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Abstract

Two graphs are defined to be adjointly equivalent if their complements
are chromatically equivalent. We study the properties of two invariants
under adjoint equivalence.

1 Introduction

In this paper, all graphs considered are simple graphs. For a graph G, let G, V (G),
E(G), v(G), e(G), t(G), c(G) and P (G, λ), respectively, be the complement, vertex
set, edge set, order, size, number of triangles, number of components and chromatic
polynomial of G.

A partition {A1, A2, · · · , Ak} of V (G), where k is a positive integer, is called a
k-independent partition of a graph G if each Ai is a nonempty independent set of G.
Let α(G, k) denote the number of k-independent partitions of G. Then

P (G, λ) =
v(G)∑
k=1

α(G, k)(λ)k, (1)

where (λ)k = λ(λ − 1) · · · (λ − k + 1). (See [13].)
Two graphs G and H are said to be chromatically equivalent if they have the

same chromatic polynomial. In this case we write G ∼ H. The equivalence class
determined by a graph G is denoted by [G]. A graph G is said to be chromatically
unique if [G] = {G}.
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The determination of [G] for a given graph G has received much attention in the
literature (see [4, 5]). The adjoint polynomial of a graph is a useful tool for this
study. We now proceed to define it.

Let G be a graph with order n. If H is a spanning subgraph of G and each
component of H is complete, then H is called a clique cover [2] (or, by Liu [6], an
ideal subgraph) of G. Two clique covers are considered to be different if they have
different edge sets. For k ≥ 1, let N(G, k) be the number of clique covers H in G
with c(H) = k. The number N(G, k) is referred to as a clique cover number. It is
clear that N(G, n) = 1 and N(G, k) = 0 for k > n. Define

h(G, µ) =

⎧⎨
⎩

n∑
k=1

N(G, k)µk, if n ≥ 1,

1, if n = 0.
(2)

The polynomial h(G, µ) is called the adjoint polynomial of G. Observe that h(G, µ) =
h(G′, µ) if G ∼= G′. Hence h(G, µ) is a well-defined graph-function. The notion of
the adjoint polynomial of a graph was introduced by Liu [6]. Note that the adjoint
polynomial is a special case of an F -polynomial [2].

Two graphs G and H are said to be adjointly equivalent if they have the same
adjoint polynomial. In this case we write G ∼h H. The equivalence class determined
by a graph G is denoted by [G]h. A graph G is said to be adjointly unique if
[G]h = {G}. Note that

α(G, k) = N(G, k), k = 1, 2, · · · , n. (3)

It follows that

Theorem 1.1 (i) G ∼ H iff G ∼h H;
(ii) [G] = {H|H ∈ [G]h};
(iii) G is chromatically unique if and only if G is adjointly unique. �

Hence the goal of determining [G] for a given graph G can be realised by deter-
mining [G]h. Thus, as has been observed in [6, 7, 8, 9, 10, 11, 12], if e(G) is very
large, it may be easier to study [G]h rather than [G].

Section 2 computes some clique cover numbers that are used to study two invari-
ants for adjoint polynomials. These invariants, R1(G) and R2(G), are the subject
matter of Sections 3 and 4 respectively. For a polynomial f(x) = xn + b1x

n−1 +
b2x

n−2 + · · · + bn, define

R1(f) =

⎧⎨
⎩

−
(

b1
2

)
+ b1, if n = 1,

b2 −
(

b1
2

)
+ b1, if n ≥ 2

(4)

and

R2(f) = b3 −
(
b1

3

)
− (b1 − 2)

(
b2 −

(
b1

2

))
− b1,

where bk = 0 for k > n. For any graph G, define

Ri(G) = Ri(h(G, µ)) (5)
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for each i ∈ {1, 2}. It is clear that Ri(G) is an invariant for adjointly equivalent
graphs, since N(G, k) is an invariant for each positive integer k. The invariant R1(G)
was introduced by Liu [6] and used by him and others to study adjoint uniqueness of
graphs. In particular in [12] Liu and Zhao showed that R1(G) ≤ 1 for any connected
graph G, and characterised the connected graphs G with R1(G) ≥ 0. They also
established the chromatic uniqueness of certain dense graphs. In Section 3 we obtain
a recursive formula and a sharper upper bound for R1(G). We also show for which
graphs this upper bound is met. In Section 4 we obtain alternative formulae for
R2(G) which enable us to compute R2(G) for some specific graphs. In a subsequent
paper we use both R1(G) and R2(G) to determine adjoint equivalence classes of
certain graphs and confirm a conjecture of Liu [9] that Pn is adjointly unique for
each even n �= 4.

