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It is known that the superposition of two bound states in the continuum (BICs) leads to the phenomenon of an
oscillating bound state, where excitations mediated by the continuum modes oscillate persistently. We perform
exact calculations for the oscillating BICs in a one-dimensional photonic lattice coupled to a “giant atom” at
multiple points. Our work is significantly distinct from previous proposals of oscillating BICs in continuous
waveguide systems due to the presence of a finite energy band contributing band-edge effects. In particular, we
show that the bound states outside the energy band are detrimental to the oscillating BIC phenomenon, and can
be suppressed by increasing either the number of coupling points or the separation between each coupling point.
Crucially, non-Markovianity is necessary for the existence of oscillating BICs, and the oscillation amplitude
increases with the characteristic delay time of the giant atom interactions. We also propose an initialization
scheme in the BIC subspace. Our work be experimentally implemented on current photonic waveguide array
platforms and opens up prospects in utilizing reservoir engineering for the storage of quantum information in
photonic lattices.
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I. INTRODUCTION

The study of interactions between atoms and photons
traces its history all the way back to the inception of quan-
tum mechanics itself. Since then, we have acquired a better
understanding of atom-photon interactions which underpins
the foundation of many quantum technologies such as atomic
clocks [1] and trapped-ion quantum computers and simulators
[2–4], which harness the interaction of atoms with lasers. In
many studies of atom-photon interactions, one often makes
the dipole approximation [5], which assumes that the size of
the atom is much smaller than the wavelength of the light.
This is especially valid in optical regimes where the length
scale of the atom (∼10−10 m) is orders of magnitude smaller
than the wavelength of light (∼10−7 m). Under the dipole
approximation, the time taken for the light to pass through
a single atom is neglected, thus simplifying the interaction
model. In the field of waveguide quantum electrodynamics
(QED) [6,7], which studies the interactions of atoms with
a continuum of bosonic modes in a waveguide, the dipole
approximation corresponds to modeling the atoms as coupled
to individual points along the waveguide [8,9]. These atoms
could either be actual atoms [10] or artificial atoms such as
quantum dots [11–13] and superconducting qubits [14–16]. A
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more complete overview of works done in this vein can be
found in Refs. [17–19].

However, this paradigm of dipole approximation in waveg-
uide QED was recently broken with the discovery of the
so-called “giant atoms” [20,21], by coupling each atom to two
or more points on the waveguide. This was originally achieved
by coupling the superconducting artificial atom (working in
the microwave regime) to surface acoustic waves (SAW). Due
to the low SAW velocity, for a given frequency the wavelength
of sound is no longer assumed to be large compared to the size
of the superconducting artificial atom. An alternative method
to engineer giant atom coupling is by meandering the trans-
mission line such that the atom interacts with the waveguide
at multiple locations [22,23]. In these setups, we can no longer
ignore the phase acquired by the light propagating in the
one-dimensional (1D) waveguide during the interaction with
the giant atoms. Remarkably, by tuning the acquired phase
[20], one obtains fascinating phenomena such as prolonged
coherence time of a giant atom [20,23], decoherence-free
interactions between two giant atoms [22,23], and the non-
exponential decay of a giant atom [24,25], which have also
been experimentally demonstrated in recent years.

Another novel feature of giant atoms in waveguide QED
is the existence of oscillating bound states in the continuum
(BICs), which is a genuine non-Markovian effect due to the
significant time delay for information to propagate between
the various coupling points of a giant atom [24]. The non-
Markovianity manifests as a persistent oscillation of energy in
the waveguide trapped between the coupling points of a giant
atom, which behaves akin to a cavity. This is in stark contrast
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to the irreversible loss of energy from the giant atom to the
waveguide in the Markovian regime. Thus, these oscillating
BICs can potentially be harnessed to preserve quantum infor-
mation in a non-Markovian bath by stabilizing the photonic
quantum state, which we will show in this paper.

In the continuous waveguide case, it is usual to linearize
the dispersion relation about the atom’s energy, since the
coupling to the waveguide is weak [7]. The waveguide can
then be regarded as having a linear dispersion with an in-
finite bandwidth. Instead of using a continuous waveguide
such as a transmission line, we consider a 1D photonic lat-
tice which acts as the reservoir for the giant atom. The key
difference between the 1D photonic lattice that we consider
here and the continuous waveguide proposed in Ref. [26]
is the presence of a finite energy band where the band
edge becomes significant, which restricts the allowed BICs.
Experimentally, this can be achieved using a photonic waveg-
uide array where each waveguide is side-coupled to others
via the evanescent field produced by the photon propagat-
ing inside the waveguides [27,28]. This has been proposed
to simulate the nonexponential decay of a photonic giant
atom [29] which is simultaneously coupled to multiple lattice
sites. We also note that while oscillating BICs have been
reported in a discrete lattice system with two giant atoms
[30], manifesting as an effective Rabi oscillation between the
atoms, our work requires only a single giant atom to produce
oscillating BICs.

As we will see, having a finite band gives rise to new con-
ditions for the oscillating BIC phenomenon, which are distinct
from those derived for the continuous waveguide. Moreover,
we now need to consider the effect of bound states outside
the energy band. These bound states outside the energy band
are out of the continuum of allowed propagating modes and
will henceforth be called bound states outside the continuum
(BOCs). As will be explained in more detail later, these BOCs
are detrimental to quantum information storage, as they are
states with an exponentially decaying wave function around
the coupling points of the giant atom to the 1D photonic
lattice. Hence, even though it is possible to observe oscillatory
behavior in the emitter excitation probability with BOCs [31],
we distinguish the oscillating BICs which we study here,
which allow for perfect quantum information storage, from
oscillations induced by BOCs, which do not. We also show
that the oscillating BIC is a consequence of the time-delayed
interactions mediated by the 1D photonic lattice, and that a
longer time delay generally results in a higher amplitude for
the BIC, which reduces the information leakage. A longer
time delay also suppresses the unwanted contributions from
the BOCs which hinder the ability of the GA to store and re-
trieve quantum information. This allows us to find the optimal
conditions for oscillating BICs.

This paper is organized as follows: Firstly, we introduce
the model Hamiltonian and the theory behind BICs in Sec. II.
Our main theoretical results are presented in Sec. III, where
we derive the conditions for oscillating BICs in our system as
well as optimal conditions to minimize the detrimental impact
of BOCs. Thereafter, we present some numerical results in
Sec. IV which support our analytical calculations. To demon-
strate the feasibility of our theoretical results, we propose an
experimental implementation of our work achievable on state-

FIG. 1. An illustration of the Hamiltonian in Eq. (1). Here, we
have N lattice sites arranged in a chain with bosonic annihilation
operator bn for each lattice site. The N lattice sites are described by
a tight-binding Hamiltonian Hwg with coupling strength J . We also
have an extra lattice site described by the annihilation operator a with
Hamiltonian Ha, which we shall call the “giant atom” lattice site,
due to its multiple coupling points to the 1D photonic lattice. The
giant atom lattice site is coupled to the lattice sites n1, n2, . . . , nk

with coupling strengths ρ1, ρ2, . . . , ρnk , respectively. This coupling
is described by the Hamiltonian Hint.

of-the art photonic hardware in Sec. V. Finally, we conclude
in Sec. VI and provide several directions for future research.

