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Abstract

We derived the entanglement witness (EW) in Ising model for both the magnetic

susceptibility and specific heat capacity of a spin glass. The magnetic susceptibility

EW curve for LiHoxY1−xF4 is formulated and compared with the existing data of

LiHo0.167Y0.833F4 to identify the entangled and unentangled regions. The EW for

the magnetic susceptibility was found to cut the cusp of the experimental result at

a critical temperature of about 0.2669 K. The specific heat capacity EW curve for

CuxMn is formulated and compared with the existing data of Cu0.279Mn to identify

the entangled and unentangled region for the various applied magnetic field B. With

increasing B, the critical temperature where the EW curve intersects the experimental

data, increases as well.



1 Introduction

One of the long standing open question in the condensed matter physics is whether

a spin glass has a new phase transition at certain critical temperature. Basically, a

spin glass consists of anti-ferromagnetic and ferromagnetic spins which are randomly

distributed in a non-magnetic material such as copper and gold. Due to the random

positions of the spins, the alignment of the spins will tend to align in the configured

energy of the ferromagnet or anti-ferromagnet depending on the neigboring spins.

It is because of this nature of random positioning and usually at unequal distance

apart that the frustration in the interaction occurs. These two features - disorder and

frustration - form the very foundation of what is termed spin glass [1, 2, 3, 4, 5, 6, 7]. It

is well known that liquid and gas contains atoms or molecules that move randomly and

without any order in space. It is precisely because of this that statistical mechanics

is able to describe the properties of liquid and gas theoretically with statistics and

probability due to their symmetry nature. In contrast, spin glass do not contain

atoms that move around in the alloy randomly. As a matter of fact, it is believed to

be quenched or fixed in position over a time scale greater than the age of the universe.

As a result, symmetry is broken and the knowledge of statistical mechanics is not able

to fully describe the physics of a spin glass.

Experimental studies have shown that a typical spin glass exhibits a cusp in the

magnetic susceptibility at certain critical temperature for low applied magnetic field.

As most of these alloys contain a few percent of a magnetic element that is randomly
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distributed in the non-magnetic host, the critical temperature at which this cusp

appears varies according to the level of impurity concentration [8]. Examples of such

diluted alloys are copper and manganese, Cu1−x Mnx [9] or gold and iron, Au1−x

Fex [10]. Other alloys with insulation and conduction properties which found to be

spin glass are europium strontium sulfur Eux Sr1−xS [11] and lanthanum gadolinium

aluminum La1−x Gdx Al2 [12]. In general, all thermodynamic functions should in some

way behave singularly when a phase transition has occurred [7, 13]. Therefore, the

cusp in the magnetic susceptibility may suggest the occurrence of a phase transition.

The effect of the sharp cusp becomes a broad maxima when a magnetic field of about

100 G is applied [10, 14, 15]. Besides being field dependent, some spin glasses are

found to be frequency dependent [9, 16]. In contrast to the cusp in the susceptibility,

the specific heat capacity of Au0.92 Fe0.08 [17] and CuMn [18] do not exhibit any sharp

transition or singularity. Only a broad, smooth and rounded maximum is observed.

In addition, the rounded maximum does not match the transition temperature of the

magnetic susceptibility.

Based on the experimental results, models like the Edwards-Anderson (EA) [19]

and Sherrington-Kirkpatrick (SK) [20] have been formulated in an attempt to under-

stand the physics behind spin glass. The coupling in the EA model uses a random set

of bonds that is usually taken from a Gaussian distribution. The random couplings

represent site disorder and random Ruderman-Kittel-Kasuya-Yosida (RKKY) cou-

plings [21, 22, 23]. Moreover, an asymmetric cusp is produced for both the magnetic

susceptibility and specific heat capacity. Results by Fischer [24] have shown that the
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theoretical specific heat does not always fit the experimental one. It is only true for

low temperature linear dependence for spin S =
1

2
. In a bizarre manner, the SK

model which manages to produce a cusp in the magnetic susceptibility and specific

heat capacity, produced unphysical negative entropy. Due to the instability of the

