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We find that the generally accepted security criteria are flawed for a whole class of protocols for quantum
cryptography. This is so because a standard assumption of the security analysis, namely that the so-called
square-root measurement is optimal for eavesdropping purposes, is not true in general. There are rather large
parameter regimes in which the optimal measurement extracts substantially more information than the square-
root measurement.
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I. INTRODUCTION

All practical implementations of protocols for quantum
cryptography have to deal with the unavoidable noise in the
transmission lines, and possibly the intervention of an eaves-
dropper, that degrade the correlations in the raw-key data of
the communicating parties, namely Alice and Bob. They then
face a double task: First, they must establish how much Eve,
the evildoing eavesdropper, can possibly know about their
data; and second, they must extract a secure noise-free key
sequence from the insecure noisy raw data.

The second task of key generation is solved by exploiting
the findings and methods of classical information theory, in
particular the lesson of the seminal work by Csiszár and
Körner [1]. They demonstrated that Alice and Bob can al-
ways generate a secure key, provided that the mutual infor-
mation between them exceeds the mutual information be-
tween either one of them and Eve.

The first task of determining how much Eve knows thus
amounts to figuring out the maximally attainable mutual in-
formation between her and either Alice or Bob. There are
two different, but equivalent, lines of reasoning that one can
choose to follow, depending on how one pictures the com-
munication between Alice and Bob, and Eve’s tampering
with it.

One scenario is that of the 1984 protocol by Bennett and
Brassard (BB84 [2]), in which Alice sends quantum-
information carriers to Bob through an appropriate, authen-
ticated quantum channel. Eve intercepts each carrier in trans-
mission and keeps an imperfect copy, obtained by operating
a quantum-cloning machine, before forwarding the carrier to
Bob. The quest is then for the best cloning machine—best
for this purpose—in conjunction with the best way of ex-
tracting information from the clones.

The other scenario is that of the 1991 protocol by Ekert
(E91 [3]), in which a source distributes entangled pairs of
carriers to Alice and Bob, who make statistically independent
measurements on them, thereby effectively establishing a
quantum channel between themselves. Eve is given full con-
trol of the source. She keeps a quantum record of what is
sent in the form of auxiliary quantum systems, usually
termedancillas, that she entangles with the paired carriers.
Here the quest is for the best ancilla states in conjunction
with the best way of extracting information from the ancillas.

Because of the lack of superior alternatives, the standard
analysis of protocols of BB84 type invokes unproven as-
sumptions about optimal cloning machines; see, for example,
Refs.[4,5] and the recent paper by Acínet al. [6]. Likewise,
there is a common assumption in the analysis of E91-type
protocols, namely that the so-called square-root measure-
ment(SRM [7]) is optimal for Eve’s processing of the ancil-
las; see the recent paper by Lianget al. [8], for example. The
established equivalence of the BB84 and E91 scenarios[9],
and the fully equivalent security criteria thus found, is strong
circumstantial evidence that these assumptions—about Eve’s
best intercept strategy and her best way of processing the
ancillas, respectively—are equivalent as well.

It is the objective of this article to demonstrate that the
SRM isnot optimal for a whole class of quantum cryptogra-
phy protocols, the tomographic protocols of Refs.[8,10]; it
may very well not be optimal for other protocols, too. The
equivalence stated above then implies the well-founded con-
jecture that there are also better intercept strategies than
those usually regarded as best. We offer some remarks about
the connection of this work with intercept strategies in the
Appendix.

II. THE PYRAMID OF ANCILLA STATES

We build on the work of Ref.[8], where the protocols are
phrased as generalizations of the E91 scenario toN letter
alphabetssN=2,3, . . .d. The source controlled by Eve would
emit pairs of qubits forN=2, pairs of qutrits forN=3, . . .,
and pairs ofqunits in the general case. After everything is
said and done, Eve knows that her ancilla is in the state
described by ketuEkl if Alice obtains valuek for her qunit of
the respective pair(with k=0,1, . . . ,N−1). Since there is a
common(real) angle between every pair of ancilla states,

kEkuEll = l + s1 − lddkl = H1

l

if k = l

if k Þ l
J = r0 − r1 + Nr1dkl,

s1d

the N ancilla kets can be regarded as the edges of an
N-dimensional pyramid[11]; see Fig. 1 for an illustration of
the case ofN=3. The average ancilla ket
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uHl =
1

N
o
k=0

N−1

uEkl s2d

points from the tip of the pyramid to the center of itssN
−1d-dimensional base[12], so that the length ofuHl,
ÎkHuHl=Îr0, is the height of the pyramid. The pyramid vol-
ume is given bys1/N! dsNr0d1/2sNr1dsN−1d/2; it is largest for
l=0, r0=r1=1/N when the pyramid is a corner of an
N-dimensional cube.