II. THEORY

A. Model Hamiltonian

The Hamiltonian for the combined atom-lattice system
can be written as H = Ha + Hwg + Hint, given in Eq. (1) as
(setting h̄ = 1)

Ha = ωaa†a + Ua†2a2 (1a)

Hwg = J
N−1∑
n=1

(b†
nbn+1 + H.c.) (1b)

Hint =
M∑

j=1

ρ j (a
†bnj + H.c.), (1c)

where a is the annihilation operator for the giant atom sat-
isfying the bosonic commutation relation [a, a†] = 1, and bn

are the annihilation operators for the 1D photonic lattice with
[bn, b†

m] = δmn. ωa is the detuning between the giant atom
and the photonic lattice. The N lattice sites are coupled to
each other via a tight-binding Hamiltonian with interaction
strength J . The giant atom is coupled to M arbitrary lattice
sites {n1, . . . , nM} with strength ρ j , j = 1, . . . , M. Here, N is
chosen to be a large number such that we can treat the lattice
as an infinite 1D chain in both the left and right directions.
The giant atom has an anharmonicity U , which we will take
U → ∞ such that it is equivalent to treating the giant atom as
a two-level system. An illustration can be found in Fig. 1. As
is shown in Appendix A, the Hamiltonian described by Eq. (1)
can also be written in k space in the first Brillouin zone as

Ha = ωaa†a (2a)

Hwg =
∫ π

−π

dk ω(k)c†(k)c(k) (2b)

Hint =
∫ π

−π

dk{G(k)a†c(k) + H.c.} (2c)
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by defining the k-space annihilation operators c(k) through
the discrete Fourier transform

c(k) = 1√
2π

N∑
n=1

bne−ikn, bn = 1√
2π

∫ π

−π

eiknc(k) dk.

(3)
The operators for the lattice c(k) obey the bosonic commu-
tation relations [c(k), c†(k′)] = δ(k − k′) with the dispersion
relation ω(k) = 2J cos(k) and the spectral coupling function
G(k) = 1√

2π

∑M
j=1 ρ jeikn j . In general, G(k) depends on the

specific geometry of our system, such as the number of
coupling points M between the giant atom and the 1D pho-
tonic lattice and also the locations of the coupling points
n1, n2, . . . , nM . In previous works [24,26], the dispersion
relation is linearized and the energy band formed by the
waveguide modes is approximated to be infinite such that the
band-edge effects become negligible. As we will see later, by
confining the allowed energies to be in [−2J, 2J], we obtain
new conditions for oscillating BICs. Before that, it is helpful
to first review the essential physics of BIC in this system.

B. Bound states in the continuum

A system is said to have a BIC if there is an energy
eigenstate with energy �, where � lies in the band of allowed
energies of the system. BICs are theoretically very interesting
because conventionally, we would not expect a bound state
to exist within a continuum of propagating states that would
carry the energy of the bound state away, and yet these BICs
truly exist and have been investigated both theoretically and
experimentally [32–35]. Specifically, for the setup that we
are considering, the system has a BIC with energy � if � ∈
[−2J, 2J], which is defined by the tight-binding dispersion
relation ω(k) = 2J cos(k). Furthermore, for a BIC at energy
� to exist, either the density of modes vanishes at ω = � so
that there is no mode in the continuum for the bound state
to decay into, or the coupling to the continuum vanishes at
ω = �. Lastly, since the BIC is a bound state by definition,
we also require the energy eigenstate at frequency � to have
a finite norm. The above conditions can be stated in more
mathematically precise terms [35].

Defining the density of modes ρ(ω) ≡ ∂k
∂ω

, the density of
modes vanishing at ω = � means that we require ∂k

∂ω
|� = 0,

which is not possible for the tight-binding dispersion relation.
Thus, by designing the giant atom coupling, we enforce the
condition for the coupling to the continuum to vanish at �

|G[k(�)]|2 = 0. (4)

If we restrict ourselves to the one-excitation subspace, a gen-
eral time-dependent state of the system can be written as

|ψ (t )〉 = ψa(t )|1a〉 +
∫ π

−π

dk ψ (k, t )|1k〉, (5)

where |1a〉 = a†|0〉, |1k〉 = c†(k)|0〉. By considering an en-
ergy eigenstate |E〉 also in the one-excitation subspace, we
obtain

� − ωa =
∫ π

−π

dk
|G(k)|2

� − ω(k)
(6)

by comparing the coefficients of |1a〉 and |1k〉 in the energy
eigenvalue equation H |E〉 = �|E〉. Hence, the requirement
that we have an energy eigenstate with energy � within the
band implies that the solution of Eq. (6) for � lies in the
range [−2J, 2J]. The preceding calculation also gives us an
expression for the coefficient of |1k〉, from which we can de-
duce that the finite norm requirement of the energy eigenstate
is equivalent to ρ(ω)|G[k(ω)]|2 vanishing in the limit ω → �

at least as fast as ∼(� − ω)2. The integral in Eq. (6) can be
evaluated by first evaluating the self-energy 	(s) defined by

	(s) =
∫ π

−π

dk
|G(k)|2

is − ω(k)
, (7)

from which we get

� − ωa = Re[	(s = −i� ± 0+)]. (8)

A detailed derivation of the above equations is presented in
Appendix B.

C. Decay dynamics

In order to probe the decay dynamics of the giant atom
into the 1D photonic lattice, we initialize the system with one
excitation in the giant atom and the lattice in the vacuum state.
Mathematically, with reference to Eq. (5), we have ψa(0) = 1
and ψ (k, 0) = 0 ∀k ∈ [−π, π ]. From the Schrödinger equa-
tion i∂t |ψ (t )〉 = H |ψ (t )〉 with these initial conditions, it can
be shown (see Appendix C) that 	(s) controls the time-
dependent probability amplitude ψa(t ) through the equation

ψa(t ) =
∑

All residues

iest

is − ωa − 	(s)
. (9)

From Eq. (9), we see that poles on the right-hand side of the
equation with a nonzero real component will lead to a decay in
ψa(t ). On the other hand, for the poles on the right-hand side
of the equation that lie on the imaginary axis, i.e., if s = −i�,
the exponential factor in the numerator will be e−i�t , which is
nondecaying and physically represents a BIC arising from the
giant atom decay. We note that (see Appendix B) when there
exists an � that fulfills Eq. (8) as well as |G[k(�)]|2 = 0,
then � will be a pole on the imaginary axis, which means that
we will have a BIC at the frequency �.

These BICs arising from giant atom decay are very inter-
esting because by construction they are immune to decay into
the 1D lattice, and hence can be used in a manner analogous to
the so-called “dark states” for purposes like storing quantum
information, etc. [36,37]. Denoting the BIC energies as � j ,
which satisfy both Eq. (8) and Eq. (4), with simple poles at
s = −i� j , we have

ψa(t ) =
∑

j

lim
s→−i� j

[
iest

is − ωa − 	(s)
(s + i�)

]

=
∑

j

e−i� j t

1 + i	′(−i� j )
, (10)

where we used L’Hopital’s rule and also defined 	′ = ∂s	 to
get to the second line. Moreover, by noting that

ψa(t ) =
∑

E

e−iEt |〈1a|E〉|2, (11)
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we obtain the emitter contribution of each BIC as∣∣φ( j)
a

∣∣2 ≡ |〈1a|� j〉|2 = 1

1 + i	′(−i� j )
. (12)

The usefulness of each of these BICs can be quantified by
the magnitude of |φ( j)

a |2, since a large |φ( j)
a |2 implies that the

giant atom has a high probability of being excited despite the
existence of decay channels in the continuum for it to decay
into.

III. OSCILLATING BOUND STATES

Consider the case of giant atom decay in the one-excitation
subspace again. From Eq. (9), if there exist two BICs at
frequency �α and �β that have relatively large residues com-
pared to the other BICs, we have ψa(t ) ≈ Ae−i�αt + Be−i�β t

for some complex numbers A and B. This means that the
emitter probability |ψa(t )|2 oscillates sinusoidally with fre-
quency |�α − �β |/2π . We can also infer the same fact by
looking at Eq. (11). In this scenario, we say that our system
exhibits an oscillating BIC. Interestingly, we will show that
these oscillating BICs inherently require non-Markovianity
in the system, resulting in a bath-induced stabilization of a
single-photon quantum state which can be used both as a
photon trapped in a cavity as well as a storage for quantum
information. Ideally, we would want |A| = |B| so that at some
time t , we have |ψa(t )|2 = 0, which means that by turning off
the giant atom couplings to the 1D lattice chain at that time,
we can release the stored photon into the 1D chain.

