Title	Two invariants for adjointly equivalent graphs
Author(s)	F.M. Dong, K.L. Teo, C.H.C. Little and M.D. Hendy
Source	Australasian Journal of Combinatorics, 25, 133-143
Published by	Combinatorial Mathematics Society of Australasia

Copyright © 2002 Combinatorial Mathematics Society of Australasia
Citation: Dong, F. M., Teo, K. L., Little, C. H. C., \& Hendy, M. D. (2002). Two invariants for adjointly equivalent graphs. Australasian Journal of Combinatorics, 25, 133-143.

Two invariants for adjointly equivalent graphs

F.M. Dong
Math and Math E, NIE
Nanyang Technological University
Singapore
K.L. Teo, C.H.C. Little and M.D. Hendy
Institute of Fundamental Sciences
Massey University
Palmerston North
New Zealand

Abstract

Two graphs are defined to be adjointly equivalent if their complements are chromatically equivalent. We study the properties of two invariants under adjoint equivalence.

1 Introduction

In this paper, all graphs considered are simple graphs. For a graph G, let $\bar{G}, V(G)$, $E(G), v(G), e(G), t(G), c(G)$ and $P(G, \lambda)$, respectively, be the complement, vertex set, edge set, order, size, number of triangles, number of components and chromatic polynomial of G.

A partition $\left\{A_{1}, A_{2}, \cdots, A_{k}\right\}$ of $V(G)$, where k is a positive integer, is called a k-independent partition of a graph G if each A_{i} is a nonempty independent set of G. Let $\alpha(G, k)$ denote the number of k-independent partitions of G. Then

$$
\begin{equation*}
P(G, \lambda)=\sum_{k=1}^{v(G)} \alpha(G, k)(\lambda)_{k}, \tag{1}
\end{equation*}
$$

where $(\lambda)_{k}=\lambda(\lambda-1) \cdots(\lambda-k+1)$. (See [13].)
Two graphs G and H are said to be chromatically equivalent if they have the same chromatic polynomial. In this case we write $G \sim H$. The equivalence class determined by a graph G is denoted by $[G]$. A graph G is said to be chromatically unique if $[G]=\{G\}$.

The determination of $[G]$ for a given graph G has received much attention in the literature (see $[4,5]$). The adjoint polynomial of a graph is a useful tool for this study. We now proceed to define it.

Let G be a graph with order n. If H is a spanning subgraph of G and each component of H is complete, then H is called a clique cover [2] (or, by Liu [6], an ideal subgraph) of G. Two clique covers are considered to be different if they have different edge sets. For $k \geq 1$, let $N(G, k)$ be the number of clique covers H in G with $c(H)=k$. The number $N(G, k)$ is referred to as a clique cover number. It is clear that $N(G, n)=1$ and $N(G, k)=0$ for $k>n$. Define

$$
h(G, \mu)= \begin{cases}\sum_{k=1}^{n} N(G, k) \mu^{k}, & \text { if } n \geq 1 \tag{2}\\ 1, & \text { if } n=0\end{cases}
$$

The polynomial $h(G, \mu)$ is called the adjoint polynomial of G. Observe that $h(G, \mu)=$ $h\left(G^{\prime}, \mu\right)$ if $G \cong G^{\prime}$. Hence $h(G, \mu)$ is a well-defined graph-function. The notion of the adjoint polynomial of a graph was introduced by Liu [6]. Note that the adjoint polynomial is a special case of an F-polynomial [2].

Two graphs G and H are said to be adjointly equivalent if they have the same adjoint polynomial. In this case we write $G \sim_{h} H$. The equivalence class determined by a graph G is denoted by $[G]_{h}$. A graph G is said to be adjointly unique if $[G]_{h}=\{G\}$. Note that

$$
\begin{equation*}
\alpha(G, k)=N(\bar{G}, k), \quad k=1,2, \cdots, n . \tag{3}
\end{equation*}
$$

It follows that
Theorem $1.1 \quad$ (i) $G \sim H$ iff $\bar{G} \sim_{h} \bar{H}$;
(ii) $[G]=\left\{H \mid \bar{H} \in[\bar{G}]_{h}\right\}$;
(iii) G is chromatically unique if and only if \bar{G} is adjointly unique.

