Title Reflexive index of a family of sets
Author(s) Dongsheng Zhao
Source Kyungpook Mathematical Journal, 54(2), 263-269
Published by Department of Mathematics, Kyungpook National University

Copyright © 2014 Department of Mathematics, Kyungpook National University
This is an Open Access article distributed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
(https://creativecommons.org/licenses/by-nc-sa/4.0/).
Citation: Zhao, D. (2014). Reflexive index of a family of sets. Kyungpook Mathematical Journal, 54(2), 263-269. http://dx.doi.org/10.5666/KMJ.2014.54.2.263

The final publication is also available at http://kmj.knu.ac.kr
This document was archived with permission from the copyright holder.

Reflexive Index of a Family of Sets

Zhao Dongsheng
Mathematics and Mathematics Education, National Institute of Education, Nanyang Technological University, Singapore
e-mail: dongsheng.zhao@nie.edu.sg

Abstract. As a further study on reflexive families of subsets, we introduce the reflexive index for a family of subsets of a given set and show that the index of a finite family of subsets of a finite or countably infinite set is always finite. The reflexive indices of some special families are also considered.

Given a set X, let $\operatorname{Sub}(X)$ denote the set of all subsets of X and $\operatorname{End}(X)$ denote the set of all endomappings $f: X \longrightarrow X$. For any $\mathcal{A} \subseteq \operatorname{Sub}(X)$ and $\mathcal{F} \subseteq \operatorname{End}(X)$ define

$$
\begin{aligned}
& \operatorname{Alg}(\mathcal{A})=\{f \in \operatorname{End}(X): f(A) \subseteq A \text { for all } A \in \mathcal{A}\} \\
& \operatorname{Lat}(\mathcal{F})=\{A \in \operatorname{Sub}(X): f(A) \subseteq A \text { for all } f \in \mathcal{F}\}
\end{aligned}
$$

A family $\mathcal{A} \subseteq \operatorname{Sub}(X)$ is called reflexive if $\mathcal{A}=\operatorname{Lat}(\operatorname{Alg}(\mathcal{A}))$, or equivalently, $\mathcal{A}=\operatorname{Lat}(\mathcal{F})$ for some $\mathcal{F} \subseteq \operatorname{End}(\mathrm{X})$.

As was shown in [9], $\mathcal{A} \subseteq \operatorname{Sub}(X)$ is reflexive iff it is closed under arbitrary unions and intersections and contains the empty set and X. The reflexive families $\mathcal{F} \subseteq \operatorname{End}(X)$ were also introduced and characterized as those subsemigroups \mathcal{L} of $(\operatorname{End}(X), \circ)$ such that \mathcal{L} is a lower set and contains all existing suprema of subsets of \mathcal{L} with respect to a naturally defined partial order on $\operatorname{End}(X)$. The similar work in functional analysis is on the reflexive invariant subspace lattices and reflexive operator algebras [1-6].

For any $\mathcal{A} \subseteq \operatorname{Sub}(X)$, let $\hat{\mathcal{A}}=\operatorname{Lat}(\operatorname{Alg}(\mathcal{A}))$. Then $\hat{\mathcal{A}}$ is the smallest family of subsets containing \mathcal{A} which is closed under arbitrary unions and intersections containing empty set \emptyset and X, and $\hat{\mathcal{A}}$ is finite if \mathcal{A} is finite. Furthermore, $\hat{\mathcal{A}}=$ $\operatorname{Lat}(\mathcal{F})$, where $\mathcal{F}=\operatorname{Alg}(\mathcal{A})$.

It is, however, still not known whether for any finite family \mathcal{A} there is a finite $\mathcal{F} \subseteq \operatorname{End}(X)$ such that $\hat{\mathcal{A}}=\operatorname{Lat}(\mathcal{F})$.

In this short paper, we shall answer the above problem. It will be shown that the answer is positive if and only if X is a finite or countably infinite set. For
any family \mathcal{A} of subsets of a set, we define a cardinal $\kappa(\mathcal{A})$, which, in a certain sense, reflects how the sets in \mathcal{A} are interrelated. This cardinal will be called the reflexive index of \mathcal{A}. The reflexive indices of some special families are computed. For instance, we show that if \mathcal{A} is a finite chain of subsets of $I N$ (the set of all natural numbers) with more than one member, then $\kappa(\mathcal{A})=2$.

