
  
Title Exploring the dynamics of quantum information in many-body localised 

systems with high performance computing 
Author(s) Shao-Hen Chiew, Leong-Chuan Kwek and Chee-Kong Lee 
  
 
Copyright © 2022 The Authors & Springer Nature Switzerland AG.  
 
This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons license and indicate if changes were made. 
 
 
This is the published version of the following conference paper:  
 
Chiew, S.-H., Kwek, L.-C., Lee, C.-K. (2022). Exploring the dynamics of quantum information 

in many-body localised systems with high performance computing. In D. K. Panda, & 

M. Sullivan (Eds.), Supercomputing Frontiers: 7th Asian Conference, SCFA 2022 (pp 

43–58). Springer. https://doi.org/10.1007/978-3-031-10419-0_4  

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-10419-0_4


Exploring the Dynamics of Quantum
Information in Many-Body Localised

Systems with High Performance
Computing

Shao-Hen Chiew1,2(B), Leong-Chuan Kwek2,3,4, and Chee-Kong Lee5

1 Department of Physics, Faculty of Science, National University of Singapore,
Blk S12 Level 2, Science Drive 3, Singapore 117551, Singapore

shaohenc@gmail.com
2 Centre for Quantum Technologies, National University of Singapore,

Singapore 117543, Singapore
3 MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit,

Singapore UMI 3654, Singapore, Singapore
4 National Institute of Education, Nanyang Technological University,

Singapore 637616, Singapore
5 Tencent America, Palo Alto, CA 94306, USA

Abstract. Conventional many-body quantum systems thermalize under
their own dynamics, losing information about their initial configurations
to the environment. However, it is known that a strong disorder results
in many-body localization (MBL). A closed quantum systems with MBL
retains local information even in the presence of interactions. Here, we
numerically study the propagation and scrambling of quantum informa-
tion of a closed system in the MBL phase from an information theoretic
perspective. By simulating the dynamics and equilibration of the tem-
poral mutual information for long times, we see that it can distinguish
between MBL and ergodic phases.

Keywords: Quantum dynamics · Quantum information · Disordered
systems

1 Introduction

The fate of a generic many-body quantum system can be described by quantum
statistical mechanics at equilibrium, where it is expected that it eventually ther-
malizes through the process of thermal equilibration regardless of the system’s
initial state. Recently, however, it has become clear that there exists exceptional
disordered quantum system that can avoid this fate through localization [1–3].
This phenomenon, termed Many-Body Localisation (MBL), leads to a plethora of
interesting features that cannot be described by quantum statistical mechanics,
including the preservation of information, the slow spreading of entanglement,
the emergence of integrability, and so forth [4].
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Concomitant to the development of a new understanding of the MBL phase,
there has also been significant progress in the experimental simulation of quan-
tum many-body systems [5–10]. With a greater degree of tunability, control,
manipulation and isolation from the environment, such systems provide a per-
fect avenue towards a greater understanding of strongly-correlated many-body
quantum systems. Examples of such experimental setups are ultracold atoms
in optical lattices, trapped ions, and nuclear and electron spins associated with
impurity atoms in diamond nitrogen-vacancy centers [4]. These systems have also
been studied through the lens of quantum information science using concepts
and tools such as quantum entanglement, quantum coherence and the quantum
Fisher information. For example, entanglement growth can be detected through
suitable witnesses or with the quantum Fisher information [11]. The latter pro-
vides a lower bound on the entanglement in the system with just a measurement
of two-body correlators, which can be efficiently accessed with site-resolved imag-
ing [6]. In some cases, for instance in ion traps, partial or full quantum state
tomography can be performed [12].

Systems in the MBL phase differs significantly from systems in the ergodic
phase in many aspects. From an experimental perspective, the equilibration of
physical observables to non-thermal values at long times [13,14] is interesting
as the expectation values of physical observables such as local magnetisation
can be experimentally probed [5–7]. However, local observables can only reveal
part of the complete picture: to fully investigate MBL, it is fruitful to resort to
more abstract quantities that capture finer details from the information-theoretic
properties of the MBL phase. This is precisely the approach that we will take in
this paper.