Hence the goal of determining $[G]$ for a given graph G can be realised by determining $[\bar{G}]_{h}$. Thus, as has been observed in $[6,7,8,9,10,11,12]$, if $e(G)$ is very large, it may be easier to study $[\bar{G}]_{h}$ rather than $[G]$.

Section 2 computes some clique cover numbers that are used to study two invariants for adjoint polynomials. These invariants, $R_{1}(G)$ and $R_{2}(G)$, are the subject matter of Sections 3 and 4 respectively. For a polynomial $f(x)=x^{n}+b_{1} x^{n-1}+$ $b_{2} x^{n-2}+\cdots+b_{n}$, define

$$
R_{1}(f)= \begin{cases}-\binom{b_{1}}{2}+b_{1}, & \text { if } n=1, \tag{4}\\ b_{2}-\binom{b_{1}}{2}+b_{1}, & \text { if } n \geq 2\end{cases}
$$

and

$$
R_{2}(f)=b_{3}-\binom{b_{1}}{3}-\left(b_{1}-2\right)\left(b_{2}-\binom{b_{1}}{2}\right)-b_{1}
$$

where $b_{k}=0$ for $k>n$. For any graph G, define

$$
\begin{equation*}
R_{i}(G)=R_{i}(h(G, \mu)) \tag{5}
\end{equation*}
$$

for each $i \in\{1,2\}$. It is clear that $R_{i}(G)$ is an invariant for adjointly equivalent graphs, since $N(G, k)$ is an invariant for each positive integer k. The invariant $R_{1}(G)$ was introduced by Liu [6] and used by him and others to study adjoint uniqueness of graphs. In particular in [12] Liu and Zhao showed that $R_{1}(G) \leq 1$ for any connected graph G, and characterised the connected graphs G with $R_{1}(G) \geq 0$. They also established the chromatic uniqueness of certain dense graphs. In Section 3 we obtain a recursive formula and a sharper upper bound for $R_{1}(G)$. We also show for which graphs this upper bound is met. In Section 4 we obtain alternative formulae for $R_{2}(G)$ which enable us to compute $R_{2}(G)$ for some specific graphs. In a subsequent paper we use both $R_{1}(G)$ and $R_{2}(G)$ to determine adjoint equivalence classes of certain graphs and confirm a conjecture of Liu [9] that P_{n} is adjointly unique for each even $n \neq 4$.

2 Computation of some clique cover numbers

In this section we calculate the clique cover numbers $N(G, n-k)$ for $k=0,1,2,3$ in order to obtain an expression for each $R_{i}(G)$, where $i=1,2$.

Theorem 2.1 [7] For any graph G with order n,
(i) $N(G, n)=1$ if $n \geq 1$;
(ii) $N(G, n-1)=e(G)$ if $n \geq 2$;
(iii) $N(G, n-2)=t(G)+\binom{e(G)}{2}-\sum_{x \in V(G)}\binom{d_{G}(x)}{2}$ if $n \geq 3$.

For $x \in V(G)$, let $\triangle_{G}(x)$ (or simply $\left.\triangle(x)\right)$ be the number of triangles in G which include x. For any graphs G and Q, let $n_{G}(Q)$ (or simply $n(Q)$) denote the number of subgraphs in G which are isomorphic to Q. Thus $n_{G}\left(K_{2}\right)=e(G)$ and $n_{G}\left(K_{3}\right)=t(G)$. In particular, let $p_{k}(G)=n_{G}\left(P_{k}\right)$, i.e., the number of paths of order k in G.

The next result gives an expression for $N(G, v(G)-3)$.
Theorem 2.2 For any graph G with order n, we have

$$
\begin{align*}
N(G, n-3) & =\binom{e(G)}{3}+p_{4}(G)+5 t(G)+n\left(K_{4}\right)-\sum_{x \in V(G)} d(x) \triangle(x) \\
& +e(G)\left(t(G)-\sum_{x \in V(G)}\binom{d(x)}{2}\right)+2 \sum_{x \in V(G)}\binom{d(x)+1}{3} . \tag{6}
\end{align*}
$$

Proof. By definition, $N(G, n-3)$ is the number of clique covers H in G with $c(H)=$ $n-3$. Since $v(H)=n$, each component of H is of order at most 4 , we find that H is one of the following types of graphs:

$$
\begin{aligned}
& \text { (i) } 3 K_{2} \cup(n-6) K_{1}, \\
& \text { (ii) } K_{3} \cup K_{2} \cup(n-5) K_{1}, \\
& \text { (iii) } K_{4} \cup(n-4) K_{1} .
\end{aligned}
$$