Let us now calculate the conditions in which the setup
shown in Fig. 1 exhibits an oscillating BIC. Consider the case
where the giant atom has M coupling points equally spaced
apart by n0 sites on the photonic lattice. For N lattice sites, let
the giant atom be coupled to sites 0, n0, 2n0, . . . , (M − 1)n0

with a uniform coupling strength ρ0. For this particular setup,
we have

G(k) = ρ0√
2π

M−1∑
j=0

ei jkn0 . (13)

As shown in Appendix E, it is not possible for an oscillating
BIC to exist when M = 2, consistent with the results in a
continuous linear waveguide [26]. Hence, we consider the
case when M � 3 for which oscillating BICs exist. Detailed
calculations can be found in Appendix D. We will summarize
some of the key results here. We first calculate |G(k)|2 to be

|G(k)|2 = ρ2
0

2π

[
M + 2

M−1∑
r=1

(M − r) cos(kn0r)

]
, (14)

which means that when we enforce Eq. (4) for the coupling to
the continuum to vanish, we have

k = 2π

n0

(
m ± 1

M

)
, (15)

where m ∈ Z. Furthermore, Eq. (7) and Eq. (14) together give
us

	(s) = ∓iρ2
0√

s2 + 4J2

[
M + 2

M−1∑
r=1

(M − r)αrn0

]
(16)

α =
(

∓i
√

s2 + 4J2 + is

2J

)
, (17)

where we have the negative sign in both α and 	(s) above
when Re(s) > 0 and the positive sign when Re(s) < 0. Since
the subsequent results are the same regardless of whether we
consider Re(s) > 0 or Re(s) < 0, we will restrict ourselves
to the Re(s) > 0 case. Thereafter, from Eq. (8), Eq. (16), and
Eq. (17) we have

� − ωa = −iρ2
0√

4J2 − �2

[
M + 2

M−1∑
r=1

(M − r)(ein0θ )r

]
, (18)

where θ = arctan(−√
4J2 − �2/�). Hence, to obtain an os-

cillating BIC, we need to solve Eq. (18) together with Eq. (15)
to obtain two eigenenergies �1 and �2 such that the coupling
to the continuum vanishes at these two energies.

At this juncture, we consider the case where ωa = 0, such
that the giant atom energy is positioned at the band center.
This is done so that the BIC energies �1,�2 are symmetric
about the band center, i.e., �1 = −�2, which is necessary
to obtain perfectly sinusoidal oscillations of the giant atom
emitter probability. From Eq. (15), we see that n0 being an odd
number will not give us BIC energies that are symmetric about
the band center. Hence, n0 is restricted to be an even number,
which give us two possibilities, n0 = 2(2l ) or n0 = 2(2l + 1),
where l ∈ Z+. Since the giant atom energy is positioned at
the band center, we would expect the BIC energies that are
closer to the band center to correspond to states that have a
larger emitter probability. Using that criteria, we find that the
optimal condition for oscillating BIC occurs for the n0 = 4l
case (see Appendix D), from which we get the BIC energies
±�BIC given by

�BIC = 2J sin

(
2π

Mn0

)
. (19)

We can then obtain the corresponding ρ0 for ±�BIC by sub-
stituting Eq. (19) into Eq. (18) together with ωa = 0 to obtain

(
ρ0

J

)2

= 2

M
tan

(
π

M

)
sin

(
4π

Mn0

)
, (20)

resulting in an oscillating BIC at the frequency �BIC/π . Now
we can obtain the emitter probabilities of each BIC by substi-
tuting Eq. (19) and Eq. (20) into Eq. (12) to obtain

∣∣φ(BIC)
a

∣∣2 ≡ 〈1a| ± �BIC〉|2 = ie− 4iπ
M

(
1 + e

2iπ
M

)[− 1 + (ie 2iπ
Mn0
)n0
]3

csc2
(

π
M

)
cos2

(
2π

Mn0

)
4
[
2n0 sin

(
4π

Mn0

)+ sin
( 2π (n0−2)

Mn0

)+ sin
( 2π (n0+2)

Mn0

)] . (21)
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From the emitter probabilities obtained above, using Eq. (9)
and Eq. (10), we see that in the long time limit after all the
non-BIC states have propagated away from the giant atom to
the left and right ends of the lattice chain, we would expect
oscillations in the emitter probability of the giant atom with
amplitude (2|φ(BIC)

a |2)2. From Eq. (21), we note that for all
values of n0 = 4l, l ∈ Z+, |φ(BIC)

a |2 increases monotonically
with M, eventually saturating at the limiting value |φ(BIC)

a |2 =
1/3. Consequently, for any value of n0, having a larger number
of coupling points M leads to higher-amplitude oscillating
BICs. It is also helpful to use Eq. (21) to compute the asymp-
totic behavior of |φ(BIC)

a |2 as n0 → ∞, which we can write as

∣∣φ(BIC)
a

∣∣2 = 1

1 + 4π
M csc

(
2π
M

) + A

n2
0

+ O

(
1

n4
0

)
,

where A = 4π2 sin
(

2π
M

)[
3M sin

(
2π
M

)− 4π
]

3M
[
M sin

(
2π
M

)+ 4π
]2 . (22)

By defining τ = (Mn0)/νg as the time taken for the photon
to propagate between the first coupling point and the Mth cou-
pling point (i.e., the size of the giant atom), where νg = 2J is
the group velocity at the band center, and �−1 = (M2ρ2

0/J )−1

as the characteristic timescale for the giant atom decay, we
can quantify the amount of non-Markovianity in our system
through the quantity τ/�−1, which can be written as

τ

�−1
= M2n0 sin

(
4π

Mn0

)
tan
( π

M

)
(23)

= 4Mπ tan

(
π

M

)
− 32

[
π3 tan

(
π
M

)]
3M

1

n2
0

+ O

(
1

n4
0

)
, (24)

where to get from the first line to the second line, we computed
the asymptotic behavior as n0 → ∞. From Eq. (24), we see
that at large n0 the non-Markovianity in our system, which
has the same 1/n2

0 scaling as the expressions for the BIC
emitter probabilities in Eq. (22). This allows us to conclude
that a stronger non-Markovianity in our system arising from
the time delay for information to propagate between the giant
atom coupling points results in better oscillating BICs, though
the amount of non-Markovianity quantified by τ/�−1 even-
tually reaches a plateau. The presence of the plateau means
that even though τ increases as n0 increases, which leads
to a greater non-Markovianity in the system, this effect is
quickly balanced by an increase in the giant atom lifetime
�−1, which is a result of a decreased coupling strength ρ0.
In practice, n0 should of course not be too large, since the
oscillation period scales as ∼n0, which might lead to more
decoherence. Fortunately, the fast convergence O(1/n2

0) of
the emitter probabilities means that a moderate n0 is already
sufficient to observe good oscillating BICs.

Finally, we note that for all values of n0 = 4l, l ∈ Z+, as
M → ∞, τ/�−1 monotonically decreases to a limiting value
of 4π2. This implies that our system with an oscillating BIC is
inherently non-Markovian in nature, since there is a nonneg-
ligible lower bound to τ/�−1.

A. Role of imperfections: Bound states outside the continuum

BOCs are energy eigenstates of the Hamiltonian that have
energy out of the range [−2J, 2J]. For these states, the wave

number k is complex [38], which means that these states
are unable to propagate in the 1D lattice chain and hence
they have a significant probability amplitude in |1a〉, with an
exponentially decaying wave function around the coupling
points of the giant atom. These states are imperfections to our
oscillating BIC for two reasons. Firstly, for an oscillating BIC
produced by giant atom decay, we want the emitter probability
to be high for the two BICs involved at ±�BIC, and low for
all the other energy eigenstates. Yet these BOCs have a large
atomic component and hence they act as imperfections to our
sinusoidal oscillation as per Eq. (9). Secondly, these states
leak energy outside the giant-atom coupling points due to the
exponential decay of the photon amplitude from the coupling
points.

