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Abstract. As a further study on reflexive families of subsets, we introduce the reflexive

index for a family of subsets of a given set and show that the index of a finite family of

subsets of a finite or countably infinite set is always finite. The reflexive indices of some

special families are also considered.

Given a set X, let Sub(X) denote the set of all subsets of X and End(X) denote
the set of all endomappings f : X −→ X. For any A ⊆ Sub(X) and F ⊆ End(X)
define

Alg(A) = {f ∈ End(X) : f(A) ⊆ A for all A ∈ A},
Lat(F) = {A ∈ Sub(X) : f(A) ⊆ A for all f ∈ F}.

A family A ⊆ Sub(X) is called reflexive if A = Lat(Alg(A)), or equivalently,
A = Lat(F) for some F ⊆ End(X).

As was shown in [9], A ⊆ Sub(X) is reflexive iff it is closed under arbitrary
unions and intersections and contains the empty set and X. The reflexive families
F ⊆ End(X) were also introduced and characterized as those subsemigroups L of
(End(X), ◦) such that L is a lower set and contains all existing suprema of subsets
of L with respect to a naturally defined partial order on End(X). The similar work
in functional analysis is on the reflexive invariant subspace lattices and reflexive
operator algebras [1-6].

For any A ⊆ Sub(X), let Â = Lat(Alg(A)). Then Â is the smallest family
of subsets containing A which is closed under arbitrary unions and intersections
containing empty set ∅ and X, and Â is finite if A is finite. Furthermore, Â =
Lat(F), where F = Alg(A).

It is, however, still not known whether for any finite family A there is a finite
F ⊆ End(X) such that Â = Lat(F).

In this short paper, we shall answer the above problem. It will be shown that
the answer is positive if and only if X is a finite or countably infinite set. For
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any family A of subsets of a set, we define a cardinal κ(A), which, in a certain
sense, reflects how the sets in A are interrelated. This cardinal will be called the
reflexive index of A. The reflexive indices of some special families are computed.
For instance, we show that if A is a finite chain of subsets of IN (the set of all
natural numbers) with more than one member, then κ(A) = 2.

Definition 1. Let A be a family of subsets of a set X. The reflexive index of A is
defined as

κX(A) = inf{|F| : F ⊆ End(X), Â = Lat(F)},
where |F| is the cardinal of F.

We shall write κ(A) for κX(A) if the set X is clearly assumed.

If C ⊆ X and f ∈ End(X) such that f(C) ⊆ C, then we say that C is invariant
under f . Thus Lat({f}) is the set of all subsets which are invariant under f . Also
note that Lat(F) =

⋂{Lat({f}) : f ∈ F} for any F ⊆ End(X).

In the following we shall use IN to denote the set of all natural numbers.

Remark 2.
(1) For any A ⊆ Sub(X), ˆ̂

A = Â, thus κX(Â) = κX(A).
(2) For any g ∈ End(X), where X is an infinite set, Lat({g}) is an infinite

family. To see this, consider any a ∈ X. If {gk(a) : k ∈ IN} is an infinite set, then
gk(a) 6= gi(a) whenever k 6= i. In this case, {{gi(a) : i ≥ k} : k ∈ IN} is an infinite
subfamily of Lat({g}) (gk is the composition of k copies of g). Now assume that for
each a ∈ X, {gk(a) : k ∈ IN} is a finite set, then there are infinitely many sets of the
form {gk(a) : k ∈ IN} (a ∈ X), each of them is a member of Lat({g}). Therefore
Lat({g}) is infinite.

Lemma 3. Let X be a nonempty set.
(1) If X is a countably infinite set, then there are two mappings

µ0
X , µ1

X : X −→ X

such that for any nonempty B ⊆ X, if µ0
X(B) ⊆ B and µ1

X(B) ⊆ B then B = X.
(2) If X is a finite set, there is one mapping µ0

X : X −→ X such that for any
nonempty B ⊆ X, µ0

X(B) ⊆ B implies B = X.