Geometry restrictsl to the range −1/sN−1dølø1,
where both limits correspond to degenerate pyramids that
have noN-dimensional volume. Forl=1, we have a single
ancilla state and the pyramid is just a line, a pyramid of unit
height and no base; and forl=−1/sN−1d we have linearly
dependent ancilla kets that span ansN−1d-dimensional sub-
space, so that the pyramid has no height. In the context of
quantum cryptography, however, only non-negativel values
are relevant, for whichr0ù r1. In other words, the pyramids
of interest are acute, in the sense that the common angle
between each pair of their edges is acute.

Alice gets eachk value with probability 1/N, so that

r =
1

N
o
k=0

N−1

uEklkEku s3d

is the statistical operator for Eve’s ancillas. The height ket
uHl of Eq. (2) is the eigenket ofr to the eigenvaluer0 and all
kets orthogonal touHl are eigenkets to thesN−1d-fold de-
generate eigenvaluer1=r0−l=s1−ld /N.

The N kets uEkl− uHl, each of lengthÎ1−r0=ÎsN−1dr1,
point from the center of the ancilla-pyramid base to its cor-

ners. They span thesN−1d-dimensional subspace to eigen-
value r1.

III. WHICH EDGE OF THE PYRAMID?

A. The pretty good square-root measurement

Eve extracts information out ofr with the aid of a gener-
alized measurement, a positive-operator-valued measure
(POVM), specified by a decomposition of the identity in the
N-dimensional ancilla space intoM non-negative operators,

1 = o
m=0

M−1

Pm, Pm ù 0. s4d

The mutual information between Alice and Eve,

I = o
n=0

N−1

o
m=0

M−1

pnmlogN
pnm

pn·p·m
, s5d

is then computable from the joint probabilities

pnm=
1

N
kEnuPmuEnl s6d

and their marginals

pn· = o
m=0

M−1

pnm=
1

N
, p·m = o

n=0

N−1

pnm. s7d

For convenient normalization, the logarithm in Eq.(5) is
taken to baseN, so thatI ø1 with the maximum achieved for
uniform perfect correlations, that is, forM =N and pnm
=dnm/N.

The POVM for the SRM is specified by settingM =N and

Pm = sNrd−1/2uEmlkEmusNrd−1/2 ; uemlkemu s8d

with

ueml = suEml − uHld
1

ÎNr1

+ uHl
1

ÎNr0

. s9d

The resulting joint probabilities are

pnm=
1

N
ukEnuemlu2 =

1

N
fh1 + sh0 − h1ddnmg, s10d

where

Îh0 − Îh1 = ÎNr1 andh0 + sN − 1dh1 = 1. s11d

We note that the SRM thus associated with the ancilla pyra-
mid happens to be a standard von Neumann measurement,
not a POVM proper, because the projectors in Eq.(8) are
pairwise orthogonal, trhPmPm8j=dmm8. The mutual informa-
tion acquired by performing the SRM,

I sSRMd = h0logNsNh0d + sN − 1dh1logNsNh1d, s12d

is shown in Fig. 2 forN=2,3,5,10,20,100.

B. Better than pretty good

Whereas the SRM is known to be “pretty good” as a rule
[13], it is also known that it does not always optimize the

FIG. 1. Pyramid geometry forN=3. The ancilla ketsuEkl, of
unit length, are the edges of the ancilla pyramid. Its shape is deter-
mined by the parameterl of Eq. (1), the cosine of the acute angle
between any pair of edges. The height ketuHl of Eq. (2) points from
the tip of the pyramid to the center of its base; its length isÎr0. The
kets uEkl− uHl, of lengthÎ1−r0, point from the center of the pyra-
mid base to its corners. The SRM ketsuekl of Eq. (9), of unit length,
define the SRM pyramid, which has right angles between its edge
kets. The SRM pyramid is wider than, but not as high as, the ancilla
pyramid.
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mutual information. In particular, Shor has pointed out that
there are superior POVMs forN=3 and somel,0, and has
conjectured that there is also al.0 range in which other
POVMs could be better[14]. Shor’s explicit example for
l,0 is interesting in its own right but does not seem to have
any bearing on the security analysis of quantum-
cryptography protocols. By contrast, thel.0 examples re-
ported below are of immediate relevance, as they invalidate,
at least partly, established security criteria.