Thus

$$
N(G, n-3)=n_{G}\left(3 K_{2}\right)+n_{G}\left(K_{3} \cup K_{2}\right)+n_{G}\left(K_{4}\right) .
$$

Observe that

$$
n_{G}\left(K_{3} \cup K_{2}\right)=\sum_{\triangle x y z \text { in } G}(e(G)-d(x)-d(y)-d(z)+3),
$$

where the sum is taken over all triangles $x y z$ in G. Hence

$$
n_{G}\left(K_{3} \cup K_{2}\right)=(e(G)+3) t(G)-\sum_{x \in V(G)} d(x) \triangle(x) .
$$

Now consider the number $n_{G}\left(3 K_{2}\right)$. The following figure shows all possible graphs with size 3 and no isolated vertices.

Figure 1
Observe that

$$
n_{G}\left(K_{1,3}\right)=\sum_{x \in V(G)}\binom{d(x)}{3}
$$

and

$$
\sum_{x \in V(G)}\binom{d(x)}{2}(e(G)-d(x))=3 n_{G}\left(K_{3}\right)+2 n_{G}\left(P_{4}\right)+n_{G}\left(P_{2} \cup P_{3}\right) .
$$

Thus

$$
\begin{aligned}
n_{G}\left(3 K_{2}\right)= & \binom{e(G)}{3}-n_{G}\left(K_{3}\right)-n_{G}\left(P_{4}\right)-n_{G}\left(K_{1,3}\right)-n_{G}\left(P_{2} \cup P_{3}\right) \\
= & \binom{e(G)}{3}-\sum_{x \in V(G)}\binom{d(x)}{3}-\sum_{x \in V(G)}\binom{d(x)}{2}(e(G)-d(x)) \\
& +2 n_{G}\left(K_{3}\right)+n_{G}\left(P_{4}\right) \\
= & \binom{e(G)}{3}+2 \sum_{x \in V(G)}\binom{d(x)+1}{3}-e(G) \sum_{x \in V(G)}\binom{d(x)}{2} \\
& +2 n_{G}\left(K_{3}\right)+n_{G}\left(P_{4}\right) .
\end{aligned}
$$

The result is then obtained.

3 The Invariant $R_{1}(G)$

By Theorem 2.1 and the definition of $R_{1}(G)$, we have

Lemma 3.1 For any graph G,

$$
\begin{equation*}
R_{1}(G)=t(G)+e(G)-\sum_{x \in V(G)}\binom{d_{G}(x)}{2} \tag{7}
\end{equation*}
$$

Corollary $\quad R_{1}(G)=0$ if $e(G)=0$.
By Lemma 3.1, the next result is obtained.
Lemma 3.2 For any graph G with components $G_{1}, G_{2}, \cdots, G_{k}$,

$$
\begin{equation*}
R_{1}(G)=\sum_{i=1}^{k} R_{1}\left(G_{i}\right) \tag{8}
\end{equation*}
$$

If $e(G)=0$, then $R_{1}(G)=0$. We shall find a recursive expression for $R_{1}(G)$ when $e(G)>0$. For $x, y \in V(G)$, let $N_{G}(x, y)$ (or simply $N(x, y)$) denote the set

$$
(N(x) \cup N(y))-\{x, y\} .
$$

Observe that

$$
\left|N_{G}(x, y)\right|= \begin{cases}d(x)+d(y)-|N(x) \cap N(y)|, & \text { if } x y \notin E(G) ; \\ d(x)+d(y)-|N(x) \cap N(y)|-2, & \text { if } x y \in E(G) .\end{cases}
$$

Lemma 3.3 For any graph G and $x y \in E(G)$, we have

$$
\begin{equation*}
R_{1}(G)=R_{1}(G-x y)+1-\left|N_{G}(x, y)\right| . \tag{9}
\end{equation*}
$$

Proof. By (7), we have

$$
\begin{aligned}
& R_{1}(G)-R_{1}(G-x y) \\
= & t(G)-t(G-x y)+(e(G)-e(G-x y)) \\
& -\left(\binom{d_{G}(x)}{2}-\binom{d_{G}(x)-1}{2}\right)-\left(\binom{d_{G}(y)}{2}-\binom{d_{G}(y)-1}{2}\right) \\
= & \left|N_{G}(x) \cap N_{G}(y)\right|+1-\left(d_{G}(x)-1\right)-\left(d_{G}(y)-1\right) \\
= & 1-\left|N_{G}(x, y)\right| .
\end{aligned}
$$

By Lemma 3.3, we find a sufficient condition for two graphs G and G^{\prime} to satisfy $R_{1}(G)=R_{1}\left(G^{\prime}\right)$.

