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Abstract: This paper reports on the performance of 104 Grade 8 Singapore 

students in pattern generalising tasks to determine the success rates, the rules 

formulated and the ways the rules were represented. A written test comprising four 

linear figural generalising tasks was used and the students had to answer all the 

four tasks in 45 min. About 70% of the students were successful in rule 

construction in each task, producing a variety of functional rules expressed 

prevalently in symbolic notations. Suggestions for practice based on these findings 

are suggested. 

Keywords: pattern generalisation, linear generalising task, Singapore secondary 

school students  

Introduction 

Generalising is a fundamental and valuable skill in mathematics learning, 

with wide applications in many topics. For instance, stating that the sum of 

two odd numbers is always even can be considered a manifestation of the 

generalising skill in arithmetic. This skill is developed normally through the 

topic of number patterns in the mathematics curricula around the world. This 

topic offers students an opportunity to work with pattern generalising tasks 

requiring them to look for an underlying pattern structure, to use the 

structure to extend the pattern and to establish a rule that can be used to 

predict any term of the pattern. Research studies on pattern generalisation 

undertaken in different countries have suggested that recognising a valid 
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underlying pattern structure is often not hard for students, but what poses a 

substantial challenge for many of them is articulating the rule in words or in 

algebraic notation (English & Warren, 1995; Rivera & Becker, 2007; Stacey 

& MacGregor, 2001; Ursini, 1991). Indeed, in Singapore, evidence has 

frequently emerged in the GCE “O” level
1
 examiners’ reports (Cambridge 

International Examinations, 2003, 2005, 2010), indicating that secondary 

school students in the Express course experience difficulties in formulating a 

rule for the immediate calculation of any term (i.e., output) in a pattern given 

its position (i.e., input). 

 

For over a decade, pattern generalising tasks have been a feature in the 

Singapore school mathematics curriculum. The fact that fresh evidence 

about student difficulty in expressing generality keeps on emerging in the 

examiners’ reports, even after all these years, is of grave concern. Yet there 

has been little discussion on secondary school students’ abilities in 

generalising patterns, and this issue has not been systematically examined in 

depth. Thus, this paper seeks to answer the following research questions with 

respect to linear figural patterns: 

(1) What were the success rates of the secondary school students in 

linear figural patterns? 

(2) What rules did the secondary school students establish for a linear 

figural pattern? 

(3) What was the modality of the rules that the secondary school 

students established? 

Literature Review 

This section describes what the generalisation process entails and why it is 

important for mathematics learning, followed by what linear figural 

generalising tasks are, as well as the different types of rules formulated and 

their modalities. 

                                                           
1
 
The General Certificate Examination at the Ordinary Level (GCE “O” Level) is a national examination 

conducted by the Cambridge International Examinations syndicate in collaboration with the Ministry of 

Education, Singapore. It is taken by students in the Express course at the end of their secondary 

education.
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Generalisation 

Generalisation has been widely acknowledged as a process involving at least 

one of the following activities: 

(i) to examine a few particular cases to identify a commonality 

(Dreyfus, 1991; Ellis, 2007; Mason, 1996; Radford, 2008),  

(ii) to extend one’s reasoning beyond those particular cases (Ellis, 

2007; Harel & Tall, 1991; Radford, 2008), and 

(iii) to establish a broader result for those particular cases (Dreyfus, 

1991; Dubinsky, 1991; Ellis, 2007). 

Of crucial importance is the last activity wherein some researchers, such as 

Stacey and MacGregor (1997), regard the expression of a functional rule for 

describing the particular cases as evidence of generalisation.  

 

The importance of generalisation in the field of mathematics is well 

established in the literature with some researchers going as far as to declare 

it as the heart of mathematics (Kaput, 1999; Mason, 1996). Such a claim is 

not surprising given the many applications of the generalising skill in the 

learning of mathematics, in particular, the topic of algebra, where laws and 

theorems are considered as generalisations (Mason, 1996). Taking, for 

instance, the commutative law for addition over integers, secondary school 

students should be able to express numerical identities such as       
 ,         and         symbolically as        . When 

this happens, they have developed a sense of the numerical identities and 

abstracted a relationship between the two integers (that is, the sum of the two 

integers is the same regardless of the order in which the integers are added). 

Articulating the symbolic identity is a manifestation of students’ attempt in 

applying the generalising skill. One type of mathematical task that supports 

students’ development of generalising skill is pattern generalising tasks. 

