured with), and such completions can explain the
predictions of quantum mechanics. Consequently quantum
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mechanics is sometimes called contextual [26]. This schism
between noncontextual completions and quantum mechanics
is used as the underlying principle to construct frameworks
to study noncontextuality (NC) inequalities. The Klyachko-
Can-Binicioğlu-Shumovsky (KCBS) inequality may be con-
sidered to be the simplest NC inequality [analogous to the
Bell–Clauser-Horne-Shimony-Holt (CHSH) inequality in the
spatial separation setting]. There are two principal graph
theoretic frameworks for studying contextuality: the com-
patibility hypergraph approach [29–32] and the exclusivity
graph approach [4]. The former uses hyperedges to encode
the compatibility relations between the observables. The latter
uses a slightly different physical approach and focuses on the
exclusivity of measurement events. The exclusivity relations
between these events are encoded using edges [33]. We show
that for any scenario (characterized by any given exclusivity
graph) which exhibits contextuality there is a unique NC in-
equality, corresponding to each induced subgraph of the graph
possessing a certain property (which in turn are separately
known to exist). Further, these NC inequalities may be seen
as obvious generalizations of the KCBS inequality.

C. Fundamental noncontextuality inequalities

The key appeal of the exclusivity graph approach stems
from a powerful result in graph theory—the strong perfect
graph theorem [30,34]. Consider a scenario encoded by a
certain exclusivity graph. The contextuality in the scenario
can be witnessed by some NC inequality and appropriately
constructed states or measurements if and only if the ex-
clusivity graph associated with it contains, as an induced
subgraph, an odd cyclic graph and/or an odd anticyclic graph
of length greater than 3. The said obvious generalization of the
KCBS inequality turns out to be the simplest inequality which
has an underlying odd cycle as its exclusivity graph. These
inequalities, together with their analog for the anticycle, may
in hindsight be termed fundamental NC inequalities [30]. In
this paper, we show that each odd cyclic graph and anticyclic
graph corresponds to a unique fundamental NC inequality,
justifying its name. Given any exclusivity graph which can
exhibit contextuality, for each cycle and anticycle (odd) we
can directly deduce that there is a unique inequality corre-
sponding to it. There may, however, be additional inequalities
corresponding to other induced subgraphs. We demonstrate
this by characterizing the simplest Bell exclusivity scenario
(see Sec. VI). In fact, the “other NC inequalities” in this
case turn out to be the familiar CHSH-Bell inequality and a
heptagonal Bell inequality—a Bell inequality involving seven
events (see Sec. VI).

D. Relation to prior work

In the compatibility hypergraph approach, scenarios cap-
tured by odd n-cycle graphs are characterized by 2n − 1
nontrivial NC inequalities, which include the generalized
KCBS inequality [35]. We clarify why in the exclusivity graph
approach, for odd n-cycle graphs, we obtain an exponential
simplification—a unique NC inequality (see Sec. VII). The
relevance of anticycles is not a priori clear in the compatibility
hypergraph approach and therefore, to the best of our knowl-
edge, they have not been studied. However, in the exclusivity

graph approach, an easy characterization of anticycles allows
us to make a much more general statement about all scenarios
(due to the strong perfect graph theorem, as was noted).

The study of the simplest Bell scenario using the exclusiv-
ity graph approach was carried out in [36] and the fundamen-
tal NC inequality was shown to be a Bell inequality involving
only five events, termed a pentagonal Bell inequality (while
the CHSH-Bell inequality involves eight events). However,
the one involving seven events was missing.

II. PRELIMINARIES

We summarize the exclusivity graph approach here, fol-
lowing the work of Amaral and Cunha [32], deferring a
more complete discussion to the Appendix B. An outcome,
a, and its associated measurement, M, are together called
a measurement event (or events for brevity) and denoted
by (a|M ). Two events are equivalent if their probability of
occurrence is the same for all preparations. Let p j (k) be the
probability of getting an outcome k given that a measurement
j was performed. Two events, ei and e j , are exclusive if there
exists a measurement M such that ei and e j correspond to
different outcomes of M (see Definition 24 in Appendix B).
With a family of events {e1, e2 . . . en} we associate the ex-
clusivity graph G := (V, E ) where V is the set of vertices
and E is that of edges, the vertices of which are the events,
and there is an edge between the vertices if and only if
the events are exclusive (see Definition 25 in Appendix B).
The probabilities assigned to these events are formally given
by a behaviour which for G is defined to be a map p : V →
[0, 1] that assigns to each vertex i a probability p(i) such
that p(i) + p( j) � 1 for all vertices that share an edge. The
map p can also be seen as a vector in R|V | (see Definition
27 in Appendix B). Behaviors which admit a noncontextual
completion, i.e., there exists a noncontextual hidden variable
assignment such that if the hidden variable is traced out we
recover the given behavior, are defined to be noncontextual
behaviors (see Definition 28 in Appendix B). The set of such
behaviors is denoted by BNC(G). We can similarly define the
set of quantum behaviors, BQ, to be that which can be obtained
by at least one quantum state and corresponding observables
(see Definition 29 in Appendix B). The set of E-principle
behaviors, BE(G), is one where the behaviors respect the
exclusivity principle (also referred to as the E principle),
i.e., exclusive events must have their probability sum to at
most one (see Definition 31 in Appendix B). The central
claim of this formalism is that BNC(G) ⊆ BQ(G) ⊆ BE(G)
(see Definition 31 in Appendix B). This is a corollary of a
powerful identification of each of the sets with geometrical
objects studied by Lovász which we describe later. We can
now define more precisely a facet-defining NC inequality as
being a nontrivial facet of BNC(G) where the direction of the
inequality is chosen to satisfy containment in BNC(G) (see
Definition 32 in Appendix B). An n-cycle graph is an n vertex
graph where every ith vertex is connected to the (i + 1)th
vertex (the addition is modulo n). We define the fundamental
cyclic noncontextuality (FCNC) inequality, corresponding to
the n-cycle graph for n odd, to be

Kn :=
n∑

i=1

pi �
n − 1

2
. (1)
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We analogously define the fundamental anticyclic noncontex-
tuality inequality for the complement of the odd n-cycle graph
as

Kn̄ :=
n∑

i=1

pi � 2. (2)

We recover the original KCBS inequality [37] in the special
case of n = 5, both for the cyclic as well as the anticyclic case.

Relevant graph theoretic notions

We give a primer on the relevant graph theoretic notions
which facilitates the statement and proof of our results.

Definition 1. The graph G = (V, E ) is defined by the set of
vertices and the set of edges.

Definition 2. The orthonormal representation with respect
to a graph G is defined as follows. For all i → |vi〉 in Rd ,
〈vi|v j〉 = 0 whenever (i, j) /∈ E .