2 Computation of some clique cover numbers

In this section we calculate the clique cover numbers N(G, n− k) for k = 0, 1, 2, 3 in
order to obtain an expression for each Ri(G), where i = 1, 2.

Theorem 2.1 [7] For any graph G with order n,
(i) N(G, n) = 1 if n ≥ 1;
(ii) N(G, n − 1) = e(G) if n ≥ 2;

(iii) N(G, n − 2) = t(G) +
(

e(G)
2

)
− ∑

x∈V (G)

(
dG(x)

2

)
if n ≥ 3. �

For x ∈ V (G), let �G(x) (or simply �(x)) be the number of triangles in G
which include x. For any graphs G and Q, let nG(Q) (or simply n(Q)) denote the
number of subgraphs in G which are isomorphic to Q. Thus nG(K2) = e(G) and
nG(K3) = t(G). In particular, let pk(G) = nG(Pk), i.e., the number of paths of order
k in G.

The next result gives an expression for N(G, v(G) − 3).

Theorem 2.2 For any graph G with order n, we have

N(G, n − 3) =

(
e(G)

3

)
+ p4(G) + 5t(G) + n(K4) −

∑
x∈V (G)

d(x)�(x)

+ e(G)

⎛
⎝t(G) −

∑
x∈V (G)

(
d(x)

2

)⎞
⎠+ 2

∑
x∈V (G)

(
d(x) + 1

3

)
. (6)

Proof. By definition, N(G, n−3) is the number of clique covers H in G with c(H) =
n − 3. Since v(H) = n, each component of H is of order at most 4, we find that H
is one of the following types of graphs:

(i) 3K2 ∪ (n − 6)K1,
(ii) K3 ∪ K2 ∪ (n − 5)K1,
(iii) K4 ∪ (n − 4)K1.
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Thus
N(G, n − 3) = nG(3K2) + nG(K3 ∪ K2) + nG(K4).

Observe that

nG(K3 ∪ K2) =
∑

�xyz in G

(e(G) − d(x) − d(y) − d(z) + 3),

where the sum is taken over all triangles xyz in G. Hence

nG(K3 ∪ K2) = (e(G) + 3)t(G) −
∑

x∈V (G)

d(x)�(x).

Now consider the number nG(3K2). The following figure shows all possible graphs
with size 3 and no isolated vertices.
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Figure 1
Observe that

nG(K1,3) =
∑

x∈V (G)

(
d(x)

3

)

and ∑
x∈V (G)

(
d(x)

2

)
(e(G) − d(x)) = 3nG(K3) + 2nG(P4) + nG(P2 ∪ P3).

Thus

nG(3K2) =

(
e(G)

3

)
− nG(K3) − nG(P4) − nG(K1,3) − nG(P2 ∪ P3)

=

(
e(G)

3

)
−

∑
x∈V (G)

(
d(x)

3

)
−

∑
x∈V (G)

(
d(x)

2

)
(e(G) − d(x))

+2nG(K3) + nG(P4)

=

(
e(G)

3

)
+ 2

∑
x∈V (G)

(
d(x) + 1

3

)
− e(G)

∑
x∈V (G)

(
d(x)

2

)

+2nG(K3) + nG(P4).

The result is then obtained. �

3 The Invariant R1(G)

By Theorem 2.1 and the definition of R1(G), we have
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Lemma 3.1 For any graph G,

R1(G) = t(G) + e(G) −
∑

x∈V (G)

(
dG(x)

2

)
. (7)

�

Corollary R1(G) = 0 if e(G) = 0. �

By Lemma 3.1, the next result is obtained.