In particular, we focus on understanding the localization and the propagation
of information as the MBL systems evolve. We begin with a brief overview of
relevant concepts and methods in the next section. We then proceed to discuss
the main problem in detail, and present our numerical results on the temporal
mutual information at length in Sect. 3.

2 Background and Numerical Setup for Dynamics

From an information-theoretic perspective, a hallmark of the MBL phase is the
logarithmic spreading of the entanglement entropy. The entanglement entropy
between two subsystems of a quantum state ρ, or alternatively the Von Neumann
entropy of the reduced density matrix for either subsystem, is defined by:

Sent(ρA) = −Tr(ρAlogρA), (1)

where ρA = TrB(ρAB), with A being a subsystem of the total system AB. It
measures the extent to which the subsystems A and B are entangled with one
another. Starting with an initial non-thermal product state, one can show [15]
that the entanglement entropy of a MBL system grows logarithmically, i.e.:

Sent(ρMBL) ∝ log(t), (2)
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in contrast to the ballistic spread of entropy in the ergodic case:

Sent(ρerg) ∝ t. (3)

This indicates much slower spreading of entanglement in the MBL phase. Indeed,
this slow spreading of correlations is often regarded as one of the distinguishing
features of MBL from ergodic systems.

Another relevant quantity is the quantum mutual information (QMI). For a
system partitioned into two subsystems A and B, the QMI between A and B is
defined as:

I(A : B) = S(ρA) + S(ρB) − S(ρAB), (4)

where S(ρ) is the entanglement entropy of the state ρ as defined in the previous
paragraph. It measures the total correlations shared between the two subsystems,
or equivalently how much information is gained about one subsystem by measur-
ing the state of the other. The separability of two subsystems, i.e. ρAB = ρA⊗ρB
implies zero QMI, while non-zero QMI implies non-zero correlation or entangle-
ment. The growth and equilibration of the QMI can be used as a diagnostic tool
for the MBL phase [16,17]. Numerical results indicate that the QMI in an MBL
phase is exponentially localized in space, which is consistent with our intuition
of a localized phase.

2.1 Physical Model

An important model that exhibits MBL is the 1D isotropic Heisenberg spin-
1/2 chain, subject to random transverse magnetic fields [16,17]. For an array of
L spins obeying open boundary conditions, the Hamiltonian for this system is
given by:

H = J

L−1∑

i=1

Si · Si+1 +
L∑

i=1

hiS
z
i . (5)

Here, Si = (Sx
i , Sy

i , Sz
i ) is the vector of local spin operators at site i, with

i ∈ [1, L], J the interaction strength, and hi the strength of the disordered
magnetic field at site i, which is a random real number uniformly distributed in
the interval [−W,W ]. This well-studied system is known to exhibit MBL, with
an ergodic-MBL transition occurring at W ≈ 3.5J [2,18,19]. In the following
sections, we will focus exclusively on this model, with the disorder parameter W
controlling the system’s localization. Throughout the article and in numerical
simulations, we will also set J = 1 consistently.

2.2 Simulation of Unitary Dynamics

To study the steady-state properties of a closed system, one can perform a quan-
tum quench, where an initial nonequilibrium state |ψ(0)〉 (which is the ground
state of a Hamiltonian H0) is first prepared, and evolved under the unitary
dynamics of another Hamiltonian H according to Schrödinger’s equation:

i�
∂

∂t
|ψ(t)〉 = H|ψ(t)〉. (6)
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|ψ(t)〉 can then be studied either experimentally by measuring the values of phys-
ical observables in a physical setup, or numerically by simulating less experimen-
tally accessible quantities such as the entanglement entropy and the QMI. Of
particular interest to us are signatures that manifest when MBL systems evolve
in time.

We simulate the unitary dynamics of a closed quantum system by directly
integrating Schrödinger’s equation for a time independent Hamiltonian H,
Eq. (6). In a particular basis |φk〉, we have:

|ψ(t)〉 =
∑

k

ck(t)|φk〉. (7)

The set of coupled first-order differential equations then takes the form:

i�
∂ck(t)

∂t
=

∑

i

[H]kici(t), (8)

which can be readily integrated by an ODE solver to yield |ψ(t)〉.
Importantly, to study disordered systems such as Eq. (5), we study the aver-

ages of quantities over multiple disorder realizations, with each realisation corre-
sponding to a randomly sampled set of transverse magnetic fields hi. The number
of realizations range from 100–1000 in this project.