Definition 3. For a vector |vi〉 in an orthonormal represen-
tation, the cost is defined as

ci = |〈ψ |vi〉|2
where |ψ〉 .= (1, 0, . . . , 0) is a vector in Rd .

Definition 4. The theta body corresponding to a graph G is
defined to be

TH(G) = {p ∈ R|V ||p(i) = ci}
where ci is the cost (see Definition 3) corresponding to Ḡ :=
(V, Ē ) where Ē is the complement [38] of E .

Definition 5. A stable set or independent set is a subset
of vertices K ⊆ V such that for all i, j ∈ K there is no edge
between i and j, viz., (i, j) /∈ E .

Definition 6. The independence number of a graph G is
defined to be the cardinality of the largest independent set
of G.

Definition 7. A clique is a subset of vertices K ⊆ V such
that for all i, j ∈ K there is an edge between i and j, viz.,
(i, j) ∈ E .

Definition 8. The incidence vector of a set is defined to be
a vector �p (of size |V |) for K ⊆ V such that

p(i) =
{

1 if i ∈ K
0 else.

Example 1. Consider the five-cycle graph V = {1, 2, 3,

4, 5}, E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}. K = {1, 3}
is an example of a stable set. K ′ = {1, 2} is an example
of a clique. The incident vector corresponding to K is
p = (1, 0, 1, 0, 0)T .

Definition 9. STAB(G) (not to be confused with the stable
set) is defined as the convex hull of the vectors �p(k) for all
stable sets k where �p(k) is the incidence vector of the set
k. (Note: if k were an index, �p(k) would refer to the kth
component of the vector �p; here k is a set).

Definition 10. QSTAB(G) is the set of vectors x ∈ R|V |
such that xi � 0,

∑
i∈Q xi � 1 for every clique Q.

Lemma 1 [39]. STAB(G) is the convex hull of the integer
solutions to the equations xi � 0, (xi + x j ) � 1 for every
(i, j) ∈ E , where G = (V, E ).

Remark 1. Every set of indices which is an edge is also a
clique (the other way is not necessary, obviously). This means

that the inequalities listed in Definition 10 (viz.,
∑

i∈Q xi � 1
for every clique Q) contain the inequalities listed in Lemma 1
[viz., xi + x j � 1 for every (i, j) ∈ E ].

Lemma 2 [40]. STAB(G) ⊆ TH(G) ⊆ QSTAB(G).

III. UNIQUENESS OF FUNDAMENTAL CYCLIC
NONCONTEXTUALITY INEQUALITIES

We begin by stating our first important result.
Theorem 1. Consider an odd n-cycle exclusivity graph. The

associated FCNC inequality is a unique facet-defining NC
inequality.

We will need the following powerful result connecting the
behaviors to geometrically well-studied objects.

Lemma 3 [4]. Let e1, e2 . . . en be the (exclusive) events with
an associated exclusivity graph G = (V, E ). Then,

BNC(G) = STAB(G),

BQ(G) = TH(G),

BE (G) = QSTAB(G).

Let QSTAB inequalities for a graph G be the set of inequal-
ities given by

∑
i∈Q xi � 1 for every clique Q of the graph.

Thus, QSTAB(G) may be seen as the set of vectors x ∈ R|V |
such that xi � 0, and the QSTAB-inequalities associated with
G are satisfied.

Before we prove Theorem 1, note that the characterization
of STAB(G) was given in terms of its vertices and that of
QSTAB(G) was in terms of its hyperplanes. The following
(known) link, Lemma 4, between these representations is key
to the simplification.

Lemma 4 [39]. STAB(G) is the convex hull of the integer
solutions to the inequalities xi � 0, and STAB-inequalities
for G, where STAB inequalities for a graph G = (V, E ) are
defined to be the set of inequalities given by (xi + x j ) � 1 for
every (i, j) ∈ E .

Proof of Theorem 1 We consider a five-cycle graph but our
techniques readily generalize to the odd n-cycle case (unless
stated otherwise). The QSTAB inequalities, together with the
xi � 0 condition, can be expressed as

0 � xi � 1 for i = {1, 2 . . . 5}, (3)

xi + xi+1 � 1 for i = {1, 2 . . . 5} (4)

where i + 1 is modulo 5. Note the STAB inequalities, together
with xi � 0, turn out to be exactly the same as the aforesaid
for the five-cycle graph. (The set STAB is a convex hull of
integer solutions of STAB inequalities.) Each inequality is
characterized by a hyperplane. The vertices must lie on the
intersection of (at least) five distinct hyperplanes. From this,
we can already see that the integer solutions of STAB inequal-
ities and the QSTAB inequalities are the same. The FCNC
inequality is one of the facets defining NC inequality. To see
this, it suffices to observe that there are exactly five vertices of
STAB, the corresponding behaviors of which saturate the said
inequality (since the space is five dimensional) and remaining
vertices satisfy the same inequality. For the five-cycle case,
the remaining argument is trivial and we defer the proof of the
n-cycle case to the end.
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FIG. 1. To establish Theorem 1, it suffices to show that there
is exactly one noninteger solution, i.e., a solution with at least one
noninteger component, to QSTAB inequalities. We show that of the
three kinds of solutions possible (as depicted above) the all-integer
solution is irrelevant, the all-non-integer solution is unique, and no
mixed solutions exist.

Note that, together with the aforementioned, if we can
establish that there is only one noninteger solution of QSTAB
inequalities then we have proven our result.

To this end, observe that there can only be the following
three types of solutions: (1) all xi are integers, (2) none of
the xi are integers, or (3) neither all xi are integers nor all
xi are nonintegers (viz., at least one integer and at least one
noninteger solution; see Fig. 1).

We are interested in the latter two cases. In case 2, we
cannot use any of the QSTAB inequalities involving only
one term [Eq. (3)]. This is because for a vertex we saturate
five distinct inequalities. In this case, saturation of any of
these inequalities will yield integer solutions which we are not
considering. Hence, the only possibility is to use Eq. (4). Now
we show that the solution is unique. Let x1 = q for any 0 <

q < 1. Saturating, we deduce x2 = 1 − q, x3 = q, x4 = 1 − q,
x5 = q, and finally x1 = 1 − q. This entails x1 = 1 − q = q,
which means q = 1/2 uniquely.