Proof. (1) If X = {a1, a2, · · · } is a countably infinite set, define µ0
X(ai) = ai+1 and

µ1
X(ai) = a1 for each i. Then µ0

X and µ1
X satisfy the requirement.

(2) If X = {a1, a2, · · · , an} is a finite set, define µ0
X(ai) = ai+1(1 ≤ i < n) and

µ0
X(an) = a1. Then B ⊆ X and µ0

X(B) ⊆ B will imply B = ∅ or B = X. 2

Proposition 4. Let X be a nonempty set.
(1) If X is countably infinite, κX({∅, X}) = 2.
(2) If X is a finite set, κX({∅, X}) = 1.

Proof. First, note that the family {∅, X} is closed under arbitrary intersections and
unions, so it is reflexive, i.e. Lat(Alg({∅, X})) = {∅, X} (Theorem 1 of [9]).

https://www.researchgate.net/publication/268664072_On_reflexive_subobject_lattices_and_reflexive_endomorphism_algebras?el=1_x_8&enrichId=rgreq-4423f55749e095dffdbee9c78107f78d-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE4ODQxNjtBUzo1MDk2ODk5MzU5OTQ4ODBAMTQ5ODUzMDk1ODc0MA==
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The statement (2) clearly follows from Lemma 3(2).
To prove (1), by Lemma 3(1), we have κX({∅, X}) ≤ 2. Also, by Remark 2

(2), for any f ∈ End(X) the set Lat({f}) is infinite, implying {∅, X} 6= Lat({f}).
Hence κX({∅, X}) = 2. 2

Proposition 5. If X is a noncountable infinite set, then κX({∅, X}) = |X|, where
|X| is the cardinal of X.

Proof. Let ∅ 6= F ⊆ End(X) and |F| < |X|. Take F∗ to be the subsemigroup of
(End(X), ◦) generated by F, where ◦ is the composition operation. If F is finite,
then F∗ is finite or countably infinite. Since X is uncountable it follows that |F∗| <
|X|. If F is infinite, then |F∗| = |F| < |X|. Chose one element a ∈ X and let
F∗a = {f(a) : f ∈ F∗}, called the orbit of a under F. Clearly F∗a is a member
of Lat(F). However, |F∗a| ≤ |F∗| < |X|, implying F∗a 6= X. Also as F∗a 6= ∅, so
Lat(F) 6= {∅, X}. It thus follows that κX({∅, X}) ≥ |X|. Now consider K = {fa :
a ∈ X} ⊆ End(X), where fa : X −→ X is the constant mapping that sends every
x ∈ X to a. Then for any nonempty set B ⊆ X, if fa(B) ⊆ B for all a ∈ X, then
X = B. Therefore Lat(K) = {∅, X} and so κX({∅, X}) ≤ |K| = |X|. All these
show that κX({∅, X}) = |X|. 2

Now we prove the main result of this paper.

Theorem 6. Let X be a finite or countably infinite set. Then for any finite family
A ⊆ Sub(X), κ(A) is finite.

Proof. Since the conclusion is clearly true if X is a finite set, we only give the
proof for countably infinite sets X. To simplify the argument we take X = IN
(the set of all natural numbers) and denote κN (F) simply by κ(F). Without lose
of generality, we assume that IN ∈ A. By rearranging, if necessary, we can let
A = {A1, A2, · · · , Am} such that A1 = IN and j > i if Aj ⊂ Ai (however, j > i
need not imply Aj ⊂ Ai). Let Θ = {(i1, i2, ..., ik) : 1 ≤ i1 < i2 < · · · < ik ≤ m, 1 ≤
k ≤ m}. For each σ = (i1, i2, ..., ik) ∈ Θ, define Xσ =

⋂k
t=1 Ait −

⋃{As : s 6= it, t =
1, 2, · · · , k}. If σ = (i1, i2, ..., ik) ∈ Θ, we call each it, 1 ≤ t ≤ k a component of σ.

For each σ ∈ Θ, we assume that Xσ = {aσ
1 , aσ

2 , · · · } such that aσ
1 < aσ

2 < · · ·
when Xσ 6= ∅.