Lemma 3.4 Let $x y$ be an edge in G with $N_{G}(x) \cap N_{G}(y)=\emptyset$. Let G^{\prime} be any graph obtained from G by replacing the edge xy by a path containing no vertices of $V(G)-\{x, y\}$. Then

$$
\begin{equation*}
R_{1}(G)=R_{1}\left(G^{\prime}\right) \tag{10}
\end{equation*}
$$

Figure 2
Proof. Let G^{\prime} be the graph obtained from G by replacing the edge $x y$ by the path with $t+2$ vertices, as shown in Figure 2. To prove the lemma, it suffices to show that $R_{1}\left(G^{\prime}\right)=R_{1}(G)$ for $t=1$. Let $t=1$. Assume that $d_{G}(x)=1+a$ and $d_{G}(y)=1+b$. By Lemma 3.3, we have

$$
\begin{aligned}
R_{1}\left(G^{\prime}\right) & =R_{1}\left(G^{\prime}-x u_{1}\right)+1-(1+a) \\
& =\left(R_{1}\left(G^{\prime}-x u_{1}-u_{1} y\right)+1-b\right)-a \\
& =R_{1}\left((G-x y) \cup K_{1}\right)+1-a-b \\
& =R_{1}(G-x y)+1-a-b \\
& =R_{1}(G) .
\end{aligned}
$$

By using Lemmas 3.3 and 3.4, it is easy to compute $R_{1}(G)$ for some special graphs. Let $K_{4}-e$ be the graph obtained from K_{4} by deleting one edge.

Lemma 3.5 (i) $R_{1}\left(P_{1}\right)=0$ and $R_{1}\left(P_{t}\right)=1$ for $t \geq 2$.
(ii) $R_{1}\left(K_{3}\right)=1, R_{1}\left(K_{4}\right)=-2$ and $R_{1}\left(K_{4}-e\right)=-1$.
(iii) $R_{1}\left(C_{k}\right)=0$ for $k \geq 4$.

For positive integers k, s and t, let $T_{k, s, t}$ be the graph in Figure 3(a). Let

$$
\mathcal{T}^{\prime}=\left\{T_{k, s, t} \mid k \geq s \geq t \geq 1\right\} .
$$

Let D_{n} and F_{n} be the graphs shown in Figure 3 (b) and (c).

(a)

(b)

Figure 3

Theorem 3.1 [12] Let G be a connected graph. Then $R_{1}(G) \leq 1$ and
(i) $R_{1}(G)=1$ if and only if $G \in\left\{K_{3}\right\} \cup\left\{P_{n} \mid n \geq 2\right\}$,
(ii) $R_{1}(G)=0$ if and only if $G \in\left\{K_{1}\right\} \cup \mathcal{T}^{\prime} \cup\left\{C_{n}, D_{n} \mid n \geq 4\right\}$, and
(iii) $R_{1}(G)=-1$ with $e(G) \geq v(G)+1$ if and only if $G \in\left\{K_{4}-e\right\} \cup\left\{F_{n} \mid n \geq 6\right\}$.

From Theorem 3.1, we observe that for any connected graph G, if $G \not \neq K_{3}$ and $R(G) \geq-1$, then $e(G)+R_{1}(G) \leq v(G)$. We shall show that for any connected graph G, if $G \not \approx K_{4}$ and $R_{1}(G) \leq-2$, then $e(G)+R_{1}(G) \leq v(G)-1$. First we establish the following result.