The numerical simulation of quantum dynamics is implemented in Python
with QuTiP [20], an open-source software for simulating the dynamics of
closed and open quantum systems. In particular, the Complex-valued Variable-
coefficient Ordinary Differential Equation (zvode) solver [21] is used to integrate
Eq. (6). Time intensive simulations are also performed with the High Perfor-
mance Computing (HPC) clusters from NUS and NSCC.

3 Information Scrambling and Delocalization in MBL
Systems

An important characteristics of MBL is the slow propagation of quantum infor-
mation. Along these lines, we wish to understand how an initially localized infor-
mation is spatially spread across a many-body quantum system under time evo-
lution, and how the phenomenon of many-body localization changes the answer
to this question.

These considerations lead us to the notion of information scrambling, which
is the spreading of local information across many-body quantum systems, such
that they can only be recovered by non-local measurements. Related to thermal-
ization and chaos, the notion of scrambling has been used recently to study the
quantum information of black holes [22,23], and can be experimentally probed
[24]. Naturally, it is interesting to relate this notion to the MBL phase, given its
information-localizing nature.

In this section, we relate a proposed measure of scrambling, the temporal
mutual information (following [25]), with the MBL phase, and investigate its
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qualitative differences with the ergodic phase with numerical and some analytical
arguments. We begin with a brief review on the channel-state duality and use it
to define the temporal mutual information.

3.1 Channel-State Duality

Consider the action of a unitary operator1 U(t) that acts on vectors in H, written
in a basis as:

U(t) =
∑

i,j

uij |i〉〈j|. (9)

This operator is then isomorphic to a state in H ⊗ H:

|U(t)〉 =
∑

i,j

uij |i〉|j〉, (10)

an isomorphism known as the channel-state duality (or the Choi-Jamio�lkowski
isomorphism). More generally, consider an arbitrary input ensemble ρin =∑

i pj |ψj〉〈ψj |. Each state |ψj〉 in this statistical ensemble evolves into |φj〉 =
U(t)|ψj〉, so that the entire ensemble becomes ρout =

∑
i pj |φj〉〈φj |. The action

of U(t) on the input state can then be summarized by the pure state:

|Ψ〉 =
∑

j

√
pj |ψj〉in ⊗ |φj〉out = 1 ⊗ U(t)

∑

j

√
pj |ψj〉in ⊗ |ψj〉out. (11)

|Ψ〉 contains all information about the action of U(t) on ρin. In particular, we
have:

ρin = Trout(|Ψ〉〈Ψ |), (12)
ρout = Trin(|Ψ〉〈Ψ |). (13)

Importantly, the state in the form of Eq. (11) treats the input and output
states on equal footing. If we consider the unitary operator to be the propagator
U(t) = e−iHt of the Hamiltonian H, Eq. (11) then contains information about
the the state at different times, before and after the evolution due to U(t).

3.2 Temporal Mutual Information

For concreteness, consider a 1D lattice of spins in (H)⊗N that is evolving under a
Hamiltonian H. The state |Ψ〉 dual to the channel U(t) then lives in Hin ⊗Hout,
where Hin = Hout = (H)⊗N . We partition Hin arbitrarily into subsystems A
and B, and Hout into C and D (Fig. 1 represents the situation schematically).

1 In general, the evolution need not be unitary, but can be a quantum channel (i.e.
a trace-preserving completely positive map) in the case where the state is an open
subsystem of a larger, closed system. We will only consider unitary channels in the
following analyses.



48 S.-H. Chiew et al.

Fig. 1. Schematic representation of the spatial partition of input 1D lattice into A
and B, and the output state into C and D after a unitary evolution generated by H.
In general, there need not be an equal number of partitions of the input and output
states, and A and C (B and D) need not correspond to the same spatial partitions. If
they do, we denote them A = A(0) and C = A(t) (B = B(0) and D = B(t)).