SK solution, Almeida and Thouless (AT) [25] divide the phase diagram for a spin

glass into stable and unstable regions a line which is later named as the AT line. The

instability of the solution was later found due to the treatment of all the replicas as

indistinguishable. The unphysical negative entropy was later removed with the use of

a replica symmetry breaking (RSB) scheme by Parisi [26, 27, 28, 29, 30]. Even then

the method was found to be marginally stable. Despite the fact that different models

and theories have been used to understand the physical nature of spin glass, there

still remain many unaccounted experimental results which require a better theory to

explain it. As all these theories have treated the spin glass in a classical sense, the

quantization of the spins of the impurities are not taken into account [16]. However,

the mathematical tools and new insights obtained in the study of spin glass were

found to be useful in other areas of complex optimization problems [31], biological

problems [32] and condensed matter [6, 5, 33]. In recent years, a quantum spin glass

model of the form LiHoxY1−x F4 has been extensively studied both experimentally

and numerically [34, 35, 36, 37, 38, 39]. The magnetic Ho3+ ions in these materials

behave like effective Ising spins while the yttrium Y3+ are non-magnetic ions. With

an x concentration of ≤ 0.25, a spin glass phase is found to exist. Nevertheless, it

still remains as an open question of whether a spin glass or an antiglass spin phase
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exists at lower concentration.

In the early development of quantum mechanics, the Einstein, Podolsky and Rosen

[40] paradox has given rise to the notion of nonlocal realistic description of nature,

bringing the idea of entanglement to the forefront. Recently, entanglement has been

identified as a valuable resource for quantum information processing and it is used

extensively in the study of phase transition for condensed matter physics. Moreover,

the study of entanglement in both quantum information science and condensed mat-

ter physics forms an interesting connection between them [41, 42, 43, 44, 45, 46, 47].

Since entanglement described the quantum correlations in a many body system, one

raises the question of whether entanglement can be quantified at the macroscopic

level [48, 49]. Indeed, many studies have been carried out in identifying the various

experimental measurements used for the detection of entanglement in macroscopic

system. This quantity is called entanglement witness (EW). Studies show that some

thermodynamical properties like magnetic susceptibility, heat capacity and internal

energy can be used as EW to detect entanglement between the individual particles

of a solid [50, 51, 52]. The advantage of using such EW is that the measurements are

applied at the macroscopic level. Some recent studies have used magnetic suscepti-

bility and heat capacity as EW to quantify between the entangled and non-entangled

regions by matching the experimental results of materials with the theoretical EW

[50, 51, 53, 54, 55, 56, 57, 58]. Even though such studies have matched the EW

successfully with the materials studied, little work has beeen carried out for spin

glass. Moreover, the study of entanglement witness in spin glass is important due to
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the following reasons: (i) to find out whether entanglement can be used as an order

parameter to describe the quantum phase transition; (ii) to determine the limits of

entanglement in terms of size for a spin glass; (iii) to find out if entanglement is a ro-

bust measurement in the presence of temperature. With this motivation, we attempt

to use the EW for magnetic susceptibility and specific heat capacity in quantifying

the entangled region from the non-entangled one for some known experimental results

of the glassy materials.

The paper is organized as follows. We begin in subsection 2.1 by deriving the EW

for magnetic susceptibility. The experimental results of the glassy materials are then

plotted with the theoretical EW for the magnetic susceptibility. These results are

presented and discussed in subsection 3.1. The same is carried out for the EW of the

specific heat capacity in subsection 2.2 and the results discussed in subsection 3.2. In

Sec. 4, we summarize our results and indicate some possible future directions.

2 Theoretical Formulation of Entanglement Wit-

ness

2.1 Magnetic Susceptibility

In this subsection, we follow the work of Wieśniak et al. [50] in deriving the mag-

netic susceptibility as a macroscopic entanglement witness. We briefly mentioned the

derivation for the magnetic susceptibility here as the full work can be found in [50].
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For an arbitrary state of spin S particle, one has

〈(Sx)2〉+ 〈(Sy)2〉+ 〈(Sz)2〉 = S(S + 1) (1)

and

〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2 ≤ S2 (2)

where Sx =
h̄

2
σx, Sy =

h̄

2
σy and Sz =

h̄

2
σz. In general, the Hamiltonian H = HS+HB

can be used to describe any system as HS is the spin Hamiltonian of a composite

system consisting of N spins of an arbitrary spin length s in a lattice and HB =

B
N∑
i=1

Sia. The Sia(a = x, y, z) refers to an ath component of the ith spin operator.