To characterize the effect of BOCs on oscillating BICs
produced by giant atom decay, we first use Eq. (20) to obtain
ρ0 corresponding to the oscillating BIC condition. Then, we
solve for the BOC energies �BOC, where |�BOC| > 2J in
Eq. (6) with ωa = 0. In the limit of n0 → ∞, the two BOC
energies can be found as

�BOC ≈ ±2J

(
1 + 2π2 tan(π/M )2

M2n2
0

)
, (25)

with the emitter probability∣∣φ(BOC)
a

∣∣2 ∼ 4π2 tan(π/M )2

M2

1

n2
0

. (26)

This means that for a given value of M, at large n0, the contri-
butions from the BOCs to the oscillations are suppressed by
a factor of 1/n2

0. By comparing Eq. (26) and Eq. (24), we see
that a larger non-Markovianity in our system characterized by
a larger τ/�−1 leads to reduced imperfections from the BOC.
We also note that having a larger number of coupling points
M leads to a diminished effect of the BOCs on our oscillating
bound states, which can be explained by how a larger value of
M leads to a smaller coupling ρ0 between the giant atom and
the lattice chain.

B. Initialization in the BIC subspace

Up till now, we have considered the case of giant atom
decay into the 1D lattice chain. If instead we are given the
ability to initialize the state of the lattice sites in the chain,
which is possible for some experimental platforms such as
a side-coupled waveguide array through pulse shaping tech-
niques, we can eliminate the effects of the BOCs even at low
n0 and also obtain perfect storage of quantum information
within the legs of the giant atom. This is especially important
for small values of M like M = 3, since from Eq. (26) we see
that the emitter probability of the BOC states increases as M
decreases. Hence, we shall temporarily restrict ourselves to
M = 3 here, though it should be clear that the method below
generalizes for any positive integer values of M.

We first write the states corresponding to the BICs at
±�BIC as

|±〉 = φa,±|1a〉 +
∑

n

φn,±|n〉. (27)

Without loss of generality, we can set φa,± = |φ(BIC)
a | since

eigenstates are defined up to a global phase. Here φn,± are
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the photon amplitudes in real space, which for M = 3 we can
calculate φn,± to be given by

φn,+ = C ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n exp

(
i
2πn

3n0

)

− exp

(
− i

2πn

3n0

)
, 0 � n � n0

(−1)n+1 exp

[
i
2π

3

(
n

n0
− 2

)]

+ exp

[
− i

2π

3

(
n

n0
− 2

)]
, n0 � n � 2n0

0, else

,

(28)

where

C = −in+1φaρ0

2J cos
(

2π
3n0

) (29)

and φn,− = (−1)n+1φ∗
n,+. The above calculation also means

that the state

|p〉 ≡ 1√
2

(|+〉 − |−〉)

= 1√
2

∑
n

(φn,+ − φn,−)|n〉 (30)

is a state with no probability amplitude in |1a〉 and with photon
amplitudes in real space only within the M coupling points of
the giant atom. Thus, if we initialize the state in |p〉, then there
will be zero excitation leakage outside of the giant atom and

FIG. 2. Simulation results for giant atom decay into the 1D photonic lattice for the case of M = 3 coupling points. The coupling strength
ρ0 between the giant atom and the 1D photonic lattice can be calculated from Eq. (20). (a and c) Excitation probability against time for the
giant atom lattice site for n0 = 28 and n0 = 80, respectively. In the insets, we plot the emitter probability for each of the eigenstates of H . As
can be seen in the insets, there are two eigenstates with energies in the continuum [−2J, 2J] that are symmetrical about 0 and have a emitter
probability. (b and d) Excitation probability against time for some of the lattice sites in the 1D photonic lattice for n0 = 28 and n0 = 80,
respectively. Initially we see some transient behavior as the nonbound states decay into the 1D lattice chain and are propagated away to the
left and right ends of the 1D photonic lattice. Thereafter, we see the photon being trapped in between the M = 3 coupling points with nonzero
probability and oscillating between these three points with time. By comparing (a) and (c), we see that the n0 = 28 case has oscillations that are
not perfectly sinusoidal, due to the effect of the relatively large BOC emitter probabilities, as can be seen in the inset of (a). As was previously
explained and is seen here in (b), the presence of these BOCs with large emitter probabilities for the n0 = 28 case also lead to a leakage of the
photon excitation probability beyond the coupling points of the giant atom. We can also see that this imperfection is absent for the n0 = 80
case.
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FIG. 3. A plot showing how the emitter probabilities for the
BICs, given by |φ (BIC)

a |2, and the BOCs, given by |φ (BOC)
a |2, scale

as the number of sites n0 between each coupling point increases.
On this figure we show the values computed numerically (scatter
plot) as well as the values computed from our asymptotic expansions
(continuous lines) as n0 → ∞ for the case where there are M = 3
coupling points between the giant atom and the 1D lattice chain. On
the same figure we also plot how τ/�−1 scales with n0. As can be
seen, as τ/�−1 increases and saturates at a value given by Eq. (24),
|φ (BIC)

a |2 also increases and saturates at a value given by Eq. (22). On
the other hand, |φ (BOC)

a |2 decreases monotonically with increasing n0.
We see that clearly, as the amount of non-Markovianity τ/�−1 in our
system increases, we get better oscillating bound states.

the lattice sites within the M coupling points. Furthermore,
since the states |±〉 are orthogonal to the BOCs, the imper-
fections in the oscillations due to the BOCs are eliminated
by construction. Lastly, we note that for M = 3 the photon
amplitudes are real and only differ in phase by 0 or π , which
makes it more feasible for practical implementation.

IV. NUMERICAL RESULTS

Here we first present in Fig. 2 some results for the M = 3
giant atom decay coupled to a 1D photonic lattice with various
values of n0. For M = 3, starting with a single excitation
in the giant atom, in the absence of imperfections due to
the BOCs, we should expect sinusoidal oscillations in the
excitation probability of the giant atom lattice site with os-
cillation amplitude (2|φ(BIC)

a |2)2 ≈ 0.117411, where we have
used Eq. (22) to obtain |φ(BIC)

a |2 ≈ 0.171 for M = 3. However,
for the M = 3 case, as is seen in Fig. 3, the BOC emitter
probabilities are actually quite substantial, especially at small
values of n0. Hence, this leads us to consider a strategy for
the M = 3 case where instead of considering giant atom de-
cay, we initialize the lattice sites in the initial state Eq. (30)
to eliminate the effects of the BOCs, resulting in complete
storage of quantum information within the legs of the giant
atoms and perfectly sinusoidal oscillations in the excitation
probability of the giant atom lattice site with oscillation am-
plitude 2|φ(BIC)

a |2 ≈ 0.33. An example for the n0 = 4 case
is shown in Fig. 4. The amplitude and phase of the initial
photon excitation at each of the lattice sites can be found using
Eq. (30), where examples for various values of n0 are shown
in Fig. 5. Finally, to show the effect of increasing M on the

quality of the giant atom oscillating BIC, we plot the case of
giant atom decay for the M = 50 and n0 = 4 case in Fig. 6. We
note that for this value of M, we should expect the excitation
probability in the giant atom lattice site to oscillate with an
amplitude of (2|φ(BIC)

a |2)2 ≈ 4/9 as |φ(BIC)
a |2 approaches the

asymptotic value of 1/3 for increasing values of M.