Pattern generalising tasks 

Pattern generalising tasks are often used in class by mathematics teachers to 

engage students in identifying a pattern, extending the pattern to find the 

value of a near or distant term, and articulating the functional relationship 

underpinning the pattern using symbols. They are classified broadly as 

numerical when the pattern is listed as a sequence of numbers, or as figural 

when the pattern is set in a pictorial context showing one or more 

configurations. Numerical tasks tend to list the first four or five terms of a 

pattern in a sequential order (see Hargreaves, Threlfall, Frobisher, & 
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Shorrocks-Taylor, 1999; Stacey, 1989). Figural tasks tend to show more 

variations. There are two widely used approaches: first, to provide three or 

more successive configurations (see Radford, 2008; Rivera, 2010), and 

second, to show just a single configuration to represent a generic case of the 

figural pattern (see Hoyles & Küchemann, 2001; Lannin, Barker, & 

Townsend, 2006a; Steele, 2008). Other less common approaches include 

providing two or three non-successive configurations (see Healy & Hoyles, 

1999; Warren & Cooper, 2008). 

 

The underpinning patterns are labelled linear or quadratic because their 

general terms take the form of      or          respectively. So the 

set of numbers [2, 4, 7, 11, 16, …] used in a study by Hargreaves, Threfall, 

Frobisher and Shorrocks-Taylor (1999) forms the first five terms of a 

quadratic numerical sequence because they can be generated by the 

expression 
 

 
   

 

 
   . On the other hand, the classic matchstick task (see 

Rivera & Becker, 2007) showing a square made of four matchsticks in 

Figure 1, a row of two squares made of seven matchsticks in Figure 2, and a 

row of three squares made of 10 matchsticks in Figure 3 is an example of a 

linear figural task in a successive format because the number of matchsticks 

needed to form n squares is given by     . 

 

Pattern generalising tasks are viewed as a powerful and useful vehicle for 

promoting and supporting algebraic thinking. For instance, they can be used 

to introduce the notion of a variable (Mason, 1996; Warren & Cooper, 

2008), to develop two core aspects of algebraic thinking: (i) the emphasis on 

relationships among quantities like the inputs and outputs (Radford, 2008), 

and (ii) the idea of expressing an explicit rule using letters to represent 

numerical values of the outputs (Kaput, 2008), and to develop the notion of 

equivalence of algebraic expressions (Warren & Cooper, 2008). With such 

merits pivotal to fostering algebraic thinking, it is not difficult to understand 

why pattern generalisation is normally placed under algebra in many 

countries including the US and Singapore. 
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Types of rules formulated 

Students are often asked to construct a rule to describe the pattern structure 

that they see in a generalising task. As the review of a number of studies has 

shown, the rules constructed by the students take on mainly two forms: 

recursive and functional rules (see Lannin, Barker, & Townsend, 2006b; 

Rivera & Becker, 2007; Warren, 2005). The recursive rule allows the 

computation of the next term of a sequence using the immediate term 

preceding it whereas the functional rule refers to the rule expressed as a 

function that computes the term directly using its position in the sequence. 

For instance, a recursive rule for the matchstick task mentioned above could 

be expressed as “add three to get the next term” and      is its functional 

rule. 

 

Research has demonstrated that students tended to produce a recursive rule 

when the generalising tasks they were dealing with “provided a clear 

connection to incremental change” (Lannin et al., 2006a, p.12). The 

connection was often established when “the input values were relatively 

close” (Lannin et al., 2006a, p.12). This finding seems to be sensible because 

by building on the previous terms in a pattern, the recursive approach allows 

subsequent terms to be determined effortlessly. As a result, such an approach 

is particularly popular amongst many students, especially the younger ones 

(see Hargreaves et al., 1999). Unfortunately, while the recursive rule is 

useful for finding subsequent terms quickly, one of its serious drawbacks is 

that it is not efficient for the immediate calculation of any term whose 

position number is a large value or when the pattern is presented in a non-

successive manner. Further, it also does not promote the ability to examine 

the functional relationship between the terms and their positions, a viewpoint 

which many researchers have argued is key to algebraic thinking (Kaput, 

2008; Mason, Graham, & Johnston-Wilder, 2005; Radford, 2008). This is 

why formulating a functional rule is deemed so crucial and helpful to 

students. 

Modality of written rules 

The external representation of a mathematical idea can be conveyed in many 

ways: concrete materials, graph, words, and symbols. These different modes 

of representation are referred to as the modality of the mathematical idea. 

For a pattern generalising task, three modes are often used by students: 

purely symbolic, purely in words, and in alphanumeric form. Consider 
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Rivera and Becker’s (2007) matchstick task mentioned previously again. A 

functional rule expressed entirely in symbols for the number of matchsticks 

needed to build a row of n squares is given by     . This rule can be 

stated wholly in words as: add one to three times the number of squares. 

Written alphanumerically, the rule can also take the form: 

                     . Similarly, a recursive rule can also be 

represented wholly in words and in symbols: add three to the previous term 

to get the next and           respectively. 

 

Some researchers specify very clearly how they want students to express the 

rule by introducing letters into the question. For instance, Rivera and Becker 

(2007) asked students to find the number of matchsticks needed to make n 

squares and such a question elicits a symbolic representation. Stacey and 

MacGregor (2001) required 2000 Australian students in Years 7 to 10 to 

produce symbolic functional rules but observed that only a small proportion 

of them could do so in two linear tasks. 