The inclusion of the second term is to study its magnetic response properties, i.e. the

solid is put in a weak magnetic field. However, the applied field B = 0 is used in this

study. Assuming that the density matrix ρ of the system is separable,

ρ =
∑

Wnρ
1
n ⊗ ρ2n ⊗ · · · ⊗ ρNn (3)

where N is the spin site, n denotes the different possible states and Wn is the proba-

bility of any classical mixture of the products states occurring. If each possible state is

a separable state, therefore the entire system producing the different possible states is

also separable. In statistical mechanics, the magnetic susceptibility is in general given

as χ = β
(〈
M2

z

〉
− 〈Mz〉2

)
, where β =

1

kT
and M is the magnetization. This can also

be expressed as
1

kT

∑
ij

〈
SizS

j
z

〉
−

〈∑
i

Siz

〉2
 [13]. The magnetic susceptibility in
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all 3 directions for the Heisenberg case is

χH = χx + χy + χz

=
1

kT

[(∑〈
SixS

j
x

〉
+
∑〈

SiyS
j
y

〉
+
∑〈

SizS
j
z

〉)
−
(〈∑

Six

〉2
+
〈∑

Siy

〉2
+
〈∑

Siz

〉2)]
(4)

For i = j,
〈
Six
〉2

+
〈
Siy
〉2

+
〈
Siz
〉2 ≤ h̄2

4
and

〈(
Six
)2〉

+
〈(
Siy
)2〉

+
〈(
Siz
)2〉

=
3h̄2

4
.

Therefore, the magnetic susceptibility for spin S =
1

2
is

χH = χx + χy + χz

=
1

kT

[(
N∑
i=1

3h̄2

4
−

N∑
i=1

h̄2

4

)]
(5)

Since 〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2 ≤
h̄2

4
, therefore −

(
〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2

)
≥ − h̄

2

4
and

χH ≥
1

kT

[(
N∑
i=1

3h̄2

4
−

N∑
i=1

h̄2

4

)]

≥ 1

kT

(
3Nh̄2

4
− Nh̄2

4

)
≥ Nh̄2

2kT
(6)

For the case of isotropic Heisenberg model, χx = χy = χz and can simplify to 3χz.

Hence, the magnetic susceptibility for the Ising case is

χI ≥
Nh̄2

6kT
(7)

In general, with spin S for the Ising model ,

χI ≥
NSh̄2

3kT
(8)
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where N is the number of spins, T is the temperature, k is the Boltzmann constant

and S is an arbitrary spin S particle.

2.2 Specific Heat Capacity

In this subsection, we follow the work of Wieśniak et al. [51] in deriving the heat

capacity as a macroscopic entanglement witness. We briefly mentioned the derivation

for the heat capacity and the full work can be referenced to [51]. The heat energy is

given as

∆Q = mc∆θ

= C∆θ (9)

where Q is the heat energy, m is the mass of the sample, c is the specific heat capacity

of the sample, ∆θ is the change in temperature. The heat capacity C of the sample

is equivalent to mass m of the sample multiply by the specific heat capacity c of the

sample. In thermodynamics, ∆Q = ∆U + P∆V . Since there is no change in volume

(V = 0), ∆Q = ∆U . The partition function is Z ≡ tr
(
e

−H
kT

)
, where H represents

a general Hamiltonian, k is the Boltzmann constant and T is the temperature. The

density matrix for the thermal state is ρ =
e−βH

Z
. Since Z ≡ tr

(
e

−H
kT

)
,

∂ lnZ

∂β
= −tr

(
H
e−βH

Z

)
(10)

Therefore,

−∂ lnZ

∂β
=< H > (11)
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Since the average Hamiltonian < H > is equivalent to the internal energy U , therefore

∂U

∂β
= −∂

2 lnZ

∂β2
(12)

In the limit ∆θ → 0,
∆Q

∆θ
≈ C and C =

∂Q

∂T
=
∂U

∂T
. Hence, the heat capacity

C =
1

kT 2

(
∂2 lnZ

∂β2

)
(13)

Since
∂ lnZ

∂β
= −tr

(
H
e−βH

Z

)
, then

∂

∂β

(
∂ lnZ

∂β

)
⇒ ∂2 lnZ

∂β2
and

∂

∂β

[
−tr

(
H
e−βH

Z

)]
= −tr

(
∂H

∂β

e−βH

Z

)
− tr

(
H
∂
(
e−βH

)
∂β

1

Z

)