V. EXPERIMENTAL IMPLEMENTATION

The Hamiltonian in Eq. (1) can be simulated on a variety of
platforms, such as coupled cavity arrays [39,40] and photonic
waveguide arrays [41–45]. In the case of a photonic waveg-
uide array, we would have one photonic waveguide, which
we call the giant atom waveguide, coupled to M different
photonic waveguides that are already coupled to each other
to form a linear chain of N waveguides, where the coupling
is due to the evanescent field produced by the photon prop-
agating within the waveguide. As the photon propagates in
the waveguide, we have the relation z = ct , where c is the
group velocity of the photon in the waveguide and z is the
distance along the waveguide that the photon has propagated
for.

Following our formalism above, the nearest-neighbor cou-
pling of the photonic waveguides in the linear chain with
coupling strength J gives us the tight binding Hamiltonian
Hwg, whereas the coupling between the giant atom waveguide
and the linear chain of waveguides at M different points,
each spaced n0 apart, with coupling strength ρ0 gives us the
interaction Hamiltonian Hint. Taking the constraints of current
experimental capabilities in mind, we propose an experimen-
tal setup for the case where M = 3 and n0 = 4 using the BIC
subspace initialization in Fig. 7. For this photonic waveguide
array system, the BIC initialization according to Fig. 7 can
be achieved deterministically with a spatial light modulator
that modulates a single photon source [47]. Alternatively,
one can also prepare the oscillating BIC probabilistically by
initializing an excitation only in the giant atom waveguide and
perform photodetection on the sites outside of the giant atom
coupling points, and postselect on the no-detection events.

In Fig. 7 we have also denoted the next-nearest-neighbor
coupling between the giant atom waveguide and the sites
0 ± 1, n0 ± 1, and 2n0 ± 1 with ρ1, and also the next-nearest-
neighbor hopping between the lattice sites 0 ± 1, n0 ± 1, and
2n0 ± 1 with J ′. In general, the presence of J ′ and ρ1 are
unwanted imperfections, yet we note that by choosing the
geometry and the distances accordingly as per the inset in
Fig. 7, we can minimize the contributions from ρ1 as well
as J ′. To do so, we first use Eq. (19) to calculate the emit-
ter energies for n0 = 4, which would give us the oscillation
period T = π for the oscillating BIC. This means that to see
an appreciable number of oscillations, we could simulate up
to Jz = 5T ≈ 15. Now, suppose that experimentally, we can
only have photonic waveguides with length zmax. This means
that we require J = 5T/zmax. Henceforth, we shall assume
zmax = 100 mm, which has been done experimentally before
[48]. From Eq. (20), we obtain ρ0/J = 1, which tells us to
set ρ0 = J . It is known that the evanescent coupling strength
between waveguides decays exponentially with the distance
between them [46]. Using the experimental values obtained
in Ref. [46] for the aforementioned exponential relationship
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FIG. 4. Similar to Fig. 2, in (a) and (b) we consider the case of giant atom decay into the 1D lattice chain but with M = 3 coupling points
and n0 = 4 sites between each coupling point. In (c) and (d), we also consider the case where we have M = 3 coupling points and n0 = 4
sites but with the giant atom lattice site initially in the vacuum state and the 1D lattice chain initialized in the state |p〉 according to Eq. (30).
Remarkably, using Eq. (20), the required giant atom coupling strength is ρ0/J = 1. Due to the presence of the two BOCs with large emitter
probabilities, for the case of the giant atom decay in (a) and (b), we see that the oscillation of the giant atom excitation probability in (a) is
highly nonsinusoidal. Moreover, in (b), we see that there is a leakage of photon excitation probability beyond the coupling points due to
the presence of the BOC, which is nonideal. In (c) and (d), we see that because we are starting in the BIC subspace, the contributions due
to the BOCs are totally eliminated. We see perfectly sinusoidal oscillations of the giant atom excitation probability in (c), and we also see
that the photon excitation probability is strictly confined to within the coupling points of the giant atom to the 1D lattice.

between coupling strength and distance, together with the
geometry of the proposed setup in the inset of Fig. 7, we ob-
tain ρ0 = J = 0.15 mm−1, ρ1 = 0.0286ρ0, and J ′ = 0.0286J ,

which is nearly negligible. Thus, our proposed oscillating
BICs are experimentally feasible using state-of-the-art pho-
tonic waveguide arrays.

FIG. 5. Here we show the amplitudes and the phases of the photonic excitation required to initialize the 1D lattice chain in the state |p〉
given by Eq. (30) for the case of M = 3 coupling points between the giant atom and the 1D lattice chain. In (a)–(c), we plot the cases where
we have n0 = 4, n0 = 28, and n0 = 80, respectively. Sites with a phase of 0 are indicated by a blue (lighter) color with a striped line within,
whereas sites with a phase of π are indicated by a solid red (darker) color.
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FIG. 6. The analog of Fig. 2 except that we have M = 50 cou-
pling points between the giant atom and the 1D photonic lattice for
n0 = 4. As can be seen from the inset of (a), the emitter probabilities
from the BOC are heavily suppressed as per Eq. (26), which leads
to perfectly sinusoidal oscillations of the excitation probability of
the giant atom lattice site. We also see in (b) that the negligible
BOC emitter probability leads to an absence of loss of photonic
excitation probability into the 1D lattice chain. By comparing (a) in
this figure to Fig. 2, we see that a larger value of M leads to larger
amplitude oscillations in the excitation probability of the giant atom
lattice site even for a comparatively small value of n0, as per Eq. (21).

Simulation results for M = 3 and n0 = 4 when ρ1 = 0
and J ′ = 0 can be found in Fig. 4. The corresponding re-
sults when ρ1 = 0.0286ρ0 and J ′ = 0.0286J can be found in
Fig. 8.

VI. CONCLUSION

In this paper, we study the phenomenon of oscillating
BIC in a discrete 1D photonic lattice using a single emitter
coupled to multiple lattice sites, which can be considered as
the discrete analog of a giant atom coupled to a continuous
waveguide. The key difference between our work and the
oscillating BICs found in continuous waveguide systems [26]
is the presence of a finite energy band, which contributes
band-edge effects to the giant atom dynamics. This gives us
new conditions for the existence of oscillating BICs which
lead to persistent oscillations of energy between the coupling
points of the giant atom to the 1D lattice. The presence of

FIG. 7. Possible experimental setup to see oscillating BICs.
Here, we have M = 3 and n0 = 4. The giant atom waveguide is in
green, with the letters “GA” inside, whereas the waveguides in the
waveguide chain are in blue. The coupling strength ρ0 can be found
from Eq. (20). Here, ρ1 is the coupling between the giant atom and
the next-nearest-neighbor sites and J ′ is the hopping strength be-
tween the sites that are ±1 from the coupling point. In this setup, we
start with the giant atom in the vacuum state and instead initialize the
rest of the waveguide chain in the state |p〉 according to Eq. (30). This
means that as per Fig. 5 for the case where n0 = 4, we need to send
in a photon with equal probability amplitude in waveguides 2, 4, and
6, which we have highlighted. The red glow (sites 2 and 6) indicates
a phase of π for the photon, whereas a waveguide with a blue glow
(site 4) indicates a phase of 0. For the array of photonic waveguides,
the coupling strength between each waveguide decays exponentially
with the distance between the waveguides [46], hence by choosing
the distances d, d1 in the experimental setup appropriately as per the
inset, we can obtain ρ1 � ρ0 and J ′ � J , which allows us to neglect
the next-nearest-neighbor interactions.