For σ1 = (s1, s2, · · · , sk), σ2 = (t1, t2, · · · , tl) ∈ Θ, define σ1 < σ2 if
{t1, t2, · · · , tl} ⊂ {s1, s2, · · · , sk}.

It’s easy to see that the following statements are true:
(a) Xσ and Xβ are disjoint if σ 6= β;
(b) for each Ai ∈ A, Ai =

⋃{Xσ : i is a component of σ};
(c) for each σ = (i1, i2, · · · , ik) ∈ Θ,

⋂
{Ait : t = 1, 2, · · · , k} =

⋃
{Xβ : β ∈ Θ, β ≤ σ}.

Now let f0 : IN −→ IN be a mapping such that f0|Xσ = µ0
Xσ

as constructed
in the proof of Lemma 3 for each set Xσ (note that X ′

σs are disjoint sets and their
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union is IN). Let f1 : IN −→ IN be the mapping such that f1(x) = aσ
1 for each

x ∈ Xσ.
For any σ = (s1, s2, · · · , sk) > β = (t1, t2, · · · , tm) define fσ,β : IN −→ IN , if Xσ

and Xβ are nonempty, as follows:

fσ,β(x) =





x, if x 6∈ Xσ,

aσ
1 , if x ∈ Xσ − {aσ

1},
aβ
1 , if x = aσ

1 .

Now consider the finite family F = {f0, f1}⋃{fσ,β : σ, β ∈ Θ, σ > β, Xσ 6=
∅, Xβ 6= ∅}.

(1) Let Ai ∈ A. By above (a) and (b), Ai is a disjoint union of some X ′
σs. Since

f0(Xσ) ⊆ Xσ, f1(Xσ) ⊆ Xσ, thus f0(Ai) ⊆ Ai and f1(Ai) ⊆ Ai.
Now let σ, β ∈ Θ such that σ > β. If x ∈ Ai and x 6∈ Xσ then fσ,β(x) = x ∈ Ai.

If x ∈ Xσ, then i is a component of σ, so i is also a component of β. Now
fσ,β(x) ∈ Xσ or fσ,β(x) ∈ Xβ . But Xσ, Xβ ⊆ Ai, so fσ,β(x) ∈ Ai, therefore
fσ,β(Ai) ⊆ Ai. It follows that A ⊆ Lat(F). Then Alg(A) ⊇ Alg(Lat(F)) and so
Â = Lat(Alg(A)) ⊆ Lat(Alg(Lat(F))) = Lat(F), the last equation holds for any F

(see Lemma 1(3) of [9]).
(2) Given any C ⊆ IN such that C ∈ Lat(F), we show that C ∈ Â =

Lat(Alg(A)). First, if C ∩Xσ 6= ∅, then there is a point x ∈ C ∩Xσ, so as f1 ∈ F,
f1(x) = aσ

1 ∈ C. Hence aσ
2 = f0(aσ

1 ) ∈ C, a3 = f0(aσ
1 ) ∈ C, etc. It then follows that

Xσ ⊆ C. Now if β < σ, then aβ
1 = fσ,β(aσ

1 ) ∈ C, so Xβ ∩ C 6= ∅, therefore we also
can deduce that Xβ ⊆ C. For any element x ∈ C, there exists γ = (i1, i2, · · · , ik)
such that x ∈ Ait for each t = 1, 2, · · · , k and x 6∈ Aj for all j 6∈ {i1, i2, · · · , ik}.
Then x ∈ Xγ . In addition, Xγ ⊆ C because x ∈ Xγ ∩C which implies Xγ ∩C 6= ∅.
By property (c),

⋂{Ait : t = 1, 2, · · · , k} =
⋃{Xβ : β ≤ γ} ⊆ C. In addition,

x ∈ ⋂{Ait : t = 1, 2, · · · , k} ∈ Â (Â is closed under arbitrary intersections and each
Ai ∈ A). All these show that C is a union of members of Â, thus C ∈ Â because Â

is closed under arbitrary unions. Hence Lat(F) ⊆ Â.
The combination of (1) and (2) implies that Lat(F) = Â. Since |F| is finite, the

proof is completed. 2

Now we consider κ(A) for some special families A of subsets of IN .