Lemma 3.2 For any graph G with components G1, G2, · · · , Gk,

R1(G) =
k∑

i=1

R1(Gi). (8)

�

If e(G) = 0, then R1(G) = 0. We shall find a recursive expression for R1(G)
when e(G) > 0. For x, y ∈ V (G), let NG(x, y) (or simply N(x, y)) denote the set

(N(x) ∪ N(y)) − {x, y}.

Observe that

|NG(x, y)| =

{
d(x) + d(y) − |N(x) ∩ N(y)|, if xy /∈ E(G);
d(x) + d(y) − |N(x) ∩ N(y)| − 2, if xy ∈ E(G).

Lemma 3.3 For any graph G and xy ∈ E(G), we have

R1(G) = R1(G − xy) + 1 − |NG(x, y)|. (9)

Proof. By (7), we have

R1(G) − R1(G − xy)

= t(G) − t(G − xy) + (e(G) − e(G − xy))

−
((

dG(x)

2

)
−
(
dG(x) − 1

2

))
−
((

dG(y)

2

)
−
(
dG(y) − 1

2

))

= |NG(x) ∩ NG(y)| + 1 − (dG(x) − 1) − (dG(y) − 1)

= 1 − |NG(x, y)|.
�

By Lemma 3.3, we find a sufficient condition for two graphs G and G′ to satisfy
R1(G) = R1(G

′).

Lemma 3.4 Let xy be an edge in G with NG(x) ∩ NG(y) = ∅. Let G′ be any
graph obtained from G by replacing the edge xy by a path containing no vertices of
V (G) − {x, y}. Then

R1(G) = R1(G
′). (10)
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Proof. Let G′ be the graph obtained from G by replacing the edge xy by the path
with t+2 vertices, as shown in Figure 2. To prove the lemma, it suffices to show that
R1(G

′) = R1(G) for t = 1. Let t = 1. Assume that dG(x) = 1 + a and dG(y) = 1 + b.
By Lemma 3.3, we have

R1(G
′) = R1(G

′ − xu1) + 1 − (1 + a)

= (R1(G
′ − xu1 − u1y) + 1 − b) − a

= R1((G − xy) ∪ K1) + 1 − a − b

= R1(G − xy) + 1 − a − b

= R1(G).
�

By using Lemmas 3.3 and 3.4, it is easy to compute R1(G) for some special
graphs. Let K4 − e be the graph obtained from K4 by deleting one edge.

Lemma 3.5 (i) R1(P1) = 0 and R1(Pt) = 1 for t ≥ 2.
(ii) R1(K3) = 1, R1(K4) = −2 and R1(K4 − e) = −1.
(iii) R1(Ck) = 0 for k ≥ 4. �

For positive integers k, s and t, let Tk,s,t be the graph in Figure 3(a). Let

T ′ = {Tk,s,t|k ≥ s ≥ t ≥ 1}.

Let Dn and Fn be the graphs shown in Figure 3 (b) and (c).
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Theorem 3.1 [12] Let G be a connected graph. Then R1(G) ≤ 1 and
(i) R1(G) = 1 if and only if G ∈ {K3} ∪ {Pn|n ≥ 2},
(ii) R1(G) = 0 if and only if G ∈ {K1} ∪ T ′ ∪ {Cn, Dn|n ≥ 4}, and
(iii) R1(G) = −1 with e(G) ≥ v(G)+1 if and only if G ∈ {K4− e}∪{Fn|n ≥ 6}.

�

From Theorem 3.1, we observe that for any connected graph G, if G �∼= K3 and
R(G) ≥ −1, then e(G)+R1(G) ≤ v(G). We shall show that for any connected graph
G, if G �∼= K4 and R1(G) ≤ −2, then e(G) + R1(G) ≤ v(G) − 1. First we establish
the following result.

Theorem 3.2 For any connected graph G, if G �∼= K4, then

R1(G) ≤ 2(v(G) − e(G)) + 1. (11)

Proof. For any graph G, let

φ(G) = R1(G) − 2(v(G) − e(G)).