BOCs hinders the trapping of excitation between the giant
atom coupling points and is detrimental to the sinusoidal
oscillations in the giant atom probability. Crucially, we find
that these unwanted BOCs can be suppressed drastically by
increasing either the number of coupling points M or the
number of lattice sites n0 between each coupling point, with
the BOC contribution scaling as 1/M2 and 1/n2

0. With this,
we can summarize our key results for the conditions to pro-
duce optimal oscillating BICs to be (1) n0 = 4l, l ∈ Z+ sites
between each coupling point, (2) large n0, and (3) large M.
In practice, however, we find that a moderate M and n0 suf-
fice to achieve good oscillating BICs with significant giant
atom probability. Alternatively, by initializing the lattice sites
in the BIC subspace which we have calculated, the BOC
contributions can be completely eliminated, resulting in per-
fect oscillating BICs even for small M and n0. We stress
that the oscillating BIC in our system is inherently a non-
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FIG. 8. Simulation results for the proposed experimental implementation with the setup in Fig. 7. Here, we initialize the waveguide array
in the state |p〉 and with the giant atom lattice site in the vacuum state. Also, with reference to Fig. 7, we consider the case where we have
ρ1 = 0.0286ρ0 and J ′ = 0.0286J to show the impact of these experimental imperfections on our simulation. The corresponding ideal case for
which ρ1 = J ′ = 0 can be found in Figs. 4(c) and 4(d). By comparing the ideal case with (a) and (b) in this figure, we see that the presence of
experimental imperfections leads to a leakage of photon excitation probability beyond the coupling points of the giant atom, yet the effect is
nearly negligible up to Jz = 15, which is a large enough value of Jz to see an appreciable number of oscillations.

Markovian phenomenon due to the significant propagation
time between the giant atom coupling points compared to the
relaxation timescale of the giant atom. Moreover, we show
that as the non-Markovianity in our system increases, the
oscillation amplitude of the BICs increases, improving the
storage of quantum information within the coupling points.
To illustrate the feasibility of our theoretical model, we
propose an experimental implementation of our system on
photonic waveguide arrays and show that our oscillating BICs
can be practically achieved even with current experimental
limitations.

Our work provides a firm theoretical basis for oscillating
BICs in discrete systems. In particular, oscillating BICs in dis-
crete systems offer new possibilities that cannot be replicated
in continuous systems, such as the ability to initialize the sys-
tem in the BIC subspace by simply controlling the amplitude
and phase of the excitation at particular lattice sites. This al-
lows us to achieve long-time storage of quantum information
within the confines of the giant atom coupling points, limited
only by the intrinsic coherence time of the photonic lattice.
Our setup can also be regarded as an effective cavity, serving
as a physical implementation of non-Markovian cavity-QED
setups [49–53]. While we have considered the tight-binding
dispersion relation in this work, the phenomenon of oscillat-
ing BICs can be generally observed in discrete systems with
other dispersion relations, which can be considered for future
work. Another promising direction is to study the oscillating
BIC phenomenon in higher-dimensional lattices [54] or in
synthetic dimensions [55,56].
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APPENDIX A: WRITING EQ. (1) IN k SPACE

From Eq. (3), we can express Hwg as

Hwg = J
∑

n

b†
nbn+1 + H.c.

= J

2π

∫∫
dk dk′∑

n

ei(k′−k)neik′
c†(k)c(k′)

+ J

2π

∫∫
dk dk′∑

n

e−i(k′−k)ne−ik′
c†(k′)c(k)

= J

2π

∫∫
dk dk′∑

n

ei(k′−k)neik′
c†(k)c(k′)

+ J

2π

∫∫
dk′ dk

∑
n

e−i(k−k′ )ne−ikc†(k)c(k′)

= J
∫∫

dk dk′
(

1

2π

∑
n

ei(k′−k)n

)
(eik′ + e−ik )c†(k)c(k′)

= J
∫∫

dk dk′δ(k′ − k)(eik′ + e−ik )c†(k)c(k′)

= J
∫

dk (eik + e−ik )c†(k)c(k)

=
∫

dk 2J cos(k)c†(k)c(k)

=
∫

dk ω(k)c†(k)c(k), (A1)

where we have defined ω(k) ≡ 2J cos(k). Here, we have used
the fact that for (k′ − k) ∈ [0, 2π ), 1

2π

∑
n ei(k′−k)n = δ(k′ −

k). Similarly, we can also express Hint as

Hint =
k∑

j=1

ρ j (a
†bnj + H.c.)

=
k∑

j=1

ρ j

{
a†

[
1√
2π

∫ π

−π

dk eikn j c(k)

]
+ H.c.

}
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=
∫ π

−π

dk

⎧⎨
⎩
⎛
⎝ 1√

2π

k∑
j=1

ρ je
ikn j

⎞
⎠a†c(k) + H.c.

⎫⎬
⎭

≡
∫ π

−π

dk {G(k)a†c(k) + H.c.}, (A2)

where we have defined G(k) = ( 1√
2π

∑K
j=1 ρ jeikn j ).

APPENDIX B: DERIVATION OF CONDITIONS FOR BIC

First, to derive Eq. (6) and the condition for the BIC to have
a finite norm, we shall first write our energy eigenstate in the
one-excitation subspace as

|E〉 = φa|1a〉 +
∫

dk e(k)|1k〉, (B1)

where φa = 〈1a|E〉 and e(k) = 〈1k|E〉. Thereafter, we con-
sider the energy eigenvalue equation H |E〉 = �|E〉. To
evaluate H |E〉, we use the commutation relations [a, a†] = 1
and [c(k), c†(k′)] = δ(k − k′), and finally we arrive at

H |E〉 =
[
ωaφa +

∫
dk G(k)e(k)

]
|1a〉

+
∫

dk [ω(k)e(k) + G∗(k)φa]|1k〉. (B2)

Comparing the above equation with �|E〉 = �[φa|1a〉 +∫
dk e(k)|1k〉], we arrive at two simultaneous equations:

�φa = ωaφa +
∫

dk G(k)e(k) (B3a)

�e(k) = ω(k)e(k) + G∗(k)φa, (B3b)

which we can then solve to obtain Eq. (6). Next, we note that
in the one-excitation subspace, we have

〈E |E〉 = |φa|2 +
∫

dk |e(k)|2

= |φa|2
(

1 +
∫

dk
|G(k)|2

[� − ω(k)]2

)

= |φa|2
(

1 +
∫

dω
ρ(ω)|G[k(ω)]|2

(� − ω)2

)
, (B4)

where in the second line, we used Eq. (B3b) and in the third
line, we used ρ(ω) ≡ ∂k

∂ω
. Hence, we see that the requirement

that |E〉 has a finite norm corresponds to ρ(ω)|G[k(ω)]|2
vanishing at least as fast as ∼(� − ω)2 as ω → �.

Next, to derive Eq. (8), we note that

	(s = −i� ± 0+) =
∫ π

−π

dk
|G(k)|2

� − ω(k)

=
∫ 2J

−2J
dω

ρ(ω)|G[k(ω)]|2
� − ω

= lim
ε→0

(∫ �−ε

−2J
dω

ρ(ω)|G[k(ω)]|2
� − ω

+
∫ 2J

�+ε

dω
ρ(ω)|G[k(ω)]|2

� − ω

)

+
∫

C
dω

ρ(ω)|G[k(ω)]|2
� − ω

= P
(∫ 2J

−2J
dω

ρ(ω)|G[k(ω)]|2
� − ω

)
∓ iπρ(�)|G[k(�)]|2, (B5)

where in the second last line, we note that the contour C is a
semicircular contour either in the top half or bottom half of
the complex plane, depending on the sign of ±0+, and in the
last line we used the residue theorem for the special case of a
semicircular contour. P () here denotes the Cauchy principal
value of the integral enclosed in parentheses. Taking the real
part of the last line, Eq. (8) follows immediately. We note here
that if � also fulfills Eq. (4), then the second term vanishes,
which gives us

	(s = −i� ± 0+) = Re[	(s = −i� ± 0+)]. (B6)

APPENDIX C: DECAY DYNAMICS

Here, we derive Eq. (9). By writing down the Schrodinger
equation H |ψ (t )〉 = i ∂

∂t |ψ (t )〉 in the one-excitation subspace
as per Eq. (5), we arrive at two coupled equations:

i
∂ψa(t )

∂t
= ωaψa(t ) +

∫ π

−π

G(k)ψ (k, t )dk (C1a)

i
∂ψ (k, t )