− tr

[
He−βH

∂

∂β

(
1

Z

)]
(14)

Since
∂H

∂β
is differentiating H which does not has β in it, therefore

∂H

∂β
= 0 as

differentiating a constant will be zero. Therefore,

∂2 lnZ

∂β
= −tr

[
H
(
−He−βH

) 1

Z

]
− tr

[
He−βH

∂

∂Z

(
1

Z

)
∂Z

∂β

]
(15)

For tr

(
H
e−βH

Z

)
= tr (ρH),

∂2 lnZ

∂β
=< H2 > − < H >2 (16)

Therefore,
∂2 lnZ

∂β
= ∆2 (H) ≡ var(H) ≡ (∆H)2. Hence, the heat capacity

C =
1

kT 2
∆2 (H) (17)

If H = HIsing (where HIsing is the Hamiltonian for Ising model), the eigenstate are

not separable. The thermal state ρ =
1

Z
e−βH =

1

Z

∑
e−βEi|Ei〉〈Ei|, where |Ei〉〈Ei|

10



is entangled. Based on Wieśniak et al. [51], the variance is

∆2 (HIsing) = N
(
1 + z21 + z22 − 3z21z

2
2

)
− 2BN [z1z2 (x1 + x2)]

+B2N

2

(
2− x21 − x22

)
(18)

where xi = 〈ψi|σx|ψi〉 = sin θi and zi = 〈ψi|σz|ψi〉 = cos θi. In order to discuss the

specific heat capacity in terms of per spin, Eq. (18) is expressed as

∆2 (HIsing)

N
= 1 + cos2 θ1 + cos2 θ2 − 3 cos2 θ1 cos2 θ2

− 2B [cos θ1 cos θ2 (sin θ1 + sin θ2)]

+
B2

2

(
2− sin2 θ1 − sin2 θ2

)
(19)

By numerical minimization with θ1 and θ2 over a random range of 0 to 2π, the heat

capacity per spin is

C

N
=

1

kT 2

∆2 (HIsing)

N
(20)

3 Discussion and Results

3.1 Comparison of EW for Magnetic Susceptibility

As the magnetic susceptibility χH is derived from a more general Hamiltonian of

Heisenberg model as compared to the Ising model, we used the derived χI in detecting

the entanglement in the the dipolar-coupled Ising system LiHoxY1−xF4 [59]. By

varying the Ho (Holmium) to Y (Ytterbium) ratio, different levels of randomness can

be introduced into the Ho spin system. According to Reich et al. [59], the compound
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is ferromagnetic for Holmium concentrations of at least as low as x = 0.46 and for

x = 0.167, the sample behaves as a spin glass above its transition temperature. It

supports a complex ground state with no appreciable gap, which is in accordance to

the theories of spin glasses. Hence, we digitize the data points for the real part of

the ac magnetic susceptibility χ′ as a function of temperature T at frequency f =

50 Hz from the plot in the paper. Both the data points for cooling and warming of

the LiHo0.167Y0.833F4 are plotted together with the derived magnetic susceptibility χ

to show the entangled and unentangled regions. In order to compare the theoretical

magnetic susceptibility with the experimental results, the magnetic susceptibility is

χ =
106

4π

MmNg
2µ2

BS

3kT
(21)

where Mm is the molecular mass of the sample, N is the Avogadro’s number, g is the

Landé g-factor, µB is the Bohr magneton and S is the spin number. All the univseral

constant are expressed in SI unit. According to Quilliam et al. [60], the magnetic

Holmium Ho3+ ions in the LiHoxY1−xF4 has spin S = 2, g =
5

4
. The molecular

mass of the sample is 184.545 g. The volume and mass of the sample is 0.25 cm3

and 1 g respectively. For LiHo0.167Y0.833F4, the experimental results for the magnetic

susceptibility χ′ of the sample by cooling and warming in zero applied magnetic field

are plotted with the EW for susceptibility. This is shown in Fig. 1. The area under

the EW curve represents the region where the states are entangled (E) and above as

unentangled (UE).
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Figure 1: The curve represents the EW for magnetic susceptibility cutting

through part of the experimental data points for the magnetic susceptibility of

LiHo0.167Y0.833F4.

