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Abstract

The chromatic polynomial of a simple graph G with n > 0 vertices is
a polynomial X}, (G, k)(z),. of degree n, where (z), = z(z—1)...(x —
k+1) and a(G, k) is real for all k. The adjoint polynomial of G is defined
to be XP_, (G, k)u*, where G is the complement of G. We find the zeros
of the adjoint polynomials of paths and cycles.

1 Introduction

Let G be a simple graph with n vertices. A partition {A;, Ag, - -+, Ay} of the vertex
set of G, where k is a positive integer, is called a k-independent partition if each A; is
a nonempty independent set of G. Let a(G, k) denote the number of k-independent
partitions of G. Then the chromatic polynomial of G is given by

n

P(G,N) =3 a(G k)N, (1)
k=1

where (A), = AM(A—=1)--- (A—k+1). Two graphs G and H are said to be chromatically
equivalent if P(G,\) = P(H,\). It is clear that chromatic equivalence defines
an equivalence relation on the family of graphs. The determination of chromatic

equivalence classes has been an active area of research. (See [6, 7].)
Let N(G, k) be the number of spanning subgraphs of G with exactly k& compo-
nents, each of which is complete. The adjoint polynomial of G is defined to be the

polynomial

WG, p) =3 N(G. k). (2)

k=1
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Evidently N(G,k) = a(G,k), where G is the complement of G. Therefore two
graphs are chromatically equivalent if and only if their complements have the same
adjoint polynomials. Thus adjoint polynomials can be used to determine chromatic
equivalence classes of graphs. This idea has been especially fruitful for dense graphs.
(See [5, 10, 11, 12, 13, 14, 15, 16, 17].) Moreover the irreducibility of h(G, u) over
the rational field has been used to determine the chromatic equivalence classes of
certain families of graphs ([4, 14]).

Another polynomial that is employed to the same end is the o-polynomial [8, 9].
This polynomial o(G, ) is defined as h(G, u)/pX@), where x(G) is the chromatic
number of G. The question of when all the zeros of this polynomial are real has been
studied by Brenti and others [2, 3]. In particular it is shown in [3] that this is the
case for K3 and any graph with triangle-free complement. This result implies that
the adjoint polynomial of any such graph has only real zeros.

In this paper we find the zeros of the adjoint polynomials of paths and cycles.
In a subsequent paper we use these results to determine the chromatic equivalence
classes of some graphs whose complements are disjoint unions of paths and cycles.
We will denote by P, the path, and C,, the cycle with n vertices.

2 A recursive expression for h(G, u)
By the definition, we have

Lemma 2.1  A(Ky,pu) = p.

Lemma 2.2 [11] If G1,Gs, -, Gy are the components of G, then

k

WG, ) = [T (G, ). (3)

i=1

For a vertex x in G, let Ng(z) (or simply N(z)) be the set of vertices adjacent to
x, and let dg(z) (or simply d(z)) be the degree of z in G. For z,y € V(G), let G- zy
be the graph obtained from G by identifying z and y and replacing multi-edges by
single ones. For zy € E(G), let

E'(zy) = {zu € B(G)|u#y,yu ¢ E(G)}U{yv € E(G)|v # z,2v ¢ E(G)}.
For S C E(G), let G — S be the spanning subgraph of G with edge set F(G)— S. If

zy € E(G), let G — xy simply denote the graph G — {zy}. For = # y, let G o zy be
the graph (G — E'(zy)) - zy. (See Figure 1.)
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Figure 1

By the definition of N(G, k), the following result is obtained directly.
Lemma 2.3  For any graph G with vy € E(G) and any integer k > 1,
N(G,k) = N(G — zy, k) + N(G o xy, k). (4)
By (2) and (4), we have
Theorem 2.1  For any graph G and xy € E(G),
MG, p) = MG = zy, p) + h(G oy, ). (5)
Let G — S be the graph G[V(G) — S], where S C V(G). By Theorem 2.1 and
Lemmas 2.1 and 2.2, we have the following corollary.

Corollary For zy € E(G) not contained in any triangle of G, we have

h(G, p) = h(G — xy, p) + ph(G — {z,y}, p). (6)

3 Zeros of h(P,,n) and h(C,, u)
In this section, we shall find the zeros of h(P,, ) for n > 2 and h(C,,, u) for n > 4.
Lemma 3.1  h(P,u) = u, (P, p) = u? + p and for n > 3,
WPy, 1) = p((Por, 1) + h(Poa, 1))
Proof. By the definition of adjoint polynomials, it is easy to find that h(Pi, p) = p,

h(Py, i) = p?* + p. The recursive expression follows from the Corollary to Theo-
rem 2.1. O
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Lemma 3.2 [10] For any integer n > 1,

WP, p) = (n f k)u'“~

k<n

For any integer n > 1 and real number x, define
| a"hW(P,,1/x), ifx#£0,
9n (@) { 1, if 2 = 0. ()
By Lemma 3.1, we have