 

However, not all pattern generalising tasks state explicitly that a symbolic 

rule is expected. This is especially so at the lower level of study when 

algebra has not been taught. Even if algebra has been taught, some students 

might not know how to use letters to describe the pattern structure. Thus for 

these students, a rule written wholly in words is equally acceptable. Stacey 

and MacGregor (2001) reported that nearly half of their sample of Years 7 to 

10 students described the functional rules in words. Mavrikis, Noss, Hoyles 

and Geraniou (2012) noted a student using the alphanumeric form such as 

                , a combination of words and symbols. 

Singapore students’ performance in pattern generalisation 

Due to a lack of research on pattern generalisation in Singapore, much of our 

knowledge about the performance of Express students in pattern 

generalisation is gleaned from the GCE “O” level examiners’ reports and the 

TIMSS reports. A striking feature of the number pattern questions in the “O” 

level examinations from 1995 to 2009 is that they are primarily of the 

numerical type, with the exception of only two figural generalising tasks. 

The numerical questions tested students on two skills: finding a particular 

term when its position is known and deriving an expression for the general 

term of the sequence. These questions comprised both linear and quadratic 

sequences. 
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The examiners’ reports indicated that those questions dealing with finding a 

particular term when given its position in the sequence were consistently 

well answered. For instance, most Singapore students had no trouble stating 

the next two terms of the quadratic sequence [12, 11, 9, 6, …] in the 1996 

examination (University of Cambridge Local Examinations Syndicate, 

1997), and the 12
th
 term of the linear sequence [25, 22, 19, 16, …] in the 

2007 examination (Cambridge International Examinations, 2008). Even if 

the examination question took a different format, many students were still 

equally successful. Take, for instance, the 2009 examination question: the 

first term in a sequence is 38 and each following term is found by 

subtracting 7 from the previous term. Despite this atypical way of presenting 

the pattern in prose, the majority of students were still successful in finding 

the second and third terms of the sequence correctly. Only a small number of 

students interpreted the phrase “second and third terms” mistakenly to mean 

the second and third terms after 38 and so produced 24 and 17 as a result 

(Cambridge International Examinations, 2010). 

 

Singapore students appeared to face very much the same difficulty as 

students in other countries did in examination questions asking for an 

expression for the general term of a linear sequence. The examiners’ reports 

commented consistently about students failing to formulate the correct 

algebraic expression. Taking, for instance, the 2002 examination question 

involving the linear sequence [5, 9, 13, 17, 21, …], many students gave the 

incorrect expression     for the n
th
 term (Cambridge International 

Examinations, 2003). Similar findings had also been found in the examiners’ 

reports for the 2004 and 2009 examinations (Cambridge International 

Examinations, 2005, 2010). Clearly, many Singapore students found the 

general term of linear sequences far from being straightforward to develop. 

Not surprisingly, then, the students also had limited success in developing 

quadratic functional rules correctly (Cambridge International Examinations, 

2008; University of Cambridge Local Examinations Syndicate, 1997). 
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Figure 1. 1998 “O” level figural pattern 

 

Notably, not all “O” level examination questions testing rule construction 

were poorly done. One question that the students had done well was the 

figural task from the 1998 examination in Figure 1 above. The linear 

algebraic rule for determining the number of dots around the perimeter of 

any configuration was derived correctly by the majority of students 

(University of Cambridge Local Examinations Syndicate, 1999). 

 

The TIMSS findings similarly reveal some student weaknesses and 

misconceptions in pattern generalisation. The TIMSS–2003 matchstick task 

in Figure 2a asked Year 8 students (14 years old) to choose from five options 

the number of matchsticks needed to make Figure 10. This question was 

thought to be a straightforward item because the answer could be verified 

easily by drawing out the configuration in Figure 10. Yet only 73% of 

Singapore students chose the correct answer (B) (Martin, 2005). Although 

they outperformed the Year 8 students internationally (49%), it was still 

rather astonishing to discover that more than a quarter of the participating 

Singapore students failed to do it correctly. What is more surprising is that of 

the four wrong answers, (A) was the most popular response, selected by 11% 

of the Singapore students. The answer can be obtained using what Stacey 

(1989) called the difference strategy: that is, take the product of the figure 

number and the common difference. This students’ choice of answer (A) 

highlights the kind of misconception they have when making such a 

generalisation. 
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Figure 2a. TIMSS-2003 matchstick task (ID: M012017)                    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2b. TIMSS-2007 matchstick task (ID: M032640) 
 

The TIMSS–2007 task in Figure 2b provided a single configuration showing 

a row of four squares made of 13 matchsticks and students were asked about 

the number of squares in a row that could be made using 73 matchsticks. To 

restate this task, it is asking students to find the figure number of a given 

term (i.e., Figure 4 is made using 13 matchsticks. Which figure is made 

using 73 matchsticks?). Such a task can be fairly tough for many students if 

they cannot make a link between the number of squares and the number of 
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matchsticks. So it is not a surprise at all to realise that the task defeated the 

majority of students: 59% of Singapore students compared to 91% of Year 8 

students internationally (Foy & Olson, 2009). 