Following [24], one can then define the entanglement entropy between subsys-
tems at different times and different spatial sites by tracing out appropriate
subsystems from the dual state ρ = |Ψ〉〈Ψ |. For example,

S(ρAC) ≡ −Tr(ρAC log ρAC), (14)

where ρAC = TrBD(ρ) is the reduced density matrix containing subsystem A
before the unitary evolution and C after the evolution. We can further define
a more useful quantity, which is the mutual information at different times and
different spatial sites:

I(A : C) ≡ S(ρA) + S(ρC) − S(ρAC). (15)

This quantity, which we refer to as the temporal mutual information, intuitively
quantifies the amount of information that one can obtain about subsystem A by
measuring subsystem C at a later time. Furthermore, if A and C correspond to
the same sites spatially (at different times), which we denote as A ≡ A(0) and
C ≡ A(t), I(A(0) : A(t)) quantifies information contained in a spatial region
(A(t)) about the same region before time evolution (A(0)) - in other words how
much information can still be extracted from a region of space about its past
configuration.

3.3 Problem Statement

We can study the delocalization of information using a game played between
Alice and Bob. Suppose Alice has a source of classical information X = 0, ..., N
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with probability distribution p0, ..., pN , which she chooses to encode in a set of
quantum states {|ψ0〉, ..., |ψN 〉}. Alice prepares a a state |ψX〉 from this set and
sends it to Bob, so the state that Bob effectively studies is:

ρ =
N∑

i=0

pi|ψi〉〈ψi|. (16)

Bob’s task is then to determine the index X based on his knowledge about the
state of some part of the system.

Fig. 2. Schematic of the game between Alice and Bob, realized on a 1D lattice of
spins. ρA is the information-bearing state provided by Alice, and ρB is the state that
Bob uses to infer ρA. In (a), Bob infers ρA using a state ρB at the same time, so the
information that Bob can extract is I(A : B). In (b), Bob infers ρA = ρA(0) using a
state at a later time, ρC , which happens to be the same spins after the evolution, i.e.
ρA(t). The information that Bob can extract is then the temporal mutual information
I(A(0) : A(t)). In general, ρC need not be the same spins. Our analyses will focus solely
on the temporal mutual information.

For concreteness, suppose further that these quantum states are realized on
part of a 1D lattice of spins, i.e. ρA ∈ HA = (H)⊗K ⊂ (H)⊗L, with K < L, so
that (H)⊗L constitutes the system (See. Fig. 2a). Calling A the partition that
contains the information-bearing state ρA, the information that Bob can extract
on ρA if he has full knowledge of a state ρB at another partition B is then given
by the quantum mutual information:

I(A : B) = S(ρA) + S(ρB) − S(ρAB), (17)

as discussed in Sect. 1.
Here, ρA and ρB correspond to states at the same time - this is the approach

taken by [16,17] to study MBL - while Eq. (15) from the previous section provides
an extension to states at different times. Our question can now be rephrased as
the following:
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How much information can Bob obtain about an initial state ρA if he has
knowledge about a state ρC after the action of a unitary evolution U(t)?

Our following investigations will focus on determining the behaviour of
I(A(0) : C(t)) for different partitions C(t). When C = A(t), I(A(0) : A(t))
measures the amount of information that remains in the original subsystem
after time evolution. On the other hand, if C(t) is spatially disjoint from A(0),
I(A(0) : C(t)) measures the amount of information that has “leaked out” to
another region C outside of A (See. Fig. 2b). We expect the behaviour of
I(A(0) : C(t)) to differ depending on whether the lattice is ergodic or local-
ized, and in our following work we obtain numerical evidence that our intuition
is indeed true.

3.4 Numerical Results

We consider the closed system as consisting of 6 spins, where the first two spins
are the information bearing spins. This closed system evolves under the Heisen-
berg XXX model Hamiltonian Eq. (5) that has been discussed in the previous
sections, with the disorder parameter W controlling the strength of localization.

