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Abstract

A mathematical model is developed to describe the processes of avascular tumour growth. The
tumour is treated on a macroscopic perspective, in which the spatio-temporal dynamics of
cell concentrations are modelled based on reaction-diffusion dynamics and mass conservation
law. Novel features of the model include the dependence of the cell proliferation rate on the
growth inhibiting factors secreted by necrotic cells and the incorporation of random variation
to the mitotic rate and nutrient supply. It is assumed that these random components play an
important role in the tumour’s asymmetric growth. With the aid of computational technology,
numerical techniques are used to investigate the growth patterns of the proliferating, quiescent
and necrotic cell densities in response to changes in various model parameters. The biological
and clinical implications of these results are discussed.

1 Introduction

The development of a primary solid tumour begins with a single normal cell becoming trans-
formed as a result of mutations in certain key genes. This transformed cell differs from a normal
one in its escape from the body’s homeostatic mechanisms, leading to inappropriate prolifera-
tion and a tendency to override apoptosis. An individual tumour cell has the potential, over
successive divisions, to develop into a cluster of tumour cells. Further growth and proliferation
leads to the development of an avascular tumour consisting of approximately 106 cells which
feed on oxygen and other nutrients present in the local environment.

After the early stages of growth, the avascular spheroids consist structurally of an inner zone
of necrotic cells (dead due to lack of nutrients) and an outer zone of living cells. This outer
zone can be further divided into a layer largely composed of quiescent cells and a layer largely
composed of proliferating cells, although dead cells are also found adjacent to both quiescent
and proliferating cells (Sutherland, 1988). At this stage the spheroids tend to reach a finite
size of at most a few millimetres in diameter (Folkman and Hochberg, 1973). In this state of



“dynamic equilibrium” there is a balance between mitosis and the death and disintegration of
tumour cells into waste products, mainly water.

Mechanical effects from the surrounding environment as well as that generated internally
by cellular growth have been shown to play an important role in regulating tumour growth.
Evidence that cell stress affects proliferation is provided by Helmlinger et al. (1997). In
culturing spheroids in gels of different stiffness, it was demonstrated that the stress exerted on
tumour cells by their surroundings affects its equilibrium size.

In recent years several mathematical models, using different approaches, have been devel-
oped to describe the features of avascular tumour growth. Following experimental observations
that the transitions between layers of tumour cells are more likely to be gradual than sharp
(Hystad and Rofstad, 1994), some of these models have used a continuum, macroscopic frame-
work in one space dimension (Ward and King, 1997, 1999). Sherratt and Chaplain (2001) have
examined the implications of incorporating random cell movement into the continuum of live
tumour cells on avascular tumour growth.

A common feature of the models described above is that they have assumed that the tumour
cells are of the same type for the simplicity of closing the system of mass balance equations.
This approach does not permit the investigation of the chematic effects that different clones of
cells (for example, cells with different expression of the tumour suppressor gene p53) have on
the morphology of the vascular environment, and hence, the nutrient supply.

In this paper, we attempt to develop a mathematical description of avascular tumour growth
in vivo on a continuum model, taking into account the random effects that cellular stress and
the disparate clones of cells may have on the mitotic rate and nutrient level respectively. We
also include the effects of mitotic inhibitors based on the experimental observation that growth
saturation in multicellular tumour spheroids is regulated by factors produced, released, or
activated during the process of necrosis (Freyer, 1988).

2 Model Formulation

The mathematical model that we describe is essentially based on the modelling framework
presented in Sherratt & Chaplain. As can be seen from the schematic diagram presented in
Figure 1, the in vivo tumour is treated as a continuum of proliferating, quiescent and necrotic
cells, whose densities are denoted by p(x, t), q(x, t) and n(x, t) respectively, where t and x are
the time and the one dimensional spatial coordinate respectively.
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Figure 1: A schematic diagram of the interaction between the proliferating, quiescent and
necrotic cell densities

In the model developed by Sherratt & Chaplain, the mitosis rate g(c) of the proliferating
cells is assumed to be proportional to the concentration c(x, t) of nutrients and limited by the
crowding effects of the total cell population. The nutrients is assumed to pass through the
surface of the tumour and diffuse into the interior through the intracellular space sufficiently
fast enough that the local nutrient concentration c(x, t) is quasi steady. In the direction of the
core of the tumour, some proliferating cells with limited access to the intracellular nutrients
become quiescent at rate f(c) and some quiescent cells which are totally deprived of nutrients
undergo necrosis at rate h(c).