 

Figure 3 presents a TIMSS–2007 multiple-choice item involving rule 

construction. The item, resembling a typical GCE “O” level examination 

question, provided the first four terms of a sequence and students had to 

choose the rule that would generate each of these terms. It is encouraging to 

note that a vast majority of Singapore students (80%) picked the correct 

answer (B) (Foy & Olson, 2009). What is disappointing, however, is seeing 

a sizeable number of students failing to identify the correct rule especially 

when options were provided and could be verified easily. Of the four wrong 

answers, (C) was the top choice of Singapore students. The finding points to 

a worrying misunderstanding some students might have. That is, it would 

suffice to test the validity of a rule using just one or two cases. For answer 

(C), the fact that multiplying the first term 2 by 3 and then subtracting 1 to 

yield the second term 5 was enough to convince nearly 10% of the Singapore 

students to believe that the rule will also be valid for the remaining terms. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. TIMSS-2007 item involving rule construction (ID: M032273) 

Summary of literature review 

From the review of research literature, we concur with many researchers that 

being able to generalise is very crucial for learning mathematics. This is 

because the generalising skill applies not only to algebra but also to several 

mathematical topics. More importantly, it is a key part of algebraic thinking. 

Yet several past studies undertaken in different countries have shown that 

expressing generality is notoriously elusive for many students. While many 
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of them can often spot the underlying pattern structure in a generalising task, 

their formulation of the functional rule is not always guaranteed. Thus rule 

construction remains a persistent obstacle to many students around the 

world, including top-performing Singapore students as well. 

 

Different generalisations emerge as a result of different student reasoning, 

structure interpretation and discernment in the task, thereby producing 

different equivalent forms of the rule. The literature review has indicated 

three ways of expressing a functional rule: purely in words, purely in 

algebraic notations or in alphanumeric form. 

 

In Singapore, the topic of number patterns is not new in the secondary 

mathematics curriculum and has been taught since the 1990s. Despite this 

circumstance, recent evidence in the GCE “O” level examiners’ reports and 

TIMSS studies highlight that student difficulties in pattern generalisation, 

particularly at the stage of formulating a functional rule, still remain very 

much in evidence. Due to limited research, the current state of Singapore 

secondary school students’ generalisations of figural patterns is still not well 

understood and studied. As a result, it has not yet been established what rule 

they formulate and in what mode of representation they express the rule 

when they deal with those tasks. In this context, we conceptualised our 

research study to investigate the students’ generalisations. Our study aimed 

not only to further broaden current knowledge of how Singapore secondary 

school students generalise figural patterns but also to complement the body 

of work on pattern generalisation that has been largely undertaken in the 

west. 

Methods  

This research study involved the collection of empirical data through the 

Strategies and Justifications in Mathematical Generalisation (JuStraGen) 

test. This section details the profiles of the participating students, the test 

instrument and the data analysis plan.  
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Participants 

104 Secondary Two students (Grade 8, aged 14 years) from a secondary 

school in Singapore, selected through convenience sampling, were involved. 

They comprised 55 girls and 49 boys from three intact classes selected by 

the school and were taught by different mathematics teachers. Their mean 

PSLE (Primary School Leaving Examination, a national examination taken 

by 12-year-old students at the end of their primary education) aggregate 

score was 222, indicating below average ability. 

 

The students had learnt the topic of number patterns before participating in 

this study. They should be able to continue for a few more terms any pattern 

presented as a sequence of numbers or figures, find near and distant terms in 

the sequence and establish the functional rule in the form of an algebraic 

expression for directly predicting any term. They should be familiar in 

dealing with linear patterns, which are commonly featured in their 

mathematics textbook. 

Research instrument 

The JuStraGen test was designed to assess students’ ability to generalise 

figural pattern tasks. It was a paper-and-pencil test consisting of eight 

generalising tasks of which four involved linear patterns and four quadratic. 

The eight tasks were divided into two sets of four tasks, administered on two 

separate days to reduce student fatigue. Each set comprised two linear and 

two quadratic tasks. Students had to attempt all four generalising tasks in 

each set in 45 minutes. In this paper, only the four linear tasks as shown in 

Figure 4 are reported. 
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Bricks 
 
 
 
 
 
 

Towers 

 
Birthday Party Decorations 

 

High Chairs 

 
 

Figure 4. Linear generalising tasks 

 

The development of the JuStraGen test was guided by numerous 

considerations. One of them is the number of generalising tasks to set. We 

decided to set eight tasks after pre-piloting a task to gauge the amount of 

time students needed to complete it. We believed that this number was also a 

reasonable figure for covering a range of linear and quadratic patterns. 