We have to show that for any connected graph G, if G �∼= K4, then

φ(G) ≤ 1. (12)

By Lemma 3.1, we have

φ(G) = t(G) − 2v(G) + 3e(G) −
∑

x∈V (G)

(
d(x)

2

)

= t(G) +
∑

x∈V (G)

(3d(x)/2 − 2) − 1

2

∑
x∈V (G)

d(x)(d(x) − 1)

= t(G) − 1

2

∑
x∈V (G)

(d(x) − 2)2. (13)

It follows that φ(G) ≤ 1 if t(G) ≤ 1. Hence (12) holds for connected graphs G with
e(G) ≤ 4. Note that φ(K4) = 4 − 1

2
× 4 = 2.

Suppose that H is a connected graph with minimum size such that H �∼= K4 and
φ(H) ≥ 2. We prove that such a graph H does not exist.
Claim 1: For any x ∈ V (H), if NH(x) = {y, z}, then NH(y) ∩ NH(z) �= {x}.

Suppose that NH(y) ∩ NH(z) = {x}. Let H ′ be the graph H · xy. Observe that
H ′ has an edge which is not contained in any triangle, which implies that H ′ �∼= K4.
Since e(H ′) < e(H), we have φ(H ′) ≤ 1. By Lemma 3.4, R1(H) = R1(H

′). Since
v(H) = v(H ′)+1 and e(H) = e(H ′)+1, we have φ(H) = φ(H ′) ≤ 1, a contradiction.
The claim holds.
Claim 2: δ(H) ≥ 2.

Suppose that dH(x) = 1 and NH(x) = {y}. Let H ′ = H − x. By (13),

φ(H) − φ(H ′) = −1/2 − 1/2(dH(y) − 2)2 + 1/2(dH(y) − 3)2 = 2 − dH(y).
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Since H �= K2 (as φ(K2) = −1) and dH(y) �= 2 by Claim 1, we have dH(y) ≥ 3.
Hence φ(H) ≤ φ(H ′) − 1. If H ′ �∼= K4, then as H ′ is connected and e(H ′) < e(H),
we have φ(H ′) ≤ 1; thus φ(H) ≤ 0. If H ′ ∼= K4, we have φ(H) ≤ 1. Both cases lead
to a contradiction.
Claim 3: H does not contain a bridge.

Suppose that xy is a bridge of H. Let H1 and H2 be the two components of
H − xy. By (13),

φ(H) − φ(H1) − φ(H2) = 5 − dH(x) − dH(y).

Observe that H1, H2 are connected. Thus φ(Hi) ≤ 1 if Hi �∼= K4. By Claim 1 and 2,
dH(x), dH(y) ≥ 3. Let x ∈ V (H1) and y ∈ V (H2). Notice that dH(x) = 4 if H1

∼= K4

and dH(y) = 4 if H2
∼= K4. Hence φ(H) ≤ 1, a contradiction. The claim holds.

Claim 4: For each xy ∈ E(H), |NH(x, y)| ≤ 2.
Suppose that |NH(x, y)| ≥ 3 for some xy ∈ E(H). By Lemma 3.3,

R1(H) ≤ R1(H − xy) − 2.

By Claim 3, H−xy is connected. Since H−xy is not complete and e(H−xy) < e(H),
we have φ(H − xy) ≤ 1. Hence by the definition of φ(H),

φ(H) − φ(H − xy) = R1(H) − R1(H − xy) + 2 ≤ 0,

which implies that φ(H) ≤ 1, a contradiction. The claim follows.
Claim 5: t(H) = 0.

If H contains a subgraph isomorphic to K4 − e, then v(H) = 4 by Claim 4, which
implies that either H ∼= K4 or H ∼= K4 − e. But φ(K4 − e) = 1, a contradiction.
Thus H does not contain any subgraph isomorphic to K4 − e.

Suppose that xyz is a triangle in H. If d(x) = d(y) = d(z) = 2, then H ∼= K3

and φ(H) = 1, a contradiction. By Claim 4, d(x), d(y), d(z) ≤ 3. Now say d(x) = 3.
Let xw ∈ E(H), where w /∈ {y, z}. Since δ(H) ≥ 2, we have d(w) ≥ 2. Since H
does not contain any subgraph isomorphic to K4 − e, we have |NH(x, w)| ≥ 3, which
contradicts Claim 4. Hence Claim 5 holds.