To complete the argument, we must show that there are
no solutions in case 3. We already ruled out considering
all five one term inequalities [Eq. (3)] as they yield integer
solutions. Let us consider k two term inequalities [Eq. (4)]
and m one term inequalities such that m + k = 5. The m
one term inequalities, when saturated (because we consider
the intersection of hyperplanes to obtain the vertices), will
force the corresponding xis to be integers. This means that
there are at least m integer xis. To analyze further, we consider
the following game. Consider the five-cycle graph (see Fig. 2).
Select m vertices of the graph (not to be confused with the
vertices of QSTAB) and k edges. The vertices correspond to
the variables fixed by the one term inequalities (saturated, so
equalities). The edges correspond to the two term inequalities
(again, saturated so equalities). Two cases can arise in such
an assignment. Either each of the k edges is connected to one
of the m vertices (possibly via other edges, if not directly)
or there is at least one edge which is not connected to any
of the m vertices (again, possibly via other edges, if not
directly). These two cases are represented by the left and right
graph in Fig. 2. Consider the second case. The disconnected
edge (in the sense described earlier) will correspond to a two
term equality involving two variables which have no other
constraints. This means that the set of inequalities chosen does
not uniquely determine a solution, i.e., at least one of the

FIG. 2. There are two possible scenarios corresponding to the
case where there is at least one integer and one noninteger solution
(case 3 in the proof). The two term inequalities decide the values for
two xis and have been represented as edges, and nodes (highlighted
as small circles) have been used to denote the values determined by
the one term inequalities. Depending on the way the combination
of inequalities is selected, one gets either all xis as integers or a
redundant set of inequalities leading to an undecidable value for xis.

inequalities chosen is redundant. This case is therefore irrel-
evant. Consider the first case now. In this case, start with any
one of the m vertices. This corresponds to a one term equality
which fixes the associated variable as an integer (as was noted
earlier). Now the edge (if there is one) connected to this vertex
directly will fix the value of the other vertex associated with
the edge to be an integer. This reasoning can be repeatedly
used to show that all the variables involved along the edges
connected to the said initial vertex are integers. This can be
repeated for every one of the m vertices. This means that
all variables are assigned integer values. We have reached a
contradiction which means there are no solutions of the kind
assumed by case 3.

We end by showing that the FCNC inequality is facet
defining (in the exclusivity graph approach). All incidence
vectors (we will restrict to the ones corresponding to the stable
set of the n-cycle graph, for this proof) will always satisfy
the FCNC inequality because the cardinality of the stable set
is bounded by the independence number (see Definition 6)
of the graph, which for our case is (n − 1)/2 [40–42]. We
will now show that there are exactly n vertices of STAB, i.e.,
incidence vectors which saturate the said inequality. To satu-
rate, the incidence vector must have (n − 1)/2 components
with entry one, and the remaining (n + 1)/2 components
with entry zero. Note that each incidence vector satisfies the
STAB inequalities, i.e., if a given component is one then its
adjacent components are necessarily zero. One can convince
themselves that any such vector, i.e., incidence vectors that
saturate the FCNC inequality, must have two zeros adjacent
(cyclically over n) while all other entries are alternatively one
and zero. The total number of ways of placing two adjacent
zeros, which is exactly n, then gives us the total number
of incidence vectors which saturate the inequality, thereby
proving that the FCNC inequality is indeed facet defining. �

IV. UNIQUENESS OF FUNDAMENTAL ANTICYCLIC
INEQUALITIES

We show that the odd anticycle admits a unique inequality.
This follows easily from the following known result. For any
set of nonnegative vectors X , its antiblocker is defined as

abl X = {y � 0 : x.y � 1 ∀ x ∈ X }.
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FIG. 3. Two conceivable illustrations of the QSTAB polytope
(light blue) and the KCBS inequality (black) separating the said
polytope from the STAB polytope. In the left image, the vertices of
both polytopes are the same (except one) but there are two facets of
QSTAB which are not a facet of STAB. One can show that all the
facets of QSTAB are also the facets of STAB. This rules out the first
image. The second image illustrates an alternative which helps us
intuitively understand the higher dimension underlying geometry.

Let us denote by Ḡ the complement graph of G, viz., Ḡ =
{V, Ē} if G = {V, E}, which in particular means that if G is a
cyclic graph then Ḡ is an anticyclic graph.

Lemma 5. For any graph G we have

STAB(Ḡ) = abl QSTAB(G),

TH(Ḡ) = abl TH(G),

QSTAB(Ḡ) = abl STAB(G).

Note that abl X = abl convex hull X because every ele-
ment y ∈ abl X will satisfy (θ1x1 + · · · + θkxk ). y � 1 where∑k

i=1 θi = 1.
Theorem 2. Let G be odd n-cycle graph (n > 3) and

consider the exclusivity graph scenario associated with Ḡ.
There is a unique facet-defining NC inequality, given by∑n

i=1 pi � 2.
Proof. We characterize QSTAB(Ḡ) and STAB(Ḡ) by using

Lemma 5. Let {v1, v2 . . . vn} denote the vertices of STAB(G).
Each vertex vi corresponds to a hyperplane constraining
abl STAB(G) = QSTAB(Ḡ). From the proof of Theorem 1
we know that QSTAB(G) has exactly one more vertex, call it
v0. Corresponding to v0 there will be exactly one extra hyper-
plane constraining abl QSTAB(G) = STAB(Ḡ) compared to
those constraining abl STAB(G) = QSTAB(Ḡ). This hyper-
plane is precisely

∑n
i=1 pi � 2 using v0 = (1/2, 1/2, . . . 1/2)

and the definition of the antiblocker. �

V. GEOMETRIC REPRESENTATION

Having proved the uniqueness of the fundamental noncon-
textuality inequalities, we briefly discuss the geometry of the
associated polytopes.

Fix an odd n > 3. Geometrically, the FCNC inequality
corresponds to a unique hyperplane cutting through QSTAB
which separates all E-principle behaviors (see Definition 31 in
Appendix B) uniquely into two parts, namely, noncontextual
and contextual. Naïvely one might imagine the QSTAB poly-
tope and the FCNC inequality to geometrically be illustrated
by the image on the left in Fig. 3. However, it is not too hard to
show that all the facets of QSTAB are also the facets of STAB,
which means the naïve understanding is flawed. The image on
the right in Fig. 3 better illustrates the geometry of the two
convex polytopes (STAB and QSTAB). Recall that STAB for

FIG. 4. The CHSH inequality is a unique nontrivial facet defin-
ing NC inequality for the (2,2,2)Bell scenario. The measurement
events which are employed to get the CHSH inequality follow the
exclusivity relations according to the Ci8[1, 4] graph.

a given graph is identical to the antiblocker of QSTAB for the
complement graph and similarly QSTAB for a given graph
is identical to the antiblocker of STAB for the complement
graph (see Lemma 5). We thus recover essentially the same
geometry for the anticyclic exclusivity scenario. In summary,
given an n-cyclic (or anticyclic) exclusivity scenario, the asso-
ciated fundamental NC inequality separates the corresponding
E-principle behaviors into parts and uniquely singles out a
vertex corresponding to the maximally contextual behavior.