Another consideration is the structure of the task. All the eight tasks were 

deliberately unstructured in order to allow students scope for exploration so 

that they could come up with their own interpretations of the pattern. So 

there were no part questions guiding students to detect and construct the 

functional rule underpinning the pattern. This then permits us to see how the 

students came to recognise and perceive the pattern without scaffolding. The 

Bricks task in Figure 5 offers an example of the linear generalising tasks 

administered to the students. 

 

The prototype version of the JuStraGen test was shown to over 15 secondary 

school mathematics teachers attending an in-service workshop on pattern 

generalisation conducted by the first author in September 2009, and later to 
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two experts in mathematics education from the National Institute of 

Education in January 2010 before the pilot study began. The teachers and 

experts were asked to work out the functional rules for all the generalising 

tasks and all their rules matched our intended rules. Additionally, they also 

had to check that the generalising tasks were written with clear instructions 

and sufficient details. Some suggestions for improving the task instructions 

were provided by them and the test instrument was modified based on their 

feedback. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. The Bricks task 

 

The revised JuStraGen test instrument was piloted in a secondary school 

with 45 students. Based on the analysis of students’ responses, the queries 

some students had, and observations made during the invigilation of the pilot 

test, none of the generalising tasks needed to be clarified or rewritten. The 

images of the configurations in every task were replaced with larger ones. 

The test duration of one hour seemed slightly long and was revised to 45 

minutes. 

Data analysis 

The revised JuStraGen test was administered to the 104 participating 

students on two separate days in July 2011. The test scripts were collected 

and before coding the written student responses, each script was coded 

according to the student number in the register. The written student 

responses were first examined for correctness then followed by the rule 
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formulated and the modality of the rule. Task by task, coding of each written 

response was carried out using the respective coding schemes for the type of 

rules formulated and the modality of the rule. 

 

The coding scheme for the type of rules formulated was initially developed 

using a priori ideas drawn from the pilot study results, the solutions of the 

in-service teachers who checked the JuStraGen test instrument, and the first 

author’s solutions using the various generalising strategies described in the 

research literature. Each different rule formed a category, which was 

assigned a three-digit code. The leftmost digit of the code indicates the task 

number in the JuStraGen test instrument. Taking the Birthday Party 

Decorations task for instance, the two correct but different-looking 

functional rules,      and  (   )   , were coded as 301 and 305 

respectively. A correct recursive rule was coded as 320. As the coding 

process progressed, if a correct functional rule not matching any of the 

available codes was encountered, a new code was created. However, new but 

similar rules were subsumed under the same category. For instance, in the 

Bricks task, the new rule,    (   )   , was regarded as similar to 

   (   ) , which had been assigned Code 105. So Code 105 was 

expanded to comprise the two rules. 

 

The coding scheme for the modality of the rule was simpler and more 

straightforward to develop. From the pilot study, we observed that the 

recursive rule was typically expressed in words. On the other hand, the 

functional rules were stated in words, in algebraic notations or in 

alphanumeric form. Other than producing a recursive or functional rule, 

some student responses were partially correct, some described only 

particular cases, some were totally incorrect or irrelevant whilst some were 

left blank. The description-of-particular-cases category was created 

originally to account for those student responses that showed how particular 

cases were obtained. However, due to a low occurrence of such responses 

for each task, we decided to merge this category with the partially correct 

rule category, which accounted for responses that were incomplete but could 

possibly lead to a correct functional rule if done fully. The modality of the 

rule was finally narrowed to one of the following six categories: written in 

words, written in notations, written in alphanumeric form, partially correct 

rule or description of particular cases, incorrect or irrelevant rule or blank.  
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To illustrate how the coding was carried out, consider the responses of two 

students, Students 37M1 and 52M1, as provided in Figure 6. Figure 6a 

shows Student 37M1 moving the topmost row of tiles to the third row to 

form a (   )  by (   )  rectangle first, then followed by removing 

(   )  tiles from the rectangle. The symbolic expression for the number 

of tiles in any configuration was, therefore, (   )(   )  (   ) , as 

seen in the rightmost diagram. Although this student simplified that initial 

rule to its closed form      later, it was the initial rule that reflected how 

the pattern structure was perceived. Hence, (   )(   )  (   ) , and 

not     , was coded 606 for the type of rule formulated and 2 for the 

modality of rule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6a. Coding of student responses: Student 37M1 
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Figure 6b. Coding of student responses: Student 52M1 

 

In Figure 6b, Student 52M1 viewed the configurations as being composed of 

three blocks. The top and bottom blocks each always had one card. The 

number of cards in the middle block was always 3 times of the size number. 

So the rule, add 2 to...3 times of the size number, was established by 

summing up the number of cards in the three blocks. This rule was entirely 

expressed in words, which translated to      if written in notations. Thus 

it was coded 301 for the type of rule formulated and 1 for its modality. 