In order to include the phenomenological factor of contact inhibition in the random motility

of tumour cells, the overall viable cell flux
∂

∂x
(p + q) as illustrated in Figure 1 is fractionated

evenly between the proliferating and quiescent cells densities. This is based on the assumption
that the two cell populations have equal motility. The movement terms of the proliferating and

quiescent cells are in turn given by
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With mass conservation applied to the cells, the set of Sherratt and Chaplain’s equations
governing the evolution of p(x, t), q(x, t), n(x, t) and c(x, t) are presented in turn below.
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c =
c0γ

γ + p
[1− α (p + q + n)] (4)

Equation (4) represents the access of nutrient from underlying tissue. By assuming that
the effectiveness of this source term decreases with overall cell density, the parameter α ∈ (0, 1]
represents a constant of proportionality and c0 is the nutrient concentration in the absence
of a tumour cell population. It is assumed that the cells are completely closed-packed at the
maximum non-dimensionalised cell density of 1. Moreover, the functions f(c) and h(c) are
assumed to be decreasing with f (+∞) = h (+∞) = 0.

To render the description of the dynamics of tumour expansion more physically realistic, the
model in the present paper includes the effects of mitotic inhibitors secreted from the necrotic
site (as described by Freyer) in a growth retardation term of I(n), assumed to be proportional
to the necrotic cells density. In contrast to the model developed by Sherratt and Chaplain,
the experimentally observed Gompertz growth rate is used in place of the previously employed
linear representative mitosis term in the formulation of g(c). Consequently, equation (1) may
be modified and expressed as
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The system of equations (2)–(5) are discretized using forward differencing for time and
central differencing for space. The resulting system of finite difference equations is given by
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and rj
i = pj

i +qj
i . ∆t and ∆x refers to the time intervals and space steps respectively in the finite

difference scheme. In the above set of finite difference equations, the superscript represents the
time level and the subscript represents the space position.



The experimental fit for the average cell velocity in the form of the Gamma distribution
(Balazs et al., 2000) led us to use a rescaled Gamma distribution term vp, to model the random
dependence of the cell proliferation rate on the cellular stress. The incorporation of the random
variation in the mitosis rate due to cellular stress is according to the postulate that moderate
stress promote cell division whereas low and high stress downregulate cell proliferation and
promote cell death. In addition, cell velocity is assumed to correlate with the tumour expansive
forces, which then contributes to the cellular stress. Hence equation (6) becomes
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The tumour is also assumed to contain several functionally-disparate clones of tumour cells,
so that there exists the random collapse and regrowth of blood vessels in the tumour. In order
to simulate the alternating levels of nutrients in parallel with this random variation in the
tumour vascular environment, we incorporate a rescaled Normal distribution random term vc

to the quasi steady nutrient term.

Hence equation (9) becomes
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To close the model, the following boundary and initial equations are proposed as in the
model developed by Sherratt and Chaplain.

Boundary conditions at x = 0 and x = 210:

∂p

∂x
= 0 (12)

∂q

∂x
= 0 (13)

Initial conditions for x ∈ [0, 210]:

q (x, 0) = n (x, 0) = 0 (14)

p (x, 0) = e−0.1x (15)

In the numerical solution of the finite difference equations (7), (8), (10) and (11), the
parameter values as given in the model developed by Sherratt and Chaplain, are γ = 10, c0 = 1
and α = 0.8, with f(c) = 1

2
[1− tanh (4c− 2)], g(c) = 0.5e0.5c, h(c) = 1

2
f(c) and I(n) = 1

2
n.



A set of random numbers for vp from a Gamma distribution χ ∼ Gamma(0.5, 1) is generated
from Microsoft EXCEL 2000 before the computational process is begun. Random numbers for
vc from a Normal distribution with mean 0 and variance 0.04 are similarly obtained.

In solving the finite difference equations, ∆t and ∆x are set at 0.1 and 1 respectively. The
code was written in Fortran and compiled and run on a Pentium 4 system. Computation was
stable for the chosen set of of parameters and convergence was rapid.

3 Results and Discussion

The present model is solved for the set of parameters, functions, boundary and initial values
mentioned above. Values of α values ranging from 0.05 to 0.8 were used in the simulation runs.
A range of linear, quadratic and exponential functional forms for I(n) were also tested. From
the computational experiments, it appears that the most reasonable set of results was obtained
when I(n) was chosen to be a linear function, such as I(n) = 1

2
n. Due to space constraints,

only results of the simulations for cases when α = 0.05 and α = 0.8 are presented and discussed
here.