VI. ALL BELL INEQUALITIES FOR THE SIMPLEST
EXCLUSIVITY GRAPH

Any exclusivity scenario witnessing contextuality will
have associated with it at least one fundamental NC inequality
but there may be others; we give an example of this using the
simplest Bell exclusivity scenario and report a Bell inequality
in the process.

Given a list [L ] of integers, a graph with n vertices where
every ith vertex is connected to every other (i + l ) mod nth
vertex for l ∈ [L] is called a circulant graph Cin[L]. The
exclusivity graph corresponding to the measurement events
for the CHSH inequality is a circulant graph. In particular,
it is represented as the Ci8[1, 4] graph (see Fig. 4). This is the
simplest exclusivity graph which can lead to Bell inequalities
if one analyzes the corresponding stable set polytope [36].

We ran numerical tests to characterize the convex polytope
STAB(Ci8[1, 4]) and found three types of nontrivial facets.

(1) Pentagonal inequalities: There are eight such inequal-
ities and they correspond to eight induced pentagons (five
cycles). In the literature, these are known as pentagonal Bell
inequalities [36]. Formally, the pentagonal inequalities are
given by

(k+4)mod8∑
i=k

pi � 2

for k ∈ {1, 2, 3, 4, 5, 6, 7, 8}.
(2) Heptagonal inequalities: There are eight such inequal-

ities and correspond to induced subgraphs of Ci8[1, 4] with
any seven nodes. Formally, the heptagonal NC inequalities are
given by

(k+6)mod8∑
i=k

pi � 3

for k ∈ {1, 2, 3, 4, 5, 6, 7, 8}.
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(3) CHSH inequality: The CHSH inequality corresponds to
the sum of the probabilities of all eight events and is formally
given by

8∑
i=1

pi � 3.

Note that neither the Heptagonal inequalities nor the
CHSH inequality correspond to any odd cycle (or its com-
plement).

VII. RELATIVE SIMPLIFICATION EXPLAINED

Where is this exponential simplification coming from and
are we losing something in the process? To answer these
questions we connect the inequality we obtained using the
exclusivity graph approach to the one obtained using the com-
patibility hypergraph approach. We briefly introduce the com-
patibility hypergraph approach first (deferring a complete
description to Appendix C).

A. Compatibility hypergraph approach: Overview

Instead of looking at the exclusivity of events, the com-
patibility hypergraph approach is based on, as the name
suggests, the compatibility of measurements. The scenario
here is defined by a hypergraph G, where the vertices V (G)
represent the measurements and the hyperedges C(G) of the
graph represent the set of measurements which are compatible
(see Definition 33 and 34 in Appendix C). The set of nodes
or measurements in a hypergraph constitute a context (see
Definition 20 in Appendix A). For each context C ∈ C, a
normalized probability vector pC is defined which assigns
probabilities to every possible joint outcome corresponding to
the measurements belonging to that context (see Definition 20
in Appendix A). The behavior p, in this formalism, is defined
to be the concatenation of all these probability vectors (one
vector for each context; see Definition 37 in Appendix C).
Consider a fixed measurement. The behaviors which assign
the same marginal probability distribution to the outcomes
corresponding to this measurement, regardless of which prob-
ability vector (and hence context) was used to evaluate the
marginal, are said to be nondisturbing behaviors. The set
of such behaviors happens to be a convex polytope and is
denoted by X (G) (pronounced as X ; see Definition 40 in
Appendix C). It is analogous (and reduces, under the appro-
priate restrictions) to the no-signaling distributions. Consider
the set of behaviors which arise by associating a quantum
observable with each measurement such that the compatibility
requirements are satisfied. This set is called the set of quan-
tum behaviors Q(G) and it happens to be convex. Finally,
consider behaviors which admit a noncontextual completion
(see Definition 22 in Appendix A). These behaviors can be
equivalently characterized as behaviors which arise from a
global joint distribution over all the observables such that the
marginals yield the various probability vectors constituting
the behavior (see Theorem 3 in Appendix C). These define the
set of classical behaviors C (G) which, like X (G), happens to
be a convex polytope. The facet-defining hyperplanes of C (G)
yield NC inequalities.

FIG. 5. The KCBS scenario can be expressed using both the
compatibility hypergraph (top) and exclusivity graph (bottom) ap-
proaches. In the top figure, the nodes represent measurements, while
in the bottom figure the nodes represent events.

B. KCBS inequality

For concreteness, we consider the KCBS scenario in the
compatibility hypergraph formalism. Let {M0, M1, M2,

M3, M4} be five dichotomic measurements, which form the set
of vertices V (G), and let {M0, M1}, {M1, M2}, {M2, M3},
{M3, M4}, {M4, M0} denote the compatibility relations among
them C(G), which define the (hyper)edges. This results
in G being a five-cycle (hyper)graph [see Fig. 5 (top)].
It would be helpful to use two different conventions for
labeling the outcomes of the measurements: binary (0,1) and
signed (+1,−1). In the binary convention, the probability
of obtaining the outcome (0,0) upon the measurement of
Mi and Mi+1 is denoted by pi,i+1(00). This is consistent
with our notation for the probability vector pC where C was
the context, which in this case is denoted by i, i + 1. The
addition in the indices is modulo 5. Similarly in the signed
convention, the outcome (+1,+1) is denoted by pi,i+1(++).
Further, to represent the expectation value of the product of
measurements MiMi+1 we use the notation

〈i, i + 1〉 = pi,i+1(++) + pi,i+1(−−)

− pi,i+1(+−) − pi,i+1(−+). (5)

Note that we discuss expectation values only in the signed
convention. By studying the polytope of classical behaviors
C (G) one can find the facet-defining hyperplanes which yield
the NC inequalities. These turn out to be [35]

γ0〈0, 1〉 + γ1〈1, 2〉 + γ2〈2, 3〉 + γ3〈3, 4〉 + γ4〈4, 0〉 � 3
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where γi ∈ {±1} such that the number of γ s with a negative
sign is odd. To see how these relate to the unique KCBS
inequality we obtain using the exclusivity graph approach,
consider the possible events corresponding to a given context
[the (hyper)edge]. All these events are mutually exclusive be-
cause they correspond to different outcomes of a given set of
measurement [see Fig. 5 (bottom)]. This exclusivity is denoted
by the ellipse in the graph. Now consider the measurement
M0. Let (01|M0M1) denote the event where M0 and M1 are
measured and the outcomes are zero and one, respectively (see
Definitions 23 and 24 in Appendix B). Using this notation,
observe that the events (01|M0M1), (00|M0M1), (11|M4M0),
and (01|M4M0) are mutually exclusive. The first two are
exclusive as they correspond to different outcomes of M1,
the second and third are exclusive because they correspond
to different outcomes of M0, and the third and fourth are
exclusive because they correspond to different outcomes of
M4. A similar argument works for all the other pairs. This
exclusivity is denoted by a straight line. One can verify that
all the events on a given straight line are exclusive. If we let
ei = (01|MiMi+1) then a five-cycle exclusivity graph can be
extracted from the aforementioned by defining the set of ver-
tices to be the set of events {e0, e1, . . . e4} and the set of edges
to be their exclusivity relations {{e0, e1}, {e1, e2} . . . , {e4, e0}}.
We had denoted the probability of these events by pi to
write the KCBS inequality, which in our current notation
becomes

p0,1(01) + p1,2(01) + p2,3(01) + p3,4(01) + p4,0(01) � 2.