Since t(H) = 0 by Claim 5, we have φ(H) ≤ 0 by (13), a contradiction. Hence
H does not exist. �

Recall from Theorem 3.1 that R1(G) ≤ 1. By Theorems 3.1 and 3.2, we have

Corollary 3.1 For any connected graph G with G /∈ {K3, K4},
(i) if −1 ≤ R1(G) ≤ 1, then R1(G) ≤ v(G) − e(G) with equality if and only if

G ∈ {K4 − e} ∪ {Pn, Cn+1, Dn+2, Fn+4|n ≥ 2}.

(ii) if R1(G) ≤ −2, then R1(G) ≤ v(G) − e(G) − 1.

Proof. The result of (i) follows from Theorem 3.1.
(ii) If R1(G) ≤ −2, then by Theorem 3.2,

v(G) − e(G) ≥ R1(G)/2 − 1/2 = R1(G) − R1(G)/2 − 1/2 ≥ R1(G) + 1 − 1/2,

which implies v(G) − e(G) ≥ R1(G) + 1. Thus (ii) holds. �
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4 The Invariant R2(G)

Theorem 4.1 For any graph G,

R2(G) = 2
∑

x∈V (G)

(
d(x)

3

)
−

∑
x∈V (G)

d(x)�G(x)

−e(G) + p4(G) + 7t(G) + nG(K4). (14)

Proof. Let v(G) = n. For f(µ) = h(G, µ), we have bi = N(G, n− i), i ≥ 1. Observe
that

b2 −
(
b1

2

)
= t(G) −

∑
x∈V (G)

(
d(x)

2

)
,

and ∑
x∈V (G)

(
d(x) + 1

3

)
=

∑
x∈V (G)

(
d(x)

3

)
+

∑
x∈V (G)

(
d(x)

2

)
.

The result is then obtained from (5) and (6). �

The term p4(G) can be expressed in terms of dG(x) and t(G). Thus there is
another expression for R2(G).

Theorem 4.2 For any graph G,

R2(G) = 2
∑

x∈V (G)

(
d(x)

3

)
−

∑
x∈V (G)

d(x)�G(x) − e(G) + 4t(G) + nG(K4)

+
∑

xy∈E(G)

(dG(x) − 1)(dG(y) − 1). (15)

Proof. For xy ∈ E(G), let p4(xy) be the number of paths of the form uxyv in G ,
where u �= v. Observe that

p4(xy) = (d(x) − 1)(d(y) − 1) −�(xy),

where �(xy) is the number of triangles in G containing xy. Thus

p4(G) =
∑

xy∈E(G)

p4(xy)

=
∑

xy∈E(G)

((d(x) − 1)(d(y) − 1) −�(xy))

=
∑

xy∈E(G)

(d(x) − 1)(d(y) − 1) − 3t(G).

The result is then obtained. �
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Corollary 4.1 If G is K3-free, then

R2(G) = 2
∑

x∈V (G)

(
d(x)

3

)
− e(G) +

∑
xy∈E(G)

(d(x) − 1)(d(y) − 1).
�

Corollary 4.2 If G1, G2, · · · , Gk are the components of G, then

R2(G) =
k∑

i=1

R2(Gi).

Proof. It follows from Theorem 4.2. �

Let Yn denote the graph Tn−3,1,1, where n ≥ 4. By applying Theorem 4.2, we
have

Corollary 4.3 (i) R2(P1) = 0, R2(P2) = −1 and R2(Pn) = −2 for n ≥ 3;
(ii) R2(K3) = −2 and R2(Cn) = 0 for n ≥ 4;
(iii) R2(Y4) = −1 and R2(Yn) = 0 for n ≥ 5;
(iv) R2(D4) = 0 and R2(Dn) = 1 for n ≥ 5;
(v) R2(F6) = 5 and R2(Fn) = 4 for n ≥ 7;
(vi) R2(K4 − e) = 3 and R2(K4) = 7. �
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