Theorem 3.2 For any connected graph G, if $G \not \not K_{4}$, then

$$
\begin{equation*}
R_{1}(G) \leq 2(v(G)-e(G))+1 \tag{11}
\end{equation*}
$$

Proof. For any graph G, let

$$
\phi(G)=R_{1}(G)-2(v(G)-e(G)) .
$$

We have to show that for any connected graph G, if $G \not \equiv K_{4}$, then

$$
\begin{equation*}
\phi(G) \leq 1 \tag{12}
\end{equation*}
$$

By Lemma 3.1, we have

$$
\begin{align*}
\phi(G) & =t(G)-2 v(G)+3 e(G)-\sum_{x \in V(G)}\binom{d(x)}{2} \\
& =t(G)+\sum_{x \in V(G)}(3 d(x) / 2-2)-\frac{1}{2} \sum_{x \in V(G)} d(x)(d(x)-1) \\
& =t(G)-\frac{1}{2} \sum_{x \in V(G)}(d(x)-2)^{2} . \tag{13}
\end{align*}
$$

It follows that $\phi(G) \leq 1$ if $t(G) \leq 1$. Hence (12) holds for connected graphs G with $e(G) \leq 4$. Note that $\phi\left(K_{4}\right)=4-\frac{1}{2} \times 4=2$.

Suppose that H is a connected graph with minimum size such that $H \not \not 二 K_{4}$ and $\phi(H) \geq 2$. We prove that such a graph H does not exist.
Claim 1: For any $x \in V(H)$, if $N_{H}(x)=\{y, z\}$, then $N_{H}(y) \cap N_{H}(z) \neq\{x\}$.
Suppose that $N_{H}(y) \cap N_{H}(z)=\{x\}$. Let H^{\prime} be the graph $H \cdot x y$. Observe that H^{\prime} has an edge which is not contained in any triangle, which implies that $H^{\prime} \not \approx K_{4}$. Since $e\left(H^{\prime}\right)<e(H)$, we have $\phi\left(H^{\prime}\right) \leq 1$. By Lemma 3.4, $R_{1}(H)=R_{1}\left(H^{\prime}\right)$. Since $v(H)=v\left(H^{\prime}\right)+1$ and $e(H)=e\left(H^{\prime}\right)+1$, we have $\phi(H)=\phi\left(H^{\prime}\right) \leq 1$, a contradiction. The claim holds.
Claim 2: $\delta(H) \geq 2$.
Suppose that $d_{H}(x)=1$ and $N_{H}(x)=\{y\}$. Let $H^{\prime}=H-x$. By (13),

$$
\phi(H)-\phi\left(H^{\prime}\right)=-1 / 2-1 / 2\left(d_{H}(y)-2\right)^{2}+1 / 2\left(d_{H}(y)-3\right)^{2}=2-d_{H}(y) .
$$

Since $H \neq K_{2}\left(\right.$ as $\left.\phi\left(K_{2}\right)=-1\right)$ and $d_{H}(y) \neq 2$ by Claim 1, we have $d_{H}(y) \geq 3$. Hence $\phi(H) \leq \phi\left(H^{\prime}\right)-1$. If $H^{\prime} \not \not K_{4}$, then as H^{\prime} is connected and $e\left(H^{\prime}\right)<e(H)$, we have $\phi\left(H^{\prime}\right) \leq 1$; thus $\phi(H) \leq 0$. If $H^{\prime} \cong K_{4}$, we have $\phi(H) \leq 1$. Both cases lead to a contradiction.
Claim 3: H does not contain a bridge.
Suppose that $x y$ is a bridge of H. Let H_{1} and H_{2} be the two components of $H-x y$. By (13),

$$
\phi(H)-\phi\left(H_{1}\right)-\phi\left(H_{2}\right)=5-d_{H}(x)-d_{H}(y) .
$$

Observe that H_{1}, H_{2} are connected. Thus $\phi\left(H_{i}\right) \leq 1$ if $H_{i} \not \approx K_{4}$. By Claim 1 and 2, $d_{H}(x), d_{H}(y) \geq 3$. Let $x \in V\left(H_{1}\right)$ and $y \in V\left(H_{2}\right)$. Notice that $d_{H}(x)=4$ if $H_{1} \cong K_{4}$ and $d_{H}(y)=4$ if $H_{2} \cong K_{4}$. Hence $\phi(H) \leq 1$, a contradiction. The claim holds.
Claim 4: For each $x y \in E(H),\left|N_{H}(x, y)\right| \leq 2$.
Suppose that $\left|N_{H}(x, y)\right| \geq 3$ for some $x y \in E(H)$. By Lemma 3.3,