(6)

Since the exclusivity graph approach does not require the
explicit specification of the measurements which lead to
exclusivity, merely their existence, it is able to extract the
essential nature of the problem without creating redundancies
caused by the labeling. If the complete exclusivity graph
was used then the exclusivity graph formalism should yield
effectively [43] the same NC inequalities as the compatibility
hypergraph approach, recreating the said redundancies. We
now explicitly combine the following two NC inequalities
obtained using two different exclusivity graphs,

4∑
i=0

pi,i+1(01) � 2,

4∑
i=0

pi,i+1(10) � 2,

into an NC inequality obtained using the compatibility hyper-
graph formalism:

−
4∑

i=0

〈i, i + 1〉 � 3, (7)

which corresponds to taking all γi = −1. Using pi,i+1(00) =
pi,i+1(++) (which holds by assumption; they were just differ-
ent labels for the same outcomes) in Eq. (5), and probability
conservation (probability vectors pC are normalized; in a
given context, the probabilities sum to one), we deduce

〈i, i + 1〉 = 1 − 2[pi,i+1(01) + pi,i+1(10)]. (8)

To obtain Eq. (7) we sum the two inequalities

4∑
i=0

[pi,i+1(01) + pi,i+1(10)] � 4

⇐⇒
4∑

i=0

[2pi,i+1(01) + pi,i+1(10) − 1]︸ ︷︷ ︸
=−〈i,i+1〉

� 8 − 5 = 3.

While at first sight it might appear that the inequality obtained
using the compatibility hypergraph is weaker as it is a lin-
ear combination of two exclusivity graph based inequalities,
this conclusion is incorrect. This is because we can do bet-
ter. We can obtain from a single compatibility hypergraph
based inequality a corresponding exclusivity graph based
inequality. We show this explicitly for

∑4
i=0 pi,i+1(01) � 2.

The marginal pi(1) = ∑1
l=0 pi, j (1l ) for every i, j belong-

ing to a hyperedge. We start with noting that pi,i+1(10) +
pi,i+1(01) = pi(1) − pi,i+1(11) + pi,i+1(01) but we can also
write pi(1) = pi−1,i(01) + pi−1,i(11) (this is a consequence of
the no-disturbance requirement). Consequently, using Eq. (8),
we have

1 − 〈i, i + 1〉
= 2[pi−1,i(01) + pi−1,i(11) − pi,i+1(11) + pi,i+1(01)]

⇒ 5 −
4∑

i=0

〈i, i + 1〉 = 4
4∑

i=0

pi,i+1(01)

and substituting Eq. (7) we obtain 4
∑4

i=0 pi,i+1(01) � 5 + 3,
which is just Eq. (6).

The NC inequalities for the compatibility hypergraph
structure corresponding to anticycles are not known in the
literature. A numerical investigation for the classical polytope
for the same indicates the presence of exponentially many
nontrivial NC inequalities. However, in the exclusivity graph
approach, the nontrivial NC inequalities corresponding to
anticycles are unique (see Theorem 2). The reason for the
simplification is the same as that for the cyclic case.

VIII. DISCUSSION AND CONCLUSION

We showed that all fundamental NC inequalities are unique
for their corresponding odd cycle (or anticycle) exclusivity
scenario. This is an exponential simplification compared to
the analogous compatibility hypergraph scenarios. Thereafter,
we discussed the geometry of the associated polytopes. Every
exclusivity scenario which exhibits contextuality must admit
at least one fundamental NC inequality; however, a behav-
ior might exhibit contextuality by violating some other NC
inequality. We reported a Bell inequality in the process of
exemplifying this phenomenon. Finally, we also analyzed the
source of the simplification by relating the KCBS scenario in
the exclusivity graph approach with the compatibility hyper-
graph approach.

We outline two directions for further exploration.
(1) The first direction is the linking of our results to the

resource theory of contextuality. The simplification for cyclic
and anticyclic exclusivity scenarios indicates that there is a
unique way to capture the amount of contextuality, to wit,
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TABLE I. The anticycle case appears naturally in the exclusivity
graph approach due to the strong perfect graph theorem. We show
that both the cyclic and anticyclic case in this approach admit a
unique NC inequality while Araújo et al. [35] obtained exponentially
many NC inequalities in the compatibility hypergraph approach. The
characterization of the anticycle case for the latter approach is an
open problem.

Exclusivity Compatibility

Cycles This paper Araújo et al. [35]
Anticycles This paper ?

the distance of the contextual behavior from the hyperplane
corresponding to fundamental NC inequalities. The strong
perfect graph theorem could potentially allow a generalization
to all exclusivity scenarios.

(2) The second direction is the exploration of anticycles
in the compatibility hypergraph approach. We characterized
the NC polytopes corresponding to the cycles and anticycles
in the exclusivity graph approach and compared the former
with its compatibility hypergraph analog. The characterization
of the anticycle case in the latter approach is still open (see
Table I).

We note that self-testing using the NC inequality for the
cyclic case was shown in [15] and it was recently extended to
the anticycle case as well [44]. Our results, together with the
aforementioned works on self-testing, show that this charac-
terization is complete in the following sense: in the cyclic and
anticyclic case, there is a unique (fundamental) NC inequality
and this can be self-tested. Further, by the strong perfect
graph theorem, every exclusivity scenario which can exhibit
contextuality must contain at least one such fundamental NC
inequality.
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APPENDIX A: PROBABILISTIC MODELS: STATES
AND MEASUREMENTS

The results discussed here are based on the work of Amaral
and Cunha [32]. In any experimental scenario there are two
types of interventions possible, either preparation or opera-
tion. Preparation is used in the intuitive sense of the word, that
is, preparing the system in a given state, for instance using
a laser to initialize the state of an atom. More explicitly, we
make the following assumptions about the theory.

(1) Interventions are of two types: Preparation and opera-
tion.

(2) Experiments are reproducible: For each operation, there
may be several different outcomes, each occurring with a
well-defined probability for a given preparation.