 

Given the establishment of the respective codes for the type of rule 

formulated and the modality of the rule for all student responses, a small 

sample of the test scripts were selected and then passed to an experienced 

and retired mathematics teacher for coding to safeguard consistency in the 

coding process. Before starting to code, the mathematics teacher was trained 

by the first author to use the two coding schemes. The agreement level in 

coding between the first author and the mathematics teacher was over 90%, 

which we believed to be adequate for the present study. 
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Results 

The analyses of data yielded a rich source of information about students’ 

rules and the modality of their rules when dealing with linear figural 

generalising tasks. This section addresses the three research questions by 

reporting what has been found from the analyses. 

 

(1) What were the success rates of the secondary school students in 

linear figural patterns? 

 

All the generalising tasks in the JuStraGen test required students to express 

the rule specifically in terms of the size number. So a functional, and not 

recursive, rule was expected in the answer. Tables 1, 2 and 3 present the 

different functional rules that the students developed in each task and the 

frequencies of occurrence. 

 

There was a predominance of functional rules. The success rates were 71%, 

72%, 73% and 69% for Bricks, Birthday Party Decorations, Towers and 

High Chairs respectively. 

 

(2) What rules did the secondary school students establish for a linear 

figural pattern? 

 

Following an analysis of student responses for the type of rules generated, a 

remarkable result to emerge from the analysis is that approximately 70% of 

the student sample established a correct functional rule in each of the four 

linear generalising tasks. Under 15% of them produced a correct recursive 

rule. As explained previously, when two or more equivalent expressions of 

the functional rule were seen in a student response, the one that captured 

how the pattern structure was visualised was coded. So the rules did not have 

to be simplified and expressed in the closed form. 

 

As Table 1 shows, six categories of different-looking but equivalent 

expressions of the functional rules were observed in Birthday Party 

Decorations. The student response presented in Figure 6b reveals a category 

of rules and the remaining five categories are    (   ),  (   )   , 

 (   )   ,  (   )    and    (   ) . In the other three 

generalising tasks, five categories of functional rules were observed in 
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Bricks (refer to Table 1), nine in Towers (refer to Table 2) and seven in High 

Chairs (refer to Table 3). 

 
Table 1 

Functional rules for Bricks and Birthday Party Decorations by rule modality 

(n = 104) 

Bricks Modality Birthday Party 
Decorations 

Modality 

Code Rule W N WN Total Code Rule W N WN Total 

101       1 39 3 43 301      3 56 3 62 

102    (   )  6 1 7 302    (   )  2 1 3 

103  (   )    1 19 1 21 303  (   )     3  3 

105    (   )  2  2 304  (   )     3  3 

106  (   )     1  1 305  (   )     1  1 

      306    (   )  3  3 

 Functional 2 67 5 74  Functional 3 68 4 75 

 % 2 64 5 71  % 3 65 4 72 

120 Recursive 8    120 Recursive 10    

 % 8     % 10    
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Table 2 

Functional rules for Towers by rule modality (n = 104) 

Towers Modality 

Cod

e 

Rule W N WN Tota

l 

601      1 27 1 29 

602    (   )  1  1 

603  (   )     1 33 2 36 

604    (   )     1  1 

606 (   )(   )   (   )  1  1 

607     (   )  2  2 

608  (    )  1  1 

609  (  )     3  3 

614    (   )  2  2 

 Functional 2 71 3 76 

 % 2 68 3 73 

120 Recursive 14    

 % 13    
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Table 3 

Functional rules for High Chairs by rule modality (n = 104) 

High Chairs Modality 

Code Rule W N WN Tota

l 

801      1 32 1 34 

803  (   )  (   )  14  14 

804  (   )     12 1 13 

805  (   )     6  6 

807     (   )  2  2 

812 (    )      1 1 

813      (   )  1  1 

 Functional 1 67 3 71 

 % 1 65 3 69 

120 Recursive 14    

 % 13    

 

In three of the four generalising tasks, the majority of the correct functional 

rules were expressed in the closed form:      in Bricks (43 students) and 

in Birthday Party Decorations (62 students), and      in High Chairs (34 

students). The only task whose closed form was not the modal rule was 

Towers. Of the 76 successful students, 36 of them constructed the rule, 

 (   )    , whilst another 29 derived the closed form, 4   . 