$$
R_{1}(H) \leq R_{1}(H-x y)-2 .
$$

By Claim 3, $H-x y$ is connected. Since $H-x y$ is not complete and $e(H-x y)<e(H)$, we have $\phi(H-x y) \leq 1$. Hence by the definition of $\phi(H)$,

$$
\phi(H)-\phi(H-x y)=R_{1}(H)-R_{1}(H-x y)+2 \leq 0,
$$

which implies that $\phi(H) \leq 1$, a contradiction. The claim follows.
Claim 5: $t(H)=0$.
If H contains a subgraph isomorphic to $K_{4}-e$, then $v(H)=4$ by Claim 4, which implies that either $H \cong K_{4}$ or $H \cong K_{4}-e$. But $\phi\left(K_{4}-e\right)=1$, a contradiction. Thus H does not contain any subgraph isomorphic to $K_{4}-e$.

Suppose that $x y z$ is a triangle in H. If $d(x)=d(y)=d(z)=2$, then $H \cong K_{3}$ and $\phi(H)=1$, a contradiction. By Claim $4, d(x), d(y), d(z) \leq 3$. Now say $d(x)=3$. Let $x w \in E(H)$, where $w \notin\{y, z\}$. Since $\delta(H) \geq 2$, we have $d(w) \geq 2$. Since H does not contain any subgraph isomorphic to $K_{4}-e$, we have $\left|N_{H}(x, w)\right| \geq 3$, which contradicts Claim 4. Hence Claim 5 holds.

Since $t(H)=0$ by Claim 5, we have $\phi(H) \leq 0$ by (13), a contradiction. Hence H does not exist.

Recall from Theorem 3.1 that $R_{1}(G) \leq 1$. By Theorems 3.1 and 3.2, we have
Corollary 3.1 For any connected graph G with $G \notin\left\{K_{3}, K_{4}\right\}$,
(i) if $-1 \leq R_{1}(G) \leq 1$, then $R_{1}(G) \leq v(G)-e(G)$ with equality if and only if

$$
G \in\left\{K_{4}-e\right\} \cup\left\{P_{n}, C_{n+1}, D_{n+2}, F_{n+4} \mid n \geq 2\right\} .
$$

(ii) if $R_{1}(G) \leq-2$, then $R_{1}(G) \leq v(G)-e(G)-1$.

Proof. The result of (i) follows from Theorem 3.1.
(ii) If $R_{1}(G) \leq-2$, then by Theorem 3.2,

$$
v(G)-e(G) \geq R_{1}(G) / 2-1 / 2=R_{1}(G)-R_{1}(G) / 2-1 / 2 \geq R_{1}(G)+1-1 / 2
$$

which implies $v(G)-e(G) \geq R_{1}(G)+1$. Thus (ii) holds.

4 The Invariant $R_{2}(G)$

Theorem 4.1 For any graph G,

$$
\begin{align*}
R_{2}(G)= & 2 \sum_{x \in V(G)}\binom{d(x)}{3}-\sum_{x \in V(G)} d(x) \triangle_{G}(x) \\
& -e(G)+p_{4}(G)+7 t(G)+n_{G}\left(K_{4}\right) . \tag{14}
\end{align*}
$$

Proof. Let $v(G)=n$. For $f(\mu)=h(G, \mu)$, we have $b_{i}=N(G, n-i), i \geq 1$. Observe that

$$
b_{2}-\binom{b_{1}}{2}=t(G)-\sum_{x \in V(G)}\binom{d(x)}{2}
$$

and

$$
\sum_{x \in V(G)}\binom{d(x)+1}{3}=\sum_{x \in V(G)}\binom{d(x)}{3}+\sum_{x \in V(G)}\binom{d(x)}{2} .
$$

The result is then obtained from (5) and (6).
The term $p_{4}(G)$ can be expressed in terms of $d_{G}(x)$ and $t(G)$. Thus there is another expression for $R_{2}(G)$.