Example 7. Let A = {2IN, 3IN, 5IN}. We show that κ(A) ≤ 4.
Let IN − (2IN ∪ 3IN ∪ 5IN) = {ak : k = 1, 2, · · · }, 2IN − (3IN ∪ 5IN) = {b1

k : k =
1, 2, · · · }, 3IN − (2IN ∪ 5IN) = {b2

k : k = 1, 2, · · · }, 5IN − (3IN ∪ 2IN) = {b3
k : k =

1, 2, · · · }, 10IN − 3IN = {c1
k : k = 1, 2, · · · }, 6IN − 5IN = {c2

k : k = 1, 2, · · · }, 15IN −
2IN = {c3

k : k = 1, 2, · · · }, 30IN = {dk : k = 1, 2, · · · }.
Define the mappings f, g1, g2, g3 in End(IN) as follows:

https://www.researchgate.net/publication/268664072_On_reflexive_subobject_lattices_and_reflexive_endomorphism_algebras?el=1_x_8&enrichId=rgreq-4423f55749e095dffdbee9c78107f78d-XXX&enrichSource=Y292ZXJQYWdlOzI3NjE4ODQxNjtBUzo1MDk2ODk5MzU5OTQ4ODBAMTQ5ODUzMDk1ODc0MA==
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f(x) =





ak+1, if x = ak (k ≥ 1),
bi
k+1, if x = bi

k (i = 1, 2, 3, and k ≥ 1),
ci
k+1, if x = ci

k (i = 1, 2, 3, and k ≥ 1),
dk+1, if x = dk (k ≥ 1).

g1(x) =





a1, if x = ak+1 (k ≥ 1),
b1
1, if x = a1,

c1
1, if x = bi

1 (i = 1, 3),
c3
1, if x = b2

1,

bi
1, if x = bi

k+1 (i = 1, 2, 3, and k ≥ 1),
ci
1, if x = ci

k+1 (i = 1, 2, 3, and k ≥ 1),
d1, if x = dk (k ≥ 1) or ci

1 (i = 1, 2, 3).

g2(x) =





a1, if x = ak+1 (k ≥ 1),
b2
1, if x = a1,

c2
1, if x = bi

1 (i = 1, 2),
c3
1, if x = b3

1

bi
1, if x = bi

k+1 (i = 1, 2, 3, and k ≥ 1),
ci
1, if x = ci

k+1 (i = 1, 2, 3, and k ≥ 1),
d1, if x = dk (k ≥ 1) or x = ci

1 (i = 1, 2, 3).

g3(x) =

{
b3
1, if x = a1,

x, otherwise .

Let F = {f, g1, g2, g3} and A ∈ Lat(F).
(i) Each of 2IN, 3IN and 5IN is invariant under every mapping in F. Thus

Â ⊆ Lat(F).
(ii) If A ∩ (IN − (2IN ∪ 3IN ∪ 5IN)) 6= ∅, then, as g1(A) ⊆ A, it follows that

a1 ∈ A. Then, each ak+1, k ≥ 1 is in A because f(A) ⊆ A. Since gi(A) ⊆ A it
follows that bi

1 ∈ A (i = 1, 2, 3). Again, as f(A) ⊆ A, we deduce that A contains
each of 2IN − (3IN ∪5IN), 3IN − (2IN ∪5IN) and 5IN − (2IN ∪3IN). Now A contains
each of ci

1 (i = 1, 2, 3). With a similar argument we deduce that A contains each of
6IN − 5IN, 10IN − 3IN, 15IN − 2IN and 30IN . Hence A = IN ∈ Lat(F).