We encode the classical information source X = 0, 1, 2, 3 in orthogonal states
{|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} with equal probabilities p0 = p1 = p2 = p3, so that the
information bearing state ρA =

∑
i pi|ψi〉〈ψi| corresponds to the maximally

mixed state ρA = 1
41. It is embedded in an environment (the 4 remaining spins)

which we take to be the Néel state |↑↓↑↓〉. The combined initial state is thus:

ρ =
1
4
1 ⊗ |↑↓↑↓〉. (18)

With U(t) = e−iHt, we can then use the channel-state duality to construct the
pure state |Ψ〉 from Eq. (11), and monitor the evolution of the temporal mutual
information I(A(0) : C(t)) with different partitions C(t) and disorder W .

Dynamics of Initially Localized Information. Starting from ρ, how does
information that is initially localized in ρA leak out to its surroundings after
time evolution due to U(t)? This can be monitored by following the evolution of
I(A(0), A(t)) - from an initially maximal value, it is expected to decay as time
progresses, indicating that information initially contained in A(0) has decayed.

Figure 3a shows the evolution of I(A(0), A(t)) for different values of W . This
decay can indeed be noticed, with the final steady-state value depending on the
disorder strength. In addition, we can also choose C(t) to be spatially disjoint
with A(t). I(A(0), C(t)) then monitors information initially contained in A(0)
that has leaked to another spatially disjoint region C(t). This is shown in Fig. 3b.
Both plots agree with our expectation that localization strength directly affects
the amount of information about the initial state that has leaked out spatially
to other regions.
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Fig. 3. Evolution of I(A(0) : C(t)) for different partitions C(t) and disorder strength
W (indicated by different colors), averaged over 50 disorder realizations. In (a), C(t) is
chosen to correspond to the same region A. I(A(0) : C(t)) is then observed to decay and
equilibrate to a lower steady-state value that depends on the strength of localization,
controlled by increasing W . In (b), C(t) is disjoint from A, and chosen to be the
furthest single site away from A. While initially containing no information about A(0),
information leaks out into this region as the system evolves and becomes entangled to
the environment. We also graphically indicate the partitions below the plots, with blue
marking partition A and red marking C of the temporal mutual information I(A : C).

Having qualitatively shown the effects of localization strength on
I(A(0), C(t)), we repeat this simulation more fully with all possible future parti-
tions C(t) for the ergodic case with W = 0.1J and the MBL case with W = 7J ,
shown in Fig. 4. There are 2n − 1 = 31 number of ways to choose C(t), cor-
responding to the 31 curves in Fig. 4. Several noteworthy observations can be
extracted from Fig. 4:

– Similar to the previous plots, the steady-state values of I(A(0) : C(t)) depends
on W . (This scaling is investigated more thoroughly in the next subsection)

– I increases as the size of the partition C(t) is increased. This follows from the
monotonicity of the quantum mutual information, i.e. I(X : Y Z) > I(X : Y ).

– In the MBL phase, the steady-state values of I(A(0) : C(t)) decays with
distance from the initial 2 spins. (For example, I(A(0) : [5]) > I(A(0) : [6]) >
... > I(A(0) : [9])). The ergodic phase, on the other hand, does not exhibit this
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spatial decay2 (I(A(0) : [6]) = ... = I(A(0) : [9])). This possibly demonstrates
that in the ergodic phase, initially localized information is evenly distributed
across the entire chain, while in the MBL phase the distribution of information
depends on distance from the first 2 spins.

– At short times, the growth/decay of I occurs more rapidly in the ergodic
phase, compared to the MBL phase. This can be attributed to the slow spread-
ing of entanglement in the MBL phase, compared to the ballistic spread in
the ergodic phase.

– I(A(0) : [56789](t)) is constant and equal to 2S(ρA(0)) = 2 ln 4 ≈ 2.77. This is
due to identity Eq. (20), representing the conservation of information, which
we prove in the last subsection.

– Every curve (Except I(A(0) : [56789](t))) has a symmetric counterpart such
that the sum between these two curves at any time is 2S(ρA(0)). (For example,
I(A(0) : [5](t))+ I(A(0) : [6789](t)) = 2S(ρA(0))) This can be explained with
the identity Eq. (22) in the final subsection.