Definition 11. State. Two preparations are defined to be
equivalent if they give the same probability distribution for
all available operations. We will refer to an equivalence class
of preparations as a state state.

Definition 12. State space. The set of all states is referred
to as the state space of the system.

Remark 2. The state space is convex.
Definition 13. Pure states. All extremal points of the state

space are defined to be pure states.
Definition 14. Measurements. Measurements are operations

with more than one outcome.
Remark 3. Unitary evolution is an example of an operation

which is not a measurement.
Definition 15. Probabilistic model. We call any mathe-

matical description of a physical system which provides the
following a probabilistic model: (1) objects to represent [(a)
state, (b) operations, and (c) measurements] and (2) a rule
to calculate the probabilities of the possible outcomes of any
arbitrary measurement given any arbitrary state.

Definition 16. Probability theory. A probability theory is a
collection of probabilistic models.

Definition 17. Outcome repeatable measurements. A mea-
surement j is defined to be an outcome repeatable measure-
ment if every time one performs this measurement on a system
and an outcome k is obtained a subsequent measurement
of j on the same system gives the outcome k again with
probability 1.

Definition 18. p j (k). The probability of getting an outcome
k given that a measurement j has been performed will be
denoted by p j (k).

All the measurements henceforth will be assumed to be
outcome repeatable.

Definition 19. Compatible measurements, refinement, and
coarse graining. A set of measurements { j1, j2 . . . jn} is
compatible if there is another measurement j with outcomes
{1, . . . m} and functions { f1, f2 . . . fn} such that the possible
outcomes of js are the same as { fs(1), fs(2) . . . fs(m)} for each
s and

p js (l ) =
∑

k∈ f −1
s (l )

p j (k)

where j is called a refinement of { j1, j2 . . . jn} and each js is
called a coarse graining of j.

If a set of measurements is compatible it is called a set of
compatible measurements.

Completion of a probabilistic model

Definition 20. Context. A set of compatible measurements
is defined to be a context.

Our objective now is to construct a general mathematical
framework which can describe the completion of a probabilis-
tic model, i.e., give a model which is no longer probabilistic
but reduces to the same probabilistic model if certain variables
are ignored.
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Definition 21. Completion. Consider a probabilistic model
P where S represents the set of pure states and X represents
the set of measurements. The completion of this probabilistic
model, denoted by P′, consists of a set of measurements X ′,
which are in one-to-one correspondence with X , and a set
of pure states S′, which are in one-to-one correspondence
with � × S for some set �. P′ must satisfy the following
requirements. For all ρ ∈ S and all contexts c = { j1, j2 . . . jn},
P′ should specify a probability distribution over � given by
p(λ) and a probability distribution p(λ,ρ,c)

jk
: R → {0, 1} for

each λ, ρ, c, jk such that

pρ
c (i1, i2 . . . im) =

∑
λ∈�

p(λ)
m∏

k=1

p(λ,ρ,c)
jk

(ik )

where pρ
c (i1, i2 . . . im) is the probability assigned by P to

the measurement of j1, j2 . . . jn (encoded in c) yielding the
outcomes i1, i2 . . . im, respectively, for the state ρ.

Remark 4. We expect the completion P′ to specify S′ as
(λ, ρ) for all λ ∈ � and ρ ∈ S. Let us assume for simplicity
that X ′ = X . Now for every context c = { j1, j2 . . . jn} (i.e., set
of compatible measurements from X ) the completion P′ will
predict with certainty the outcome of measuring any ji ∈ c,
for a given (λ, ρ). This prediction is allowed to depend on
the set c itself to accommodate “contextual completions.” We
will see later that noncontextual (and functionally consistent)
completions contradict the predictions of quantum mechanics.

Let X be a set of measurements. Let { j1, j2 . . . jm} ⊂ X be
a set of compatible measurements.

Definition 22. Noncontextual completion. Let c1 =
{ j1, j2, . . . jm}, c2 = { j1, j′2, . . . j′m} be two contexts (note that
ji and j′k may not be compatible for i, k > 1). A comple-
tion P′ of a probabilistic model P is called noncontextual
if p(λ,ρ,c1 )

j1
(i) = p(λ,ρ,c2 )

j1
(i) for all contexts c1 and c2 of the

aforesaid form.

APPENDIX B: THE EXCLUSIVITY GRAPH APPROACH

1. Formalizing scenarios

Definition 23. Measurement event. We denote a measure-
ment event by (a1a2 . . . an|M1M2 . . . Mn) where ai is the mea-
surement outcome associated with Mi, and Mi is compatible
with Mj for all i, j ∈ {1, 2 . . . n}. Two measurement events
(a1a2 . . . an|M1M2 . . . Mn) and (a|M ) are equivalent if for all
states (see Definition 11) their probabilities of occurrence of
these events are equal.

For brevity, we will use the word event in lieu of equivalent
measurement events whenever there is no ambiguity.

Definition 24. Exclusive event. Two events ei and e j are
defined to be exclusive if there exists a measurement M such
that ei and e j correspond to different outcomes of M, i.e., ei =
(ai|M ) and e j = (a j |M ) such that ai = a j .

Definition 25. Exclusivity graph. For a family of events
{e1, e2 . . . en} we associate a simple undirected graph, G :=
(V, E ), with vertex set V and edge set E such that two vertices
i, j ∈ V share an edge if and only if ei and e j are exclusive
events. G is called an exclusivity graph.

Definition 26. Probability vector. For a given exclusivity
graph G = (V, E ) and a probability theory, the probability
vector is a vector p ∈ R|V | such that p(i) = prob(ei ) where
prob(ei ) is the probability assigned by the probability theory
to the event ei.

Definition 27. Behavior. A behavior for an exclusivity
graph G = (V, E ) is a map p : V → [0, 1] which assigns to
each vertex i ∈ V a probability p(i) such that p(i) + p( j) � 1,
for all vertices that share an edge, i.e., (i, j) ∈ E (G). Due
to the isomorphism between the map p : V → [0, 1] and the
vector �p ∈ {0, 1}|V | we will associate with the ith component
of �p the value p(i), i.e., �p(i) = p(i). (Sometimes we will even
drop the vector sign.)

Remark 5. We do not use p(i) = pM (i) because M is not
explicitly a priori known so cluttering the notation does not
help.

Definition 28. Noncontextual behavior. A behavior p is
called a deterministic noncontextual behavior if p : V →
{0, 1}, i.e., p(i) ∈ {0, 1} for all i and there exists a noncontex-
tual completion of the corresponding probabilistic model P.
The set of noncontextual behaviors is defined to be the convex
hull of deterministic noncontextual behaviors and is denoted
by BNC(G).