∂t
= ω(k)ψ (k, t ) + G∗(k)ψa(t ). (C1b)

To solve the two above equations for ψa(t ), we follow the
standard procedure of first integrating the “bath” equation,
which is Eq. (C1b) in our case, to get

ψ (k, t ) = −iG∗(k)e−iω(k)t
∫ t

0
dt ′eiω(k)t ′

ψa(t ′)

+ e−iω(k)tψ (k, 0). (C2)

Then, we substitute the above equation into Eq. (C1a) to get

∂ψa(t )

∂t
= −iωaψa(t ) −

∫ π

−π

dk |G(k)|2e−iω(k)t

×
∫ t

0
dt ′ eiω(k)t ′

ψa(t ′) − iA(t ), (C3)

where A(t ) ≡ ∫ π

−π
dk G(k)e−iω(k)tψ (k, 0). Next, we take the

Laplace transform on both sides of the above equation by
defining ψ̃a(s) = ∫∞

0 dt e−stψa(t ). By also using the fact that∫∞
0 dt e−st ∂ψa(t )

∂t = sψ̃a(s) − ψa(0), and defining Ã(s) as the
Laplace transform of A(t ), we arrive at

sψ̃a(s) − ψa(0) = −iωaψ̃a(s) − iÃ(s)

−
∫ π

−π

dk |G(k)|2
∫ ∞

0
dt e−[s+iω(k)]t F (t ),

(C4)

where F (t ) ≡ ∫ t
0 dt ′eiω(k)t ′

ψa(t ′). Realizing that d
dt F (t ) =

eiω(k)tψa(t ), we perform integration by parts on∫∞
0 dt e−(s+iω(k))t F (t ) and after some algebra finally arrive at

[s + iωa + i	(s)]ψ̃a(s) = −iÃ(s) + ψa(0), (C5)
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where 	(s) as defined in Eq. (7). By inserting into the above
equation the initial conditions corresponding to the case of
giant atom decay, ψa(0) = 1 and ψ (k, 0) = 0 for all k, we
finally arrive at

ψ̃a(s) = 1

s + iωa + i	(s)
, (C6)

which we can invert via the Bromwich integral to give us
ψa(t ) in the following manner,

ψa(t ) = 1

2π i

∫ λ+i∞

λ−i∞

est

s + iωa + i	(s)

=
∑

All residues

est

s + iωa + i	(s)
,

where to go from the first line to the second line, we pick λ

sufficiently large so that all the poles of the integrand lie on
the left of the line λ + it , t ∈ (−∞,∞). The second line is
Eq. (9) in the main text. We note that in going from the first
line to the second line, we have ignored the contributions from
the integration over any paths induced by possible branch cuts.
This is because we will mainly use the above equation to
study the behavior of BICs, which are poles on the imaginary
axis and hence lead to long-term, nondecaying behavior of
ψa(t ). The integration over any paths induced by possible
branch cuts leads to transient decay behavior which we are
not interested in.

APPENDIX D: DETAILED CALCULATIONS
FOR SECTION III IN THE MAIN TEXT

1. Derivation of Eq. (16)

First of all, we note the important integral result

In(s) =
∫ π

−π

dk
eikn

is − cos(k)

= −2π i√
s2 + 1

(is ∓ i
√

s2 + 1)|n| (D1)

where we have the minus sign when Re(s) > 0 and the pos-
itive sign when Re(s) < 0. The result can be derived by
making the substitution z = eik and thereafter computing the
resultant complex integral

In(s) =
∮

C
dz

zn

is − (1/2)(z + z−1)

1

iz

= 2i
∮

C
dz

zn

z2 − 2isz + 1

= 2i
∮

C
dz

zn

(z − z1)(z − z2)
, (D2)

where the contour C is the unit circle in the complex plane and
z1 = i(s + √

s2 + 1), z2 = i(s − √
s2 + 1). The above integral

can then be easily evaluated by the Cauchy residue theorem.
Now, we can show that Re(s) > 0 implies that |z1| > 1, |z2| <

1, which means that z2 is a simple pole in C. On the other hand,
Re(s) < 0 implies that |z1| < 1, |z2| > 1, which means that z1

is a simple pole in C. Moreover, if n < 0, then we also have
an nth order pole at z = 0 in C. Putting all of these together

with the fact that z1z2 = 1, which means that z−|n|
1 = z|n|

2 , we
can arrive at Eq. (D1) after some algebra.

Thereafter, using the above result we can easily derive the
following integral, with n being a nonnegative integer:∫ π

−π

dk
cos(nk)

is − 2J cos(k)
= −2π i√

s2 + 4J2

(
is ∓ i

√
s2 + 4J2

2J

)n

,

(D3)

where again we have the minus sign when Re(s) > 0 and the
positive sign when Re(s) < 0. Next, we can derive

|G(k)|2 = ρ2

2π

M−1∑
j=0

M−1∑
l=0

eikn0 ( j−l )

= ρ2

2π

[
M + 2

M−1∑
r=1

(M − r) cos(kn0r)

]
, (D4)

where in going from the first line to the next, we realize that
there are M terms of eik(0)n0 , (M − 1) terms of eik(1)n0 and its
complex conjugate, (M − 2) terms of eik(2)n0 and its complex
conjugate, and so on, until at last we have 1 term of eik(M−1)n0

and its complex conjugate. With the form of |G(k)|2 above
and Eq. (D3), we can get Eq. (16) from Eq. (7).

2. Derivation of oscillating BIC conditions

Since we are working with ωa = 0, we want to look for two
BICs as near the band center as possible with energies ±�BIC,
where �BIC is a positive value to be determined. Hence, we
want to minimize the quantity∣∣∣∣ �2J

∣∣∣∣ = cos

[
2π

n0

(
m ± 1

M

)]
(D5)

over all integer values of m. Note that in the above expres-
sion, we have already substituted Eq. (15) into the dispersion
relation ω(k) = 2J cos(k). One way to perform this minimiza-
tion is to first solve m in the equation |�/2J| = 0 and then
round the value of m to the closest integer. When we solve
|�/2J| = 0, we obtain two cases:

2π

n0

(
m ± 1

m

)
= π

2
⇒ m = n0

4
∓ 1

m
(D6a)

2π

n0

(
m ± 1

m

)
= 3π

2
⇒ m = 3n0

4
∓ 1

m
. (D6b)

At this juncture, before we round the value of m obtained
above to the closest integer, we note that there are two cases
we need to consider: either n0 = 2(2l ) or n0 = 2(2l + 1)
where l ∈ Z. In the former case where n0 = 4l , the closest
integer value of m would be m = n0/4 or m = 3n0/4, which
would give us the BIC frequencies in Eq. (19) when we
substitute those values of m into Eq. (D5). Thereafter, we can
obtain ρ0 by substituting those frequencies into Eq. (18) to
obtain Eq. (20).

In the latter case where n0 = 4l + 2, the closest integer
values of m would be m = n0/4 ± 1/2 or m = 3n0/4 ± 1/2,
corresponding to two possible BIC frequencies,

�BIC = sin

[
π

n0

(
1 ± 2

M

)]
.
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However, when we substitute �BIC = sin[(π/n0)(1 − 2/M )]
into Eq. (18), for the case of ωa = 0, we end up with
ρ2

0 < 0, which means that we are only left with �BIC =
sin[(π/n0)(1 + 2/M )] for the n0 = 4l + 2 case. However,
since this is further from the band center as compared to the
n0 = 4l case, the resultant bound states would have lower
emitter probability. Hence, we can conclude that n0 = 4l
would give optimal oscillating BICs.