Steady-State Values of Temporal Mutual Information as a Function
of Localization Strength. From the dynamics above, I(A(0), C(t)) reaches
steady-state values after evolving for t ≈ 15J . Choosing the final 20% of the
evolution as the steady-state window tSS , we define the steady-state TMI as:

I(A(0), C) =
1

ΔtSS

∫

tSS

I(A(0), C(t))dt. (19)

In this section, we investigate these steady-state values as a function of dis-
order/localization strength W . The results are shown in Fig. 5. We note the
following observations:

– Indeed, the value of I(A(0) : C) for any partition C that contains A = [5]
increases with W , signalling increasing localization of information in the ini-
tial spatial region. On the contrary, the value of I(A(0) : C) for any partition
that does not contain [5] decreases with W , as less information has leaked
out to these partitions.

– As W is increased so that the system transitions into the MBL phase, the
decay of I(A(0) : C) as C is chosen to be further away from the first 2 spins
(also observed and discussed in the previous section) is again visible from
the splitting of initially coinciding lines. Again, this indicates that ergodic-
ity spreads information throughout the system evenly, while MBL tends to
localize information with a strength that decays spatially.

2 The large value of I(A(0) : [5]) compared to I(A(0):[6]), ..., I(A(0):[9]) is due in part
to the index [5] representing 2 spins.
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Fig. 4. Evolution of temporal mutual information for all possible partitions of C(t),
for the ergodic phase (Top plot) and the MBL phase (Bottom plot). Colors represent
different choices of C(t) and are labelled in the legend, and the indices corresponding
to different sites are shown in the schematic below the plots (Blue highlighting indi-
cates information-bearing spins). For example, I(A(0), [5](t)) is the temporal mutual
information between A(0) and A(t), I(A(0), [56](t)) is the temporal mutual information
between A(0) and the first 3 spins at time t, and I(A(0), [56789](t)) is the temporal
mutual information between A(0) and the entire system plus environment at time t.
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Fig. 5. I(A(0) : C) as a function of disorder strength W for all possible partitions C.
Colors represent different choices of C and are labelled in the legend, and the indices
corresponding to different sites can be found in the schematic below Fig. 4. Each value
of I is obtained by averaging over 500 disorder realizations, and the averaging window
is chosen to be the final 20% of a total evolution time of Jt = 40.

Scaling with System Size. To study how the steady state temporal mutual
information I(A(0) : C) scales with system size L, and whether it is useful for
detecting the location of the critical disorder Wc at which the ergodic-MBL
transition occurs, we perform additional simulations with different values of L.

Similar analyses [26,27] that study the ergodic-MBL transition for finite sys-
tem sizes provide evidence that the entanglement entropy and Holevo quantity
can help locate the the ergodic-MBL transition that occurs at the thermody-
namic limit, L −→ ∞, where these quantities vary discontinuously across a criti-
cal disorder strength Wc. If the behaviour of I(A(0) : C) against W approaches
a step function in a similar manner as the system size L tends to infinity, the
location of the discontinuity then marks the location of the critical disorder Wc.

The results of some preliminary investigations for the same Heisenberg XXX
spin chain3 are presented in Fig. 6 for L = 4, 6, 8, 10, 12. From the figure, while
there are good indications that the curves are converging to a sigmoidal curve
as L increases, suggesting a possible scaling law for I(A(0) : C), the limitations
of our numerics prevent more concrete claims. More samples and larger system
sizes will be needed to establish a scaling law.

3 The chosen configuration in this section is slightly different from the previous sec-
tions. Here, half of the system carries information, while in the previous sections
only 2 out of 6 spins do.
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Fig. 6. Normalized steady-state values of I(A(0) : C) against disorder, for system sizes
L = 6, 8, 10, 12. The information-bearing state consists of the first L/2 spins, while
the environment constitute the remaining L/2 spins. I(A(0) : C) is normalized with
2S(A(0)) = 2 ln(2L) so that the same y-scale can be used to compare I across different
system sizes. Each point is produced by averaging over 100–200 disorder realizations,
with an averaging window chosen to be the final 20% of a total evolution time of
Jt = 40.