Lemma 3.3  For any real number x, g1(z) =1, go(z) = 2 + 1 and for n > 3,

gn(l') = gnfl(l') + "Egn72('75)'

Lemma 3.4  For any real number u,

n

i ) = 301+ (-

Proof. 1t is clear that the result holds when n = 1,2. Now let n > 3. By induction,
we have

gn(@? +u) = gor(W¥ +u) + (0¥ +u)gu-a(u® +u)
n—1 n—2

= SO (W @ w) S (1 u) (—u)r 2

= 2(1 + u)i(_u)n—l—i . 2(1 + u)i+1(_u)n_1_i
= (14w '+ 2(1 + ) (—u)"
= ;(1 )t (—u)" ]

Corollary For any real number u,

(2u 4 1)gn(u® 4+ u) = (1 4+ u)" ™ — (—u)".
Lemma 3.5 [ 1, p.64]  For real numbers a, b and positive integer n,
(1) if n is odd,

(n-1)/2 25T
a"=b"=(a—-b) [] <a2+b2 — 2abcos —) ;
n

s=1

(i) if n is even,

(n—2)/2 25T
a"=b"=(a-0b)(a+b) [] <a2+b272abcos—>.
s=1 n
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Lemma 3.6  For positive integer n,

[n/2] 251
n(T) = 2 1+2 . 8
gn(2) SI;II<I+ + xcosn+1> (8)

Proof. By Lemma 3.5 and the corollary to Lemma 3.4, for any real number u #
~1/2,

/2] 297
g +u) = ] ((u +1)? +u? + 2(u? + u) cos n 1)
s=1 n
/2] )
= II <2u2+2u+1+2(u2+u)003 o7 )
pui} n+1

Observe that for any real number = with x > —1/4, there is a real number u # —1/2
such that u® + u = z. Thus for each real number z with z > —1/4,

[n/2]

2sm
n = 2 1+2 .
gn(T) SI;II<I+ + xcosn+1>

Since g,(x) is a polynomial with degree less than n, the above equality also holds for
any real number z such that < —1/4. Thus (8) is obtained. O

Theorem 3.1  For any positive integer n,

[n/2] 251
h(P,,p) = p™? 1] <u+2+2cos > (9)
s=1 n + 1

Proof. By (7), h(Py, i) = p"gn(1/p) when g # 0. Thus when p # 0, the result
follows from (8). Since h(P,,0) = 0 for any n > 1, the result also holds for = 0. O

Corollary For any positive integer n, h(Py, u) has the following zeros:

2.
0,0,---,0, —2—2cos W, s=1,2,---,|n/2].
[n/2]

We now consider P(C,,, ). By the corollary to Theorem 2.1, we have
Lemma 3.7  For any positive integer n > 4,

h(c,“/l,) = h(Pm/j’) + Mh(Pn—% :U')

For any integer n > 4 and real number z, define

hi = { 71O (10

By (7) and Lemma 3.7, we have
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Lemma 3.8  For any positive integer n > 4 and real number x,

fa(@) = gn(2) + 2gn—2 (7).

Lemma 3.9  For any positive integer n > 4 and real number u,
fo@? +u) = (14+u)" + (—u)™
Proof. For any real number u, by Lemma 3.8 and the corollary to Lemma 3.4,

(2u +1) fo(u® + u)

= (2u+ 1)ga(® + 1) + (u® + u)(2u + 1)gno(u* + u)
(1+u)n+l ( u)n+l+(u2+u) ((1+u)n—l 7(7u)n—1)
2u+ 1) ((1+w)"+ (-u)").

Thus the result holds for u # —1/2. Since f,(u?+u) is a polynomial in u, the result
also holds for u = —1/2. O

The next result follows from Lemma 3.5.

Lemma 3.10 ([1, p.65]  For real numbers a, b and positive integer n,

(i) if n is odd,
a"+b" = (a+D) "1_1[)/2 <a,2 + b* — 2ab cos @) ;
s=1
(ii) if n is even,
a”+ 0" = Tﬁ <a2 + b* — 2abcos W) .
s=1

By a proof similar to that of Lemma 3.6, the next result follows from Lemmas 3.9
and 3.10.

Lemma 3.11  For any integer n > 4,

ln/2] 96 — 1
() =] <27 + 1+ 2z cos M) . (11)
s=1 n
Theorem 3.2  For any integer n > 4,
[n/2] 2¢ — 1
h(Cy, ) = p™/? 11 <u+2+2cos M) . (12)
s=1 n
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Proof. Since h(C,,0) = 0, the result holds for p = 0. When u # 0, h(Cy, 1)
u" frn(1/p) by (10), and thus the result follows from (11).

Corollary For any integer n > 4, h(Cy,, 1) has the following zeros:

2 — 1
0,00, —2—2c0s 2= LT s=1,2,---,|n/2).
N——— n

[n/2]
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