Theorem 4.2 For any graph G,

$$
\begin{align*}
R_{2}(G)= & 2 \sum_{x \in V(G)}\binom{d(x)}{3}-\sum_{x \in V(G)} d(x) \triangle_{G}(x)-e(G)+4 t(G)+n_{G}\left(K_{4}\right) \\
& +\sum_{x y \in E(G)}\left(d_{G}(x)-1\right)\left(d_{G}(y)-1\right) . \tag{15}
\end{align*}
$$

Proof. For $x y \in E(G)$, let $p_{4}(x y)$ be the number of paths of the form uxyv in G, where $u \neq v$. Observe that

$$
p_{4}(x y)=(d(x)-1)(d(y)-1)-\triangle(x y),
$$

where $\triangle(x y)$ is the number of triangles in G containing $x y$. Thus

$$
\begin{aligned}
p_{4}(G) & =\sum_{x y \in E(G)} p_{4}(x y) \\
& =\sum_{x y \in E(G)}((d(x)-1)(d(y)-1)-\triangle(x y)) \\
& =\sum_{x y \in E(G)}(d(x)-1)(d(y)-1)-3 t(G) .
\end{aligned}
$$

The result is then obtained.

Corollary 4.1 If G is K_{3}-free, then

$$
R_{2}(G)=2 \sum_{x \in V(G)}\binom{d(x)}{3}-e(G)+\sum_{x y \in E(G)}(d(x)-1)(d(y)-1) .
$$

Corollary 4.2 If $G_{1}, G_{2}, \cdots, G_{k}$ are the components of G, then

$$
R_{2}(G)=\sum_{i=1}^{k} R_{2}\left(G_{i}\right)
$$

Proof. It follows from Theorem 4.2.
Let Y_{n} denote the graph $T_{n-3,1,1}$, where $n \geq 4$. By applying Theorem 4.2, we have

Corollary 4.3 (i) $R_{2}\left(P_{1}\right)=0, R_{2}\left(P_{2}\right)=-1$ and $R_{2}\left(P_{n}\right)=-2$ for $n \geq 3$;
(ii) $R_{2}\left(K_{3}\right)=-2$ and $R_{2}\left(C_{n}\right)=0$ for $n \geq 4$;
(iii) $R_{2}\left(Y_{4}\right)=-1$ and $R_{2}\left(Y_{n}\right)=0$ for $n \geq 5$;
(iv) $R_{2}\left(D_{4}\right)=0$ and $R_{2}\left(D_{n}\right)=1$ for $n \geq 5$;
(v) $R_{2}\left(F_{6}\right)=5$ and $R_{2}\left(F_{n}\right)=4$ for $n \geq 7$;
(vi) $R_{2}\left(K_{4}-e\right)=3$ and $R_{2}\left(K_{4}\right)=7$.

References

[1] Q.Y. Du, Chromaticity of the complements of paths and cycles, Discrete Math. 162 (1996), 109-125.
[2] E.J. Farrell, The impact of F-polynomials in graph theory, Annals of Discrete Mathematics 55, (1993), 173-178.
[3] Z.Y. Guo and Y.J. Li, Chromatic uniqueness of complement of the cycles union, Kexue Tongbao 33 (1988), 1676.
[4] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990), 259-285.
[5] K.M. Koh and K.L. Teo, The search for chromatically unique graphs - II, Discrete Math. 172 (1997), 59-78.
[6] R.Y. Liu, A new method to find chromatic polynomials of graphs and its applications, Kexue Tongbao 32 (1987), 1508-1509.
[7] R.Y. Liu, Chromatic uniqueness of $K_{n}-E\left(k P_{s} \cup r P_{t}\right)$, J. Systems Sci. Math. Sci. 12 (1992), 207-214 (Chinese with English summary).
[8] R.Y. Liu, Chromatic uniqueness of complement of the irreducible cycles union, Math. Appl. 7 (1994), 200-205.
[9] R.Y. Liu, Adjoint polynomials and chromatically unique graphs, Discrete Math. 172 (1997), 85-92.
[10] R.Y. Liu and X.W. Bao, Chromatic uniqueness of the complements of 2-regular graphs, Pure Appl. Math. Suppl 9 (1993), 69-71.
[11] R.Y. Liu and J.F. Wang, On chromatic uniqueness of complement of union of cycles and paths, Theoret. Comput. Sci. 1 (1992), 112-126.
[12] R.Y. Liu and L.C. Zhao, A new method for proving chromatic uniqueness of graphs, Discrete Math. 171 (1997), 169-177.
[13] R.C. Read and W.T. Tutte, Chromatic polynomials, in: Selected Topics in Graph Theory III (eds. L.W.Beineke and R.J.Wilson), Academic Press, New York (1988), 15-42.