Remark 6. Defining the behavior this way implicitly im-
poses functional consistency. This is because we require a
noncontextual completion of deterministic behaviors to start
with and later take its convex combination. This imposes the
exclusivity condition at the level of the hidden variable model,
which in turn is a manifestation of functional consistency.

Definition 29. Quantum behavior. A behavior for an ex-
clusivity graph G is called a quantum behavior if there exists
a quantum state ρ and projectors �1, . . . �n acting on a
Hilbert space H such that p(i) = Tr(ρ�i ) for all i ∈ V and
Tr(�i� j ) = 0 for vertices that share an edge, i.e., (i, j) ∈ E .

The convex set of all quantum behaviors is denoted by
BQ(G).

Definition 30. Exclusivity principle. Given a subset {ei} of
events which are pairwise exclusive we say that the exclusivity
principle is obeyed by a probabilistic model if

∑
i prob(ei ) �

1 for all such subsets. We will sometimes refer to this as the E
principle.

Definition 31. E-principle behavior. A behavior p for an
exclusivity graph G is said to be an E-principle behavior
if the associated probabilistic model satisfies the exclusivity
principle, i.e., prob(ei ) = p(i) satisfies the E principle.

The set of E-principle behaviors will be denoted by BE (G).
Let e1, e2 . . . en denote a family of measurement

events.
Remark 7. The set BNC(G) is a (convex) polytope, i.e.,

can be expressed as a solution of a finite number of linear
inequalities.

Definition 32. NC inequality, facet defining. Let p be
a behavior and γi, β ∈ R. A linear inequality,

∑
γi p(i) �

β, is called an NC inequality if its satisfaction is a
necessary condition for membership to the set BNC(G).
Equivalently, to claim nonmembership in the set BNC(G),
it is sufficient to show a violation of the said linear
inequality.

An NC inequality is called facet defining if it defines a
nontrivial facet of BNC(G).
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2. Impossible completions: Linking geometry
and quantum mechanics

Lemma 6 [4]. Let e1, e2 . . . en be the (exclusive) events
associated with an exclusivity graph G = (V, E ). Then,

BNC(G) = STAB(G),

BQ(G) = TH(G),

BE (G) = QSTAB(G).

Corollary 1. For a given exclusivity graph G we have

BNC(G) ⊆ BQ(G) ⊆ BE (G).

APPENDIX C: COMPATIBILITY HYPERGRAPH
APPROACH

1. Formalizing scenarios

Definition 33. Compatibility scenario. A compatibility sce-
nario is specified by the tuple ϒ := (X, C, O) where the
following hold.

(1) O is a finite set.
(2) X is a finite set of random variables from O to P (O).
(3) C is a collection of subsets of X such that their union

is equal to X and the intersection of any two subsets is never
equal to one of the subsets. Each of these subsets will be called
a context.

It might be useful to keep the following in mind to get an
intuitive understanding. The set X can be thought of as the
measurements, the set O as the outcome of these measure-
ments, and the set C as containing maximal contexts.

Definition 34. Compatibility hypergraph. The compatibility
hypergraph corresponding to a scenario ϒ := (X, C, O) is
a hypergraph the nodes of which are elements in X and
hyperedges are contexts in C. We denote the compatibility
hypergraph for the scenario by H = (X, C).

We use calligraphic letters to notationally distinguish the
(hyper)graphs associated with the compatibility hypergraph
from those associated with the exclusivity graph approach.

Definition 35. Compatibility graph. The compatibility
graph for a scenario is the two-skeleton of the corresponding
hypergraph, i.e., H = (X, C). We will denote the compatibil-
ity graph by G = (X, E ). Given two elements i and j in X ,
they share an edge in E if and only if {i, j} ⊆ C for some
context C ∈ C.

Definition 36. Measurement event. A measurement event
corresponds to a single run of an experiment where the
measurements in a context C ∈ C are jointly performed with
outcomes in O|C|.

Henceforth, for notational simplicity, we use OC instead of
O|C|.

Definition 37. Behavior and behavior vector. Given a
scenario ϒ := (X, C, O), a behavior is a family of probability
distributions defined over OC , defined as

B =
{

pC : OC → [0, 1]
∣∣∣ ∑

s∈OC

pC (s) = 1,C ∈ C
}

.

One can stack the pC (s) for all s ∈ OC and C ∈ C to form
a column vector of probabilities for a behavior B. Such
probability vectors are called behavior vectors.

Remark 8. The set of possible behaviors forms a polytope
with

∏
C∈C |OC | nodes, where the extreme points (nodes)

correspond to deterministic points, i.e., pC (s) equal to zero
or one. This can be deduced from the convexity of probability
distributions.

Definition 38. Restriction map. Given a context C ∈ C with
outcomes in OC and a set U ⊂ C, a restriction map rC

U is given
by

rC
U : OC → OU ,

s = (ai )Mi∈C �→ s|U = (ai )Mi∈U .

Definition 39. Marginal distribution (for a context). The
marginal distribution for a probability distribution over a
context C ∈ C corresponding to a set U ⊂ C is defined as

pC
U : OU → [0, 1],

pC
U (s) =

∑
s′∈OC ;rC

U (s′ )=s

pC (s′),

where rC
U is a restriction map from OC to OU .

Definition 40. Nondisturbing set, X (ϒ). Given a scenario
ϒ := (X, C, O), the set of behaviors is called a nondisturbing
set, if for any given behavior and two different contexts C1and
C2 we have pc1

C1∩C2
= pc2

C1∩C2
.

Definition 41. Global section. Given a scenario ϒ :=
(X, C, O), a global section for X is a probability distribution
over OX , denoted by pX : OX → [0, 1].

Definition 42. Global section for a behavior. Given a
scenario ϒ := (X, C, O) and a behavior B, a global section pX

is called a global section for the behavior B if

pX
C = pC ∀ C ∈ C.

Definition 43. Noncontextual behavior. A behavior which
admits a global section is called a noncontextual behavior.

Remark 9. Noncontextual completions were defined inde-
pendently.

Theorem 3. Abramsky and Brandenburger [2]. Given a
scenario ϒ := (X, C, O) and a behavior B ∈ X (ϒ), the afore-
mentioned behavior B has a global section if and only if there
exists a noncontextual completion recovering B.

2. Probability distributions and physical theories

a. Classical realizations and noncontextuality

Remark 10. Given a scenario ϒ , the set of classical be-
haviors will be denoted by C (ϒ). Note that this notation is
distinct from the C which was used to define the compatibility
cover for the scenario ϒ .

Claim 1. Given a scenario ϒ and a behavior B, the follow-
ing statements are equivalent.

(1) B has a global section.
(2) B is classical.
Remark 11. There exists a noncontextual completion re-

covering B.

b. Quantum realization

Remark 12. The set of quantum behaviors will be denoted
by Q(ϒ).