 

A few functional rules in some of the tasks were particularly worth 

mentioning because of the thinking and reasoning that students engaged in 

when they formulated the rules. One prime example was the rule    
(   ) detected in Birthday Party Decorations, as shown in Figure 7. The 

rightmost generic configuration, drawn by the student and labelled by the 

first author, portrayed clearly how the student discerned and reasoned about 

the pattern structure in an intriguing manner. First, two identical rectangles, 

A and D, each comprising n square cards, were cut out from the first and 

third columns. The remaining portion of the configuration was further 
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divided into two parts, B and C. B was a 7-shaped figure, containing n 

square cards and C was a two-square horizontal rectangle. Adding up the    

square cards in A and D and the (   ) square cards in B and C produced 

the rule    (   ) . This way of visualising the pattern structure is 

somewhat unconventional, hence it is worth highlighting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Visual representation of    (   ) 

 

Another example was the rule (   )(   )  (   )  shown in Figure 

6a above. By rearranging the original configuration into a rectangle with 

(   )(   ) tiles, Student 37M1 knew that this expression was not the 

correct formula for finding the actual number of tiles in any configuration. 

The rule needed adjustment, which was to remove (   )  tiles from the 

rectangle. Hence, the rule for finding the number of tiles in any 

configuration was (   )(   )  (   ) . This rule takes on an 

interesting form, which might be easily mistaken for a quadratic function. 

However, it is actually a linear function. 

 

(3) What was the modality of the rules that the secondary school 

students established? 

 

The three ways of expressing a functional rule are in words, in notations and 

in alphanumeric form. Tables 1 to 3 present a detailed breakdown of the 

A 

B 

C 

D 
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modality of the various functional rules that were established by the student 

sample. The most prevalent mode of representation was the written in 

notations category and the other two modes, on the other hand, were 

relatively infrequent.   

 

The tables indicate that a substantial majority of the correct functional rules 

(almost 65%) were expressed in notations: 67 out of 74 in Bricks, 68 out of 

75 in Birthday Party Decorations, 71 out of 76 in Towers, and 67 out of 71 

in High Chairs. The student responses in Figures 6a and 7 are examples of 

two functional rules expressed in notations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Rule expressed in alphanumeric form 

 

Very few functional rules in each task were expressed in a combination of 

words and notations. There were three cases each in Towers and High 

Chairs, four in Birthday Party Decorations, and five in Bricks. One of the 

five rules in Bricks, presented in Figure 8, showed a student using words 

instead of a letter such as n for the input variable in the rule:         
 (         ). Equally uncommon were functional rules written in words. 

There were just a few cases in each task: one in High Chairs, two each in 

Bricks and Towers, and three in Birthday Party Decorations. An example 

from Birthday Party Decorations has been provided in Figure 6b above. 
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Discussion 

As detailed above, the present study had produced some noteworthy results 

from the data analyses. Given that the data were drawn from students in the 

Express course in a secondary school, the results should thus be treated with 

considerable caution.  

 

As is widely known in the research literature, the construction of a functional 

rule is extremely challenging for many students, including those from 

Singapore. Many Singapore students had failed consistently to produce a 

correct algebraic expression for predicting any term of a linear numerical 

sequence in GCE “O” level examinations (Cambridge International 

Examinations, 2003, 2005, 2010). In contrast to these earlier findings, our 

study found that a significant number of students were capable of developing 

functional rules for linear figural patterns. This finding suggests that most 

students were familiar with the task requirement of formulating a functional, 

and not recursive, rule. Our finding also corroborates the results of a figural 

generalising task in the 1998 GCE “O” level examination (University of 

Cambridge Local Examinations Syndicate, 1999). How might one explain 

why students performed better in figural tasks than in numerical tasks? 

 

A typical figural generalising task comprises the configurations as well as 

the input variables (i.e., figure number). To construct a functional rule for 

the inherent pattern in the task, students have to use the input variable as a 

generator of relationship (Chua, 2009) to establish a link with certain 

component of the configuration. When this relationship is established, it 

helps the students to better understand how the pattern grows with the input 

variable. Taking Bricks for instance, students will use the input value to 

establish the number of bricks in the top, middle and bottom rows in each 

configuration. This is where they will discover that each middle row always 

has the same number of bricks as the input value, and the top and bottom 

rows each have one more brick than the input value. Putting all the three 

rows together, the number of bricks in any configuration is three times the 

input value plus two. In this illustration, the link between the generator and 

the number of bricks in the configurations is said to be explicit (Chua, 2009). 

 

In the case of a numerical generalising task, the input variables are not given 

explicitly, unlike in a figural task. What students will see are just the terms 
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of a numerical sequence, but their position numbers can be inferred easily. 

This missing feature might have contributed to poor student performance in 

such a task because the generator-term link is not immediately conspicuous. 

Thus it is not surprising that students focus on the term-to-term relationship 

instead of the term-to-position relationship. 

 

Adding further challenge to the numerical task is another latent difficulty 

inherent in the generator-term relationship. To illustrate this aspect of the 

relationship, consider the fourth term of a sequence whose first five terms 

are [1, 4, 7, 10, 13]. The manifestation of the fourness of the generator is not 

very obvious in the term 10 if this number stays in its present form. Unless 

students can deconstruct the number 10 in terms of the common difference 

between two consecutive terms into    (   )  or  ( )    using the 

repeated substitution strategy, the relationship between the generator 4 and 

the term 10 will remain in oblivion. This generator-term obscurity can 

hamper students’ recognition of the inherent pattern structure. This 

illustration thus highlights just how important the noticing of the generator-

term relationship is to making a generalisation. 