Mathematical Identities Finally, we state and prove a few identities on the
temporal mutual information that explains some features of the above numerical
results. Let L symbolically denote the system, and {A,B} a partition of L.
Suppose further that ρA(0) is a mixed state and ρB(0) is a pure state, so that
ρ(0) = ρA(0)⊗ρB(0) (corresponding to our setup above). Recall that ρ = |Ψ〉〈Ψ |
is the (pure) dual state obtained using the channel-state duality Eq. (11).

Lemma 1.
I(A(0) : L(t)) = 2S(ρA(0)). (20)

Information initially contained in a subsystem A can always be fully re-extracted
at a later time from the full system L.

Proof. From the definition of the temporal mutual information Eq. (15),

I(A(0) : L(t)) = S(ρA(0)) + S(ρL(t)) − S(ρA(0)L(t)). (21)

We use the fact that the entropy of the bipartitions of a pure state are equal.
Since the dual state ρ is pure, this implies that the second term is S(ρL(t)) =
S(ρL(0)) = S(ρ(0)) = S(ρA(0) ⊗ ρB(0)). The same fact yields S(ρA(0)L(t)) =
S(ρB(0)) for the third term. Finally, ρB(0) being pure implies that the third
term vanishes, while the second term becomes S(ρL(t)) = S(ρA(0)), leading to
the result.
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Lemma 2. If {C,D} is an arbitrary partition of L, then:

I(A(0) : L(t)) = I(A(0) : C(t)) + I(A(0) : D(t)). (22)

Proof. Firstly, note that the subsystem B(0) can always be traced out without
changing the entropy. This can be seen by applying the triangle inequality and
the subadditivity of the entropy on any subsystem B(0)X containing B(0):

|S(ρB(0)) − S(ρX)| ≤ S(ρB(0)X) ≤ S(ρX) + S(ρB(0)). (23)

ρB(0) being pure then implies that S(ρB(0)X) = S(ρX).
The right hand expression is by definition:

I(A(0) : C(t)) + I(A(0) : D(t)) = S(ρA(0)) + S(ρC(t))
−S(ρA(0)C(t)) + S(ρA(0)) + S(ρD(t)) − S(ρA(0)D(t)). (24)

Some terms can be simplified:

S(ρA(0)D(t)) = S(ρB(0)C(t)) = S(ρC(t)) (25)
S(ρA(0)C(t)) = S(ρB(0)D(t)) = S(ρD(t)), (26)

where the first equality is because the entropies of the bipartitions of a pure
state are equal, and the second equality results from our initial note. Finally,
cancelling some terms yield:

I(A(0) : C(t)) + I(A(0) : D(t)) = 2S(ρA(0)) = I(A(0) : L(t)), (27)

where the second equality is due to the previous identity Eq. (20).

Lemma 3. We have:

I(A(0) : A(t)) = S(ρA(0)) + S(ρA(t)) − S(ρB(t)). (28)

Proof. Note that:

S(ρA(0)A(t)) = S(ρB(0)B(t)) = S(ρB(t)), (29)

where the first equality is because the entropies of the bipartitions of a pure state
are equal, and the second equality results from tracing out B(0) not affecting
the entropy. Applying the definition of I(A(0) : A(t)) then leads to the result.

4 Conclusion and Discussion

We have investigated information localization in MBL systems from an
information-theoretic perspective by introducing the temporal mutual informa-
tion. Unlike the quantum mutual information, which depends on states at the
same time, the temporal mutual information allows us to monitor the spread
of information as the system evolves. From our numerical simulations on its
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dynamics, we observe that its evolution and steady-state behavior agree with our
intuition that the MBL phase should localize and slow the spread of information.
We also find some preliminary indications that it can be useful in identifying the
ergodic-MBL transition, based on its scaling with system size.

Further work in this direction should constitute a better understanding of the
temporal mutual information, and its relation with the entanglement entropy.
In light of Eq. (28), there is a simple relation between I and S; does the tempo-
ral mutual information then contain more information, or is the entanglement
entropy sufficient in characterising the spread of information? Otherwise, the
scaling behaviour of I could be investigated more thoroughly with larger system
sizes. This would ideally involve better suited computational techniques such as
the use of matrix product states and the time-evolving block decimation algo-
rithm.
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