Theorem 4. Q(ϒ) is a convex set.
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Remark 13. Restricting the dimension of realization in the
quantum case yields a nonconvex set.

c. Noncontextuality inequalities

Remark 14. Given a scenario ϒ and a behavior B, how
can one determine if there exists a noncontextual completion
recovering B? This motivates us to define linear inequalities,
the violation of which (for a behavior B) guarantees that B is
contextual, i.e., there is no noncontextual completion recov-
ering B. It is important to note that the set of noncontextual
behaviors forms a polytope, which means that characteriza-
tion of the same can be given by intersection of finitely many
hyperplanes and half spaces. NC inequalities for a scenario
correspond to the facets of the classical (or noncontextual)
polytope. Note that the set of nondisturbing behaviors X (ϒ)
is also a polytope.

Given a polytope, the representation in terms of half spaces
and hyperplanes is often called H representation. The same
polytope can also be described as a convex hull of finitely
many vertices of the polytope, referred to as V representation.

Definition 44. NC inequality. The NC inequality is a linear
inequality

S :=
∑

s∈OC ,C∈C

γC (s)PC (s) � b

where γC (s) and b are real numbers such that the inequality
is satisfied for the behaviors in the noncontextual polytope
C (ϒ). Often b is called the noncontextual hidden variable
bound because the noncontextual behaviors [the behaviors in
C (ϒ)] respect the bound.

Remark 15. There may exist behaviors in X (ϒ) which
violate one or many NC inequalities for the scenario ϒ .
Such behaviors are often called contextual behaviors. An
NC inequality is called tight if there exists a noncontextual
behavior saturating the inequality. Furthermore, it is called
facet defining if it corresponds to one of the facets of the
noncontextual polytope. Given a behavior B, its membership
in C is equivalent to checking if all the facet defining NC
inequalities are satisfied.

d. Geometry of the case H = G (compatibility
hypergraph = compatibility graph)

Remark 16. If we assume that every context has at most
two measurements, then the compatibility hypergraph for the
scenario is given by its two-skeleton. Furthermore, if we
assume that every measurement has two outcomes, it leads
to description of classical and no-disturbing sets as familiar
polytopes from graph theory.

Description of the nondisturbing quantum and noncontex-
tual behaviors.

Remark 17. The nondisturbing set X (ϒ) lies in R4|E (G)|
because every edge (or equivalently context) corresponds to
two binary measurements.

Definition 45. Notation. Fix {Mi, Mj} ∈ C.
(1) pi j (ab) is the probability of outcome a and b for the

joint measurement of i and j, respectively.
(2) pi(a) = ∑

b pi j (ab).
(3) p j (b) = ∑

a pi j (ab).

Claim 2. pi j (ab) can be determined from pi j (11) and pi(1)
due to the constraints on nondisturbing behaviors.

Definition 46. φ : R4|E (G)| → R|V (G)|+|E (G)|, B �→ q =
(qi, qk j )i∈V (G);(k, j)∈E (G) where qi = pi(1) and qi j = pi j (11).

Remark 18. To return from the q space to the B space, we
use

pi j (10) = qi − qi j,

pi j (01) = q j − qi j,

pi j (00) = 1 − qi − q j + qi j .

Remark 19. The map is injective.
Definition 46. Correlation vector v(S), correlation poly-

tope. Correlation vector v(S) is defined as follows. Given
S ⊂ V (G), v(S) ∈ R|V |+|E | is defined as

v(S)i =
{

1 i ∈ S
0 else ∀ i ∈ V,

v(S)i j =
{

1 i, j ∈ S
0 else ∀ {i, j} ∈ E .

The correlation polytope is defined to be the convex hull of all
correlation vectors.

Theorem 5. φ[C (ϒ)] = COR(G).
Definition 47. (For completeness) Rooted correlation semi-

metric polytope. RCMET(G) of a graph G is the set of vectors

q = (qi, q jk ) ∈ R|V (G)|+|E (G)|

such that

qi j � 0,

qi − qi j � 0,

1 − qi − q j + qi j � 0.

Theorem 6. φ[X (G)] = RCMET(G).

e. Cut polytope

Definition 48. Cut vector, cut polytope. Given a graph G and
c ∈ {0, 1}|V (G)| the cut vector is x(c) ∈ R|E (G)| such that

x(C)i j = ci ⊕ c j .

The cut-01 polytope, CUT01(G), is the convex hull of all cut
vectors of G.

Definition 49. ±1 cut vectors. Given a graph G and c ∈
{0, 1}|V (G)| the cut vectors are defined as y(c) ∈ R|E (G)| such
that

y(c)i j = cic j .

The cut ±1 polytope, CUT±1(G), is the convex hull of all ±1
cut vectors of G.

Definition 50. Suspension graph (∇G). The suspension
graph ∇G of G is the graph with vertex set V (G) � {e} and
edge set E (G) � {(e, i), i ∈ V (G)}.

Remark 20. ∇G is the graph obtained by adding an extra
vertex and joining all the vertices of G to it.

Theorem 7. CUT01(∇G) = ψ[COR(G)] where
ψ : R|V (G)|+|E (G)| → R|V (G)|+|E (G)| defined by

q �→ x
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where

xi j = 1 − qi − q j + 2qi j, {i, j} ∈ E (G),

xei = qi, i ∈ V (G).

Remark 21. xei = 〈 j〉 = q j = p j (1) where 〈 j〉 is the ex-
pectation value corresponding to the observable j. Similarly,
xi j = pi j (00) + pi j (11), which is the probability of getting the
same outcome.

Claim 3. CUT±1 and CUT01 are related by a bijective
linear map α : CUT01(G) → CUT±(G) defined by

x �→ y

where

yi j = 2xi j − 1.

Remark 22. If we relabel the outcomes as 0 → +1 and
1 → −1 then we can write

yei = −〈i〉 = −[pi(1) − pi(−1)]

and

yi j = −〈i j〉
= −[pi j (1, 1) + pi j (−1,−1) − pi j (−1, 1) − pi j (1,−1)].

Now we discuss an example.
Example 2. Bell scenario. The Bell scenario corresponds to

the case where context is generated via spacelike separation
of the involved parties. We explain the defining components
of the Bell scenario ϒ := (X, C, O) hereafter. We assume the
number of parties to be n. The set X consists of various
disjoint subsets X1, X2, · · · , Xn. The subset Xi consists of mea-
surement operators for party i. All contexts C ∈ C are of the
form C = {M1, M2, · · · Mn} where Mi ∈ Xi. The compatibility
graph for the scenario is a complete n-partite graph. The Bell
scenario corresponding to n parties with m measurements
per party where each measurement has o outcomes is often
denoted as (n, m, o).
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