In a similar way we can show the following statements are true:
(iii) If A∩(2IN−(3IN∪5IN)) 6= ∅ then A contains 2IN . If A∩(3IN−(2IN∪5IN)) 6=

∅, then A contains 3IN . If A ∩ (5IN − (2IN ∪ 3IN)) 6= ∅, then A contains 5IN .
(iv) If A∩(6IN−5IN) 6= ∅, respectively, A∩(10IN−3IN) 6= ∅, A∩(15IN−2IN) 6=

∅, then A ⊇ 6IN , respectively, A ⊇ 10IN , A ⊇ 15IN .
(v) If A ∩ 30IN 6= ∅, then A ⊇ 30IN .
From (i)-(v), it follows that A either equals IN or is a union of intersections of

2IN, 3IN, 5IN , that is A ∈ Â and so Â = Lat(F).
Thus Lat(F) = Â, so κ(A) ≤ 4.
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Remark 8. From the proof in the above example, we can see that a more gen-
eral conclusion is true: if p1, p2, · · · , pm are distinct primes, then κ({{piIN : i =
1, 2, · · · ,m}) ≤ m + 1.

Proposition 9. If A = {A1, A2, · · · , Am} is a finite chain of distinct subsets of IN
with m ≥ 2, then κ(A) = 2.

Proof. Without lose of generality, we assume that A1 ⊂ A2 ⊂ · · · ⊂ Am and A1 6= ∅
and Am = IN . Let A1 = {a1

1, a
1
2, · · · }, A2 − A1 = {a2

1, a
2
2, · · · }, ..., Am − Am−1 =

{am
1 , am

2 , · · · }. Define f, g ∈ End(IN) as follows: for i = 1, 2, · · · ,m, and k ∈ IN ,

f(ai
k) =

{
ai

k+1, if ai
k is not the last element in Ai −Ai−1,

ai
k, if ai

k is the last element in Ai −Ai−1.

g(x) =

{
ai
1, if x = ai

k+1,

ai
1, if x = ai+1

1 .

Since Â is the smallest family containing A which is closed under arbitrary
unions and intersections, Â = A ∪ {∅}. Furthermore, A ∪ {∅} = Lat({f, g}). Thus
κ(A) ≤ 2. By Remark 2(2), for any h ∈ End(IN), Lat({h}) is an infinite family, so
κ(A) 6= 1, therefore κ(A) = 2. 2

Remark 10.
(1) The reader may wonder whether there is a set family whose reflex index is

1. Consider A = {∅, IN} ∪ {Cn : n = 1, 2, · · · }, where Cn = {n, n + 1, ...}. Then
A = Â = Lat({f}), where f is defined by

f(m) =

{
1, if m = 1,

m− 1, if m > 1.

(2) The following is a chain of subsets of IN whose reflexive index is not finite.
Put B = {∅, IN, {k : k ∈ IN, k ≥ 2}}⋃{Dn : n ∈ IN, n > 1}, where for each
n > 1, Dn = {2, 3, · · · , n}. Clearly B̂ = B. Let F ⊆ End(IN) be any finite family
of endomappings on IN satisfying B ⊆ Lat(F). If f(1) = 1 for all f ∈ F, then
{1} ∈ Lat(F)− B̂. If there is f ∈ F with f(1) 6= 1, let l = max{f(1) : f ∈ F}, then
l ≥ 2 and the subset {1} ∪Dl is in Lat(F) − B. Thus for any finite F ⊆ End(IN),
Lat(F) 6= B = B̂, therefore κ(B) is not finite.

Remark 11.
(1) It is possible and necessary to identify the exact values of the reflexive

indices of more concrete families (such as A = {piIN : i = 1, 2, · · · , n} for any
distinct prime numbers p1, p2, · · · , pn). We leave this to interested readers to try.

(2) In [7][8], the reflexive families of closed subsets of a topological space are
studied. We can also define the reflexive index for a family of closed sets. One of
the natural problems would be: for which spaces, does every finite family of closed
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sets have a finite reflexive index? Furthermore, one can introduce and consider the
reflexive index of a family of closed subspaces of a Hilbert space.
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