3.2 Comparison of EW for Specific Heat Capacity

In this subsection, we compare the theoretical EW for specific heat capacity with the

experimental results of CuxMn [61]. The measurements for the heat capacity of Cux

have shown the specific heat anomaly associated with the transition to the spin glass

phase. The freezing temperature Tf is found to be at 3.89 K. The EW for the specific

heat capacity will be used to compare with the results for CuxMn with an applied

magnetic field of range from approximately 1 T to 7.5 T. We modeled the sample
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using the Ising model in a transverse magnetic field [62] which is given by

HIsing =
N∑
i=1

Jσzi σ
z
i+1 +B

N∑
i=1

σxi (22)

where J is the random coupling between i sites and B is the applied magnetic field. In

order to compare the theoretical EW for specific heat capacity with the experimental

results, Eq. (20) is reexpressed as

c =
∆2 (HIsing)

103cxNkT 2
(23)

where cx is the % concentration of Copper (Cu) in the sample and N is the Avogadro’s

number. The % concentration of the sample is 0.279. All the universal constants are

expressed in SI unit. As ∆2 (HIsing) is dependent on the applied magnetic field B,

the minimization is carried out for B = (7.5, 6, 4.5, 3, 2, 1)T in order to obtain the

minimized ∆2. For B = (7.5, 6, 4.5)T, the minimized ∆2 ≈ 1T . For B = (3, 2,

1)T, the minimized ∆2 ≈ (0.9230, 0.4197, 0.04891)T respectively. The different ∆2

values corresponding to the different B are used to determine the EW for specific

heat capacity.

ForB ≈ 1T , the EW is plotted together with the experimental results of Cu0.279Mn

as shown in Fig. 2(a). The states below the curve are entangled (E) and those above

are unentangled (UE). Hence, values below the red dashed curve requires entangle-

ment to explain and those above do not need. Similarly, for B ≈ 2T and 3T, the

EW curve cuts through the experimental results differentiating the states which are

entangled and unentangled as shown in Fig. 2(b) and Fig. 2(c) respectively. For

B ≈ (4.5, 6, 7.5)T, the EW curve for all the different applied magnetic field is the
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same as represented in Fig. 2(d). As the magnetic field increases, the experimental

results for Cu0.279Mn at B ≈ (4.5, 6, 7.5) seems to align closer together as compared

to lower B. As observed from Fig. 2(a) to (d), the EW shifted away from the origin

as the magnetic field increases. This is in agreement with Wieśniak et al. [51] that

with increasing strength of B, the critical temperature below which entanglement is

detected increases as well.

4 Conclusion

In this paper, we derived the EW for both magnetic susceptibility and specific heat ca-

pacity of a spin glass. We compare the experimental results for the LiHo0.167Y0.833F4

and Cu0.279Mn with the derived magnetic susceptibility and specific heat capacity

respectively. The EW for magnetic susceptibility was found to cut the cusp of the

experimental data points for warming, giving the critical temperature at about 0.2669

K. This sort of critical temperature is also found in a study by Brukner et al. [54].

Below the EW curve marks the region where entanglement exists and above as un-

entangled region. The EW for the specific heat capacity varies with different applied

magnetic field B and is dependent on B. Similar to the magnetic susceptibility for

spin glass, the EW also cuts the experimental results for the Cu0.279 with different B.

The intersection of the EW curve and the experimental data points for specific heat

capacity divides the entangled region (below the EW curve) from the unentangled

region (above the EW curve). It is found that with increasing B, the critical tem-
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perature (where the EW curve intersects the experimental data points) increases as

well. Even though much studies have been carried out for non-spin glass materials,

little work has been done on defining the EW for spin glass and comparing the de-

rived EW with the experimental data of a spin glass. Since theories for spin glass are

not able to fully explain the experimental results, this work shows that the theory of

entanglement maybe needed to fully describe the cusp in the magnetic susceptibility

and the heat capacity anomaly associated with a spin glass. As many classical exper-

imental results of spin glass lack of information on the spin type, mass and density,

future work may require more experimental results on spin glass with such measured

quantities in order to compare with the theoretical aspects of entanglement witness.

Moreover, the experiment should be carried out at temperature near to zero Kelvin

since entanglement is best observed at low temperature.
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