As an example, for the case where M = 3 and n0 =
4l + 2, n0 > 2, we have the BIC frequency |�| = 2J sin( 5π

3n0
),

which gives us

ρ2
0 = 2J2

√
3

sin

(
10π

3n0

)
. (D7)

Using Eq. (12), we find that the emitter probability∣∣φBIC
a

∣∣2 → 9

9 + 20
√

3π
≈ 0.0764 (D8)

as n0 → ∞, which is considerably smaller than the optimal
value ≈0.171 when n0 is an integer multiple of 4 for M = 3.

3. Derivation of Eq. (25) and Eq. (26)

To derive Eq. (25), the method is to solve Eq. (16) using
both Eq. (17) and Eq. (8) for the case where ωa = 0 and
|�| > 2J . The |�| > 2J condition is because we are trying
to solve for � outside the energy band. We note that there
are two cases for us to consider, namely, Re(s) > 0, cor-
responding to s = −i� + 0+ and Re(s) < 0, corresponding
to s = −i� − 0+. As we will see, the Re(s) > 0 case gives
us the BOC energy for � < −2J , and the Re(s) < 0 case
gives use the BOC energy for � > 2J . First, we consider the
Re(s) > 0 case. In this case, we have the equation

(
�

2J

)2

= −1

4

(
ρ0

J

)2 1√(
�
2J

)2 − 1

⎧⎨
⎩M + 2

M−1∑
r=1

(M − r)

⎡
⎣ �

2J
+
√(

�

2J

)2

− 1

⎤
⎦n0r⎫⎬

⎭, (D9)

where we have used
√

4J2 − �2 = i
√

�2 − 4J2, since |�| > 2J . Now, we substitute �′ = �/2J as well as Eq. (20) for ρ0/J to
get

�′
√

�′2 − 1 = −1

4

2

M
tan

(
π

M

)
sin

(
4π

Mn0

)[
M + 2

M−1∑
r=1

(M − r)(�′ +
√

�′2 − 1)n0r

]
, (D10)

In the n0 → ∞ limit, for the above equation to have a solution, we must have �′ +
√

�′2 − 1 < 1, which means � < −2J .
Hence, taking the n0 → ∞ limit, we have

�′
√

�′2 − 1 = − 2

M
tan

(
π

M

)(
π

Mn0

)
M. (D11)

Solving for �′ in the above equation subject to the condition that � < −2J , we have

�′ = −

√√√√1

2

√
16π2 tan2

(
π
M

)
M2n02 + 1 + 1

2
≈ −1 − 2π2 tan

(
π
M

)2
M2n2

0

. (D12)

The last line in the above equation is Eq. (25) for the case where � < −2J . The derivation for the � > 2J case can be done by
choosing Re(s) < 0 and following the same steps above to arrive at

�′ =

√√√√1

2

√
16π2 tan2

(
π
M

)
M2n02 + 1 + 1

2
≈ 1 + 2π2 tan

(
π
M

)2
M2n2

0

, (D13)

where the last line in the above equation is Eq. (25) for the case where � > 2J . To derive Eq. (26), the method is to use Eq. (12)
together with Eq. (16) and Eq. (8). We will also use Eq. (25) derived above, and also Eq. (20) for ρ0/J . Thereafter, doing an
asymptotic expansion about 1

n0
→ 0 and keeping the lowest order, we obtain Eq. (26).

4. Derivation of Eq. (28)

Firstly, we write our BICs |±〉 as

|±〉 = φ(±)
a |1a〉 +

∫ π

−π

dk e(k)±|1k〉

= φ(±)
a |1a〉 + φ(±)

a

∫ π

−π

dk
G∗(k)

�± − 2J cos(k)
|1k〉, (D14)

where φ(±)
a = 〈1a|±〉 and e(k)± = 〈1k|±〉, and �± is the energy of the |±〉 state, respectively. In going from the first line to the

second line, we used Eq. (B3). In the second line above, we see that we can clearly factor out a global phase corresponding to
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the phase of 〈1a|±〉. Hence, without loss of generality, we can write φa ≡ φ(±)
a = 〈1a|±〉. Then, we have

|±〉 = φa|1a〉 + φa

∫ π

−π

dk
G∗(k)

�± − 2J cos(k)
|1k〉

= φa|1a〉 + φa

∫ π

−π

dk
G∗(k)

�± − 2J cos(k)
c(k)†|0〉

= φa|1a〉 + φa

∫ π

−π

dk
G∗(k)

�± − 2J cos(k)

∑
n

eikn 1√
2π

b†
n|0〉

= φa|1a〉 + φa

∫ π

−π

dk
(ρ0/2

√
π )
∑M−1

l=0 e−iknl

�± − 2J cos(k)

∑
n

eikn 1√
2π

b†
n|0〉

= φa|1a〉 +
∑

n

ρ0φa

2π

M−1∑
l=0

∫ π

−π

dk
eik(n−nl )

�± − 2J cos(k)︸ ︷︷ ︸
≡φn,±

b†
n|0〉, (D15)

Thereafter, to evaluate φn,±, we note that

φn,± = ρ0φa

2π

M−1∑
l=0

∫ π

−π

dk
eik(n−nl )

�± − 2J cos(k)

= ρ0φa

2π

M−1∑
l=0

In−nl (s = −i�± + 0+), (D16)

where In−nl (s) is given by Eq. (D1).

APPENDIX E: PROOF THAT THERE IS NO OSCILLATING
BIC WITH M = 2

For n = 2, we have

|G(k)|2 = ρ2
0

π
[1 + cos(kn0)], (E1)

which gives us

	(s) = −2iρ2
0√

s2 + 4J

[
1 +

(
−i

√
s2 + 4J2 + is

2J

)n0
]
. (E2)

Thus, we have

	(s = −i�) = −2iρ2
0√

4J − �2

[
1 +

(
−i

√
4J2 − �2 + �

2J

)n0
]

= −2iρ2
0√

4J − �2
[1 + cos(n0θ ) + i sin(n0θ )],

(E3)

where θ = arctan( −√
4J2−�2

�
) and −2J < � < 2J . Using

�(�) = Re[	(s = −i� + 0+)], we have

� − ωa = 2ρ2
0√

4J − �2
sin(n0θ ). (E4)

Furthermore, enforcing |G(k)|2 = 0 gives us

k = (2l + 1)
π

n0
, (E5)

where l is an integer. Hence, we have

� = 2J cos

[
π

n0
(2l + 1)

]
, (E6)

which we can substitute into θ = arctan( −√
4J2−�2

�
) to get

θ = − π

n0
(2l + 1). (E7)

Substituting the above expression into Eq. (E4), we have

� = ωa. (E8)

Hence, when we have K = 2 legs in our giant atom, there is
only one BIC at the frequency � = ωa, provided that

ωa = � = 2J cos

[
π

n0
(2l + 1)

]
. (E9)

Otherwise, there is no BIC for K = 2 legs. Moreover, since we
only have one BIC, it is impossible to get an oscillating BIC,
which requires at least two BICs at two different frequencies
in the band.

APPENDIX F: COMPARISON OF THE OSCILLATING BIC
CONDITIONS WITH CONTINUOUS WAVEGUIDE

For M coupling points, and setting ωa = 0, the oscillat-
ing BIC found for a continuous (linearized) waveguide in
Ref. [26] is formed from the superposition of two BICs with
energies

�c = ±1

2
Mγ cot

(nπ

M

)
, n = 1, 2, . . . , �M/2�, (F1)

where γ is the giant atom decay rate into the waveguide. In
our case, γ corresponds to ρ2

0/J . From Eq. (19) and Eq. (20),
we have, for our case,

�BIC = ±2J sin

(
2π

Mn0

)
= ±2γ

J2

ρ2
0

sin

(
2π

Mn0

)

= ±1

2
Mγ cot

( π

M

)
sec

(
2π

Mn0

)
, (F2)
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which looks similar to the continuous-waveguide result for
n = 1. In fact, in the regime where (Mn0) is large such that

sec[2π/(Mn0)] ≈ 1, the oscillating BIC energies are approx-
imately the same as �c.
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