Consider the one-parametric family of POVMs defined by
M =N+1 andPm= uēmlkēmu with

uēml = suEml − uHld
1

ÎNr1

+ uHl
t

ÎNr0

, for m, N,

uēNl = uHlÎ1 − t2

r0
, s13d

where 0ø tø1. The SRM kets of Eq.(9) obtain for t=1.
For t,1, the measurement pyramid, which has the kets

uē0l , . . . ,uēN−1l for its edges, has the same base area as the
SRM pyramid, but is of smaller height and therefore obtuse.
Since the angle between any such givenuēml and the ancilla
kets uEnl with nÞm increases ast decreases fromt=1, the
sector ofm,N will have increased mutual information. But
this comes at a price: When Eve findsuēNl~ uHl, she has no
clue about Alice’s value; the sectorm=N is inconclusive and
provides no contribution at all to the mutual information.
Accordingly, the optimal choice oft is such that the increase
of mutual information in them,N sector is balanced against
the increase in the probability of the inconclusive result; this
probability equalss1−t2dr0.

For t=Îr1/ r0, the POVM specified by Eq.(13) is the
“measurement for unambiguous discrimination”(MUD [7]),
for which kEnuēml=0 if nÞm,N, so that there are perfect
correlations, and thus full mutual information, in them,N
sector. The cost for this perfection is, however, so high that

the MUD never maximizes the mutual information, although
it can outperform the SRM. The optimal choice fort is al-
ways in the rangeÎr1/ r0, tø1. This observation is illus-
trated in Fig. 3 forN=10 and various values ofl, including
l=0.772 76, for which the MUD and the SRM give the same
mutual information. The plot shows only thet range of in-
terest, conveniently reparametrized in terms ofT, a scaled
version oft, introduced in accordance with

t = 1 −T + TÎr1/r0. s14d

Thus,T=0 refers to the SRM, andT=1 to the MUD.
The mutual information for the POVMs specified by Eqs.

(13) is given by

IsTd = h̄0logN
Nh̄0

h̄0 + sN − 1dh̄1

+ sN − 1dh̄1logN
Nh̄1

h̄0 + sN − 1dh̄1

,

s15d

where

h̄0 = sÎh0 − TÎh1d2, h̄1 = s1 − Td2h1 s16d

are theT-dependent versions ofh0, h1. For ancilla pyramids
with a large volume, 0,l, s3−4/Nd / sN−1d;L, the maxi-
mum of IsTd is obtained forT=0, which is to say that the
SRM is optimal in this range of smalll values. By contrast,
for ancilla pyramids with a rather small volume,L,l,1,
the maximum ofIsTd is reached forT=1−sÎh0/h1−1d / sN
−2d, that is, when the arguments of the two logarithms in Eq.
(15) equalN−1 and 1/sN−1d, respectively. Then, the mea-
surement pyramid is obtuse.

In summary, we have

FIG. 2. Mutual information between Alice and Eve if Eve per-
forms the square-root measurement. The curves refer toN
=2,3,5,10,20, and100, and the plot covers the range 0ølø1
that is relevant for quantum cryptography.

FIG. 3. Mutual information for the POVM of Eq.(13) relative to
that of the SRM. ForN=10, the plot shows the ratio ofIsTd / I sSRMd

as a function ofT for l=0.9,0.7,0.5,0.3(solid lines) and for l
=0.8,0.6,0.4(dashed lines). The left endsT=0d refers to the SRM,
the right endsT=1d to the MUD. For l=0.772 76 (dash-dotted
line), both give the same mutual information.
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Imax; max
T

IsTd

=5I sSRMd of Eq .s12d if 0 ø l ø L =
3N − 4

NsN − 1d
,

s1 − ld
N − 1

N − 2
logNsN − 1d if L ø l ø 1.

s17d

This is our central result.
For l values that exceed the threshold value ofL substan-

tially, the optimal POVM from the family(13) gives signifi-
cantly more mutual information than the SRM. This can be
seen by plotting the ratioImax/ I

sSRMd as a function ofl; see
Fig. 4. Thel→1 limit,

Imax

I sSRMd → N/2

N − 2
lnsN − 1d asl → 1, s18d

shows that the optimal POVM provides much more informa-
tion than the SRM ifN is large, and then the range 0
øl,L.3/N is small in addition.

IV. SUMMARY AND DISCUSSION

In summary, there are POVMs that outperform the SRM
for l.L, and we know the optimal POVM of the sort de-
fined by Eq.(13) quite explicitly. We are, in fact, quite sure
that it is the global optimum because an extensive numerical
search failed to find any better POVM.

A first search covered a large class of POVMs that respect
the geometry of the ancilla pyramid: We took parametert to
be complex; we rotated around the symmetry axis specified
by ket uHl; and we considered weighted sums of several such
POVMs, with differentt parameters and different rotations.
For all of the manyN andl values, for which the numerical
investigation was performed, the optimal POVM was always
of the kind described above.