 

Another finding that broadens our knowledge of Singapore students’ ability 

in pattern generalisation is that they were capable of formulating a variety of 

equivalent functional rules. The form of the functional rule often offered 

considerable insight into how they visualised, thought and reasoned about 

the pattern structure. Most of the functional rules are algebraically 

meaningful but some are probably not. By algebraically meaningful, we 

mean that a rule makes sense and can be explained using the numerical or 

figural cues established from the pattern. So the rules shown in Figures 6 to 

8 are algebraically meaningful since each term of the rule has a geometrical 

interpretation. On the other hand, consider the functional rule       
(   )  in High Chairs. No description was provided by the student to 

explain how it was derived. After much deliberation, we still could not 

figure out how each term of the rule was related to the configurations and so 

we came to believe that this rule was probably constructed through mere 

guessing. Given a lack of any geometrical interpretation, the rule is, 

therefore, deemed to be not algebraically meaningful.     

 

Finally, the functional rules in the present study were predominantly 

expressed in symbolic notations. This finding affirms the level of 
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competence of most students in one particularly important aspect of 

algebraic thinking: that is, using letters to represent numerical values. This 

is, in fact, a crucial skill in algebra learning which Kaput (2008) had hoped 

generalising tasks will help students to develop. Although the students 

expressed the symbolic rules very competently, a problem that showed up in 

many of their responses is their failure to explain what the letter used in their 

responses actually represented. 

Implications for Instruction 

In teaching pattern generalisation, it is often useful for teachers to begin the 

discussion of a generalising task by spending some time to have students 

explore and talk about the pattern that they see in the task and then search for 

the commonality. As the students are doing this, the teachers can advise 

them to focus on the structures and the relationship between terms, as 

emphasised by Radford (2008). To encourage students to articulate what 

they see in the pattern, they can be asked to predict some terms that are both 

near to and far from the last given term in the pattern. This is also an attempt 

to make them realise two things: (1) determining a near term will require 

them to know the term immediately preceding it and the differences between 

consecutive terms, and (2) the approach in (1) is not an efficient method for 

determining a far term because the term immediately preceding it may not be 

available. Crucially, the main intention here is eventually to have students 

recognise a need to devise a rule to compute the far term directly.  

 

Before demonstrating the formulation of a functional rule, it is helpful if 

teachers can begin by explaining and emphasising the functional relationship 

between the input and output variables, which is key to successful rule 

formulation as the present study has established. For instance, in Bricks, 

there are five bricks in Size 1, eight bricks in Size 2, 11 bricks in Size 3, and 

so on. Next, students can be asked to identify the input and output values in 

the relationship. Once this is done, it is important for the teachers to make 

clear to the students about using the size number as a generator of 

relationship to connect it with the output variable. When establishing this 

relationship using the size number, we prefer to let the students decide how 

the size number is linked to the pattern. This learning experience not only 

provides them with a meaningful opportunity to explore the pattern structure 
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but also convinces them that there are often multiple ways of explaining and 

visualising the same pattern structure. Furthermore, when asking the students 

to express the functional rule in symbols, the teachers can encourage them to 

choose their own letters for representing the size number if the question does 

not specify what letter to use. Importantly, have them to define their letters 

as well. Doing this helps students to “assign meaning to the formal letters 

and to appreciate the variable nature of these symbols” (English & Warren, 

1995, p. 6). 

 

With evidence from the present study demonstrating that students hold 

different interpretations of the pattern structure, together with considerable 

emphasis on making justification in Mathematics learning in Singapore in 

recent years, teachers can encourage students with a remarkable way of 

visualising the pattern structure to share their thinking and reasoning with 

others. Teachers can also present an algebraically meaningful functional rule 

and invite students to explain how it comes about. In doing so, students will 

hopefully realise that the rule does not occur by chance but it follows a 

certain pattern consistently. 

Conclusion 

This paper has given an account of the performance of Secondary Two 

students in pattern generalisation involving four linear figural generalising 

tasks. We arrived at the conclusion that the majority of students produced 

correctly a variety of functional rules that were predominantly expressed in 

algebraic notations. Our work clearly has some limitations: for instance, the 

student sample was small and was derived from one secondary school. 

Therefore, our findings may not be generalised to all secondary school 

students. Despite these limitations, we believe our work offers the first step 

towards enhancing our understanding of Singapore secondary school 

students’ generalisations of figural patterns. In addition, findings from our 

study also contribute to the field of pattern generalisation as rich data to 

deepen one’s understanding of how Southeast Asian secondary school 

students visualise, think and reason about the pattern structure, as well as to 

facilitate comparisons with previous findings already reported in the 

literature. 
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