The results presented in Figure 2 show that the symmetry of the tumour cell distribution
as observed in the model developed by Sherratt and Chaplain is broken and there is now an
asymmetric spatial distribution of an advancing pulse of proliferating cells (p), with a band
of quiescent cells (q) and a necrotic core (n) behind this in a radial direction at time steps
t = 0, 2, 4, ..., 14. The predicted tumour cell distribution agrees well qualitatively with the
experimental observations recorded by Dorie et al. (1982), which represented the internalisation
of inert microspheres in multicellular spheroids.

Figure 2 demonstrates a local maximum buildup of proliferating cell density with a corre-
spondingly lower concentration of quiescent and necrotic cell densities at the leading edge when
t = 6. We note that as time evolves, the buildup densities of the proliferating and quiescent
cells decreases whilst that of the necrotic cells increases. The space intervals between buildups
of proliferating cell density is also observed to be shortened. It can be seen that with time,
the outer rim of the tumour is becoming less proliferative while more and more cells undergo
necrosis, resulting in a gradual deceleration of tumour growth.

Importantly, Figure 2 illustrates that the diffusion limited nutrient supply and the pro-
duction of mitotic inhibitors as assumed in the model, plays a role in the observed tumour
regression. Nevertheless, it is unlikely that the random pulses of high and low spatial evolution
of tumour cell densities would be limited to these two factors, highlighting the importance of
the random variation in the mitosis rate and nutrients level impacting its asymmetric growth.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200

P
r
o
l
i
f
e
r
a
t
i
n
g
 
c
e
l
l
s
,
 
p

space, x

t=2

t=14

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200

P
r
o
l
i
f
e
r
a
t
i
n
g
 
c
e
l
l
s
,
 
p

space, x

t=2

t=14

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200

Q
u
i
e
s
c
e
n
t
 
c
e
l
l
s
,
 
q

space, x

t=2

t=14

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200

Q
u
i
e
s
c
e
n
t
 
c
e
l
l
s
,
 
q

space, x

t=2

t=14

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

N
e
c
r
o
t
i
c
 
c
e
l
l
s
,
 
n

space, x

t=2

t=14

(c)

Figure 2: A numerical solution with α = 0.8, plot-
ted as a function of space at times t = 0, 2, 4, ..., 14
for (a) Proliferating cells, (b) Quiescent cells, and (c)
Necrotic cells.
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Figure 3: A numerical solution with α = 0.05, plot-
ted as a function of space at times t = 0, 2, 4, ..., 14
for (a) Proliferating cells, (b) Quiescent cells, and (c)
Necrotic cells.



Figure 3 shows that as α is decreased, and hence, driven forward by the increased access
of nutrient from the surrounding tissues, a larger proportion of the tumour cells proliferate, so
that the layer of live tumour cells thickens and the necrotic core diminishes in size. By t = 6,
we again see a build up of tumour cells at the leading edge, more pronounced than in Figure
3. With time, the buildup of tumour cell densities is again downregulated with no significant
increase in the tumour expansion rate (This can be noticed by comparing the locations of the
tumour surface).

In the current model, as can be observed from Figure 3, avascular tumour growth is shown
to reach saturated growth in the absence of vascularisation. This is clearly more reasonable and
realistic than the model proposed by Sherratt and Chaplain in which the simulated increased
nutrient supply from the surrounding tissues is observed to be sufficient to keep all the tumour
cells proliferating, with no entry into quiescence.

The tumour invasion rate is observed to be unaffected in the presence of a simulated rich
supply of nutrient. Results from the present model indicate that tumour growth is influenced
not only by the availability of nutrients, but also random intracellular stress effects on cell
proliferation rate, vp, as well as random variation in the nutrient level, vc. Thus, when designing
clinical intervention strategies to control tumour growth, perhaps one should consider the effects
of intracellular compression on cell proliferation as these may have an impact on the overall
mitotic rate.

4 Conclusion

The model presented in this paper focusses on specific aspects of tumour growth. The impor-
tance of random variation as a mechanism of asymmetric growth is obvious from these results.
This in turn has made the model more realistic by considering a heterogeneous intracellular
environment of the tumour. The qualitative results from the present model has provided new
insights into some of the more complex physiological processes in tumour development. This
model, however, may be generalised to allow for stochastic effects on the mitotic rate and nutri-
ent level. The use of stochastic partial differential equations in such models is currently being
considered by the authors. It is hoped that the results from the present model will be able to
provide clinical practitioners with valuable information on the intracellular stress mechanisms
and the spatio-temporal heterogeneous vascular environment that may control the develop-
ment of solid tumours. These could represent future therapeutic targets to be manipulated in
managing the disease.
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