A second search, not restricted by geometrical or other
constraints, confirmed these findings. It used the numerical
method of Ref.[15], which is a fix-point iteration that con-

verges monotonically toward the optimal POVM.
We note further that the large relative difference shown in

Fig. 4 occurs where bothImax andI sSRMd are small, and so the
absolute difference is rather small(see the figure in Ref.
[16]). Therefore, the SRM threshold values given in Table I
of Ref. [8] are quite good approximations for the true thresh-
old values, as shown by the numerical values in Table I.

The “disturbance” values listed in this table are the quan-
tities denoted byDd+1

ind in Ref. [5] and by 1−b0 in Ref. [8],
respectively. There is no difference forN=2, of course, but
for all N.2 the true threshold is noticeably lower than the
SRM threshold. In addition to this shift of the threshold,
there is also a reduced efficiency inside the Csiszár-Körner
regime (below the threshold) and this must be taken into
account when extracting the secure key sequence from the
noisy raw data. Fortunately, however, almost all of the prac-
tical quantum cryptography scheme presently implemented
use qubitssN=2d, and then the SRMis optimal. Also, the
optimal POVMs have no bearing on the threshold for classi-
cal advantage distillation[6,10], because the SRM remains
optimal in the relevant limit, even for coherent eavesdrop-
ping attacks[17].

In the spirit of Shor’s investigation of obtuse pyramids,
the eavesdropping procedure presented here can be viewed
as a quantum communication channel, in which Alice trans-
mits nonorthogonal and equally distributed signal states to
Eve. The amount of information about the sequence of states
sent by Alice, maximized over all possible POVMs, is then
the accessible informationof this quantum channel. There-
fore, the maximal mutual information(17) between Alice
and Eve gives us also this accessible information for 0øl,
which supplements, forN=3, Shor’sl,0 result.
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APPENDIX: INTERCEPT ATTACKS

Here are a few remarks about the connection with inter-
cept attacks on qunits sent through an authenticated quantum
channel. We make use of the notational conventions of Ref.
[8] without explaining them anew, and refer to Eq.(12), say,
of Ref. [8] by ([8]-12).

The geometry of the unnormalized ancilla statesuẼkl
smdl is

completely determined, for a givenm value, by the inner
products of Eq.([8]-6), and Eq.([8]-7) states the transforma-
tion law between ancilla states to differentm values. It fol-

lows from this equation that thek index of uẼkl
smdl is analo-

gous to that inum̄kl, and thel index to that inumll. Therefore,

it is expedient to regard theuẼkl
smdl’s as the kets of two-qunit

states that are superpositions of basis kets of theum̄kmll kind.
They then acquire the strikingly simple explicit form

uẼkl
smdl = uc̄ldkl

a
ÎN

+ um̄kmll
b

N
, sA1d

where

c̄ =
1

ÎN
o

k

um̄kmkl sany m valued sA2d

is the maximally entangled state that is conjugate toucl of

Eq. ([8]-2). This ansatz foruẼkl
smdl is consistent with Eq.

([8]-6) if the complex amplitudesa,b obey

Ua +
1

N
bU2

= b0 −
N − 1

N
b1, ubu2 = Nb1, sA3d

but no other restrictions apply, so thata=Îb0−b1, b
= iÎNb1 is a permissible choice.

The entangled pure stateuCl of Eq. ([8]-5) that is pre-
pared by Eve is then of the compact form

uCl = uc12c̄34la + uc13c̄24lb, sA4d

where qunit 1 is sent to Alice, qunit 2 is sent to Bob, and
qunits 3 and 4 make up Eve’s ancilla. We note that this is the
generic form of uCl becauseall alternatives are obtained
from this uCl by unitary transformations on the ancilla.

Now, the “asymmetric universal quantum cloning ma-
chines” [18], generalizations of the symmetric ones intro-
duced by Bužek and Hillery[19], that are employed in Refs.
[4,5] for the analysis of intercept attacks on the qunit in
transmission from Alice to Bob, are characterized by a four-
qunit state of the form(A4). The resulting states of the clone-
anticlone pair are thus fully analogous to the ancilla states

uẼkl
smdl in Eq. (A1). Of those, the ones withkÞ l are orthogo-

nal among themselves and orthogonal to those withk= l, and
the latter form the pyramid of ancilla states described in Sec.
II. Accordingly, Eve can extract more information if she ap-
plies the optimal POVM of Sec. III B to the clone-anticlone
pair, rather than submitting them to the usual SRM.
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