Definition 1. Let \mathcal{A} be a family of subsets of a set X. The reflexive index of \mathcal{A} is defined as

$$
\kappa_{X}(\mathcal{A})=\inf \{|\mathcal{F}|: \mathcal{F} \subseteq \operatorname{End}(X), \hat{\mathcal{A}}=\operatorname{Lat}(\mathcal{F})\}
$$

where $|\mathcal{F}|$ is the cardinal of \mathcal{F}.
We shall write $\kappa(\mathcal{A})$ for $\kappa_{X}(\mathcal{A})$ if the set X is clearly assumed.
If $C \subseteq X$ and $f \in \operatorname{End}(X)$ such that $f(C) \subseteq C$, then we say that C is invariant under f. Thus Lat $(\{f\})$ is the set of all subsets which are invariant under f. Also note that $\operatorname{Lat}(\mathcal{F})=\bigcap\{\operatorname{Lat}(\{f\}): f \in \mathcal{F}\}$ for any $\mathcal{F} \subseteq \operatorname{End}(X)$.

In the following we shall use $I N$ to denote the set of all natural numbers.

Remark 2.

(1) For any $\mathcal{A} \subseteq \operatorname{Sub}(X), \hat{\hat{\mathcal{A}}}=\hat{\mathcal{A}}$, thus $\kappa_{X}(\hat{\mathcal{A}})=\kappa_{X}(\mathcal{A})$.
(2) For any $g \in \operatorname{End}(X)$, where X is an infinite set, $\operatorname{Lat}(\{g\})$ is an infinite family. To see this, consider any $a \in X$. If $\left\{g^{k}(a): k \in I N\right\}$ is an infinite set, then $g^{k}(a) \neq g^{i}(a)$ whenever $k \neq i$. In this case, $\left\{\left\{g^{i}(a): i \geq k\right\}: k \in \mathbb{N}\right\}$ is an infinite subfamily of $\operatorname{Lat}(\{g\})\left(g^{k}\right.$ is the composition of k copies of $\left.g\right)$. Now assume that for each $a \in X,\left\{g^{k}(a): k \in \mathbb{N}\right\}$ is a finite set, then there are infinitely many sets of the form $\left\{g^{k}(a): k \in \mathbb{N}\right\}(a \in X)$, each of them is a member of $\operatorname{Lat}(\{g\})$. Therefore $\operatorname{Lat}(\{g\})$ is infinite.
Lemma 3. Let X be a nonempty set.
(1) If X is a countably infinite set, then there are two mappings

$$
\mu_{X}^{0}, \mu_{X}^{1}: X \longrightarrow X
$$

such that for any nonempty $B \subseteq X$, if $\mu_{X}^{0}(B) \subseteq B$ and $\mu_{X}^{1}(B) \subseteq B$ then $B=X$.
(2) If X is a finite set, there is one mapping $\mu_{X}^{0}: X \longrightarrow X$ such that for any nonempty $B \subseteq X, \mu_{X}^{0}(B) \subseteq B$ implies $B=X$.

Proof. (1) If $X=\left\{a_{1}, a_{2}, \cdots\right\}$ is a countably infinite set, define $\mu_{X}^{0}\left(a_{i}\right)=a_{i+1}$ and $\mu_{X}^{1}\left(a_{i}\right)=a_{1}$ for each i. Then μ_{X}^{0} and μ_{X}^{1} satisfy the requirement.
(2) If $X=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ is a finite set, define $\mu_{X}^{0}\left(a_{i}\right)=a_{i+1}(1 \leq i<n)$ and $\mu_{X}^{0}\left(a_{n}\right)=a_{1}$. Then $B \subseteq X$ and $\mu_{X}^{0}(B) \subseteq B$ will imply $B=\emptyset$ or $B=X$.
Proposition 4. Let X be a nonempty set.
(1) If X is countably infinite, $\kappa_{X}(\{\emptyset, X\})=2$.
(2) If X is a finite set, $\kappa_{X}(\{\emptyset, X\})=1$.

Proof. First, note that the family $\{\emptyset, X\}$ is closed under arbitrary intersections and unions, so it is reflexive, i.e. $\operatorname{Lat}(\operatorname{Alg}(\{\emptyset, X\}))=\{\emptyset, X\}$ (Theorem 1 of $\underline{9]}$).

The statement (2) clearly follows from Lemma 3(2).
To prove (1), by Lemma $3(1)$, we have $\kappa_{X}(\{\emptyset, X\}) \leq 2$. Also, by Remark 2 (2), for any $f \in \operatorname{End}(X)$ the set $\operatorname{Lat}(\{f\})$ is infinite, implying $\{\emptyset, X\} \neq \operatorname{Lat}(\{f\})$. Hence $\kappa_{X}(\{\emptyset, X\})=2$.
Proposition 5. If X is a noncountable infinite set, then $\kappa_{X}(\{\emptyset, X\})=|X|$, where $|X|$ is the cardinal of X.

Proof. Let $\emptyset \neq \mathcal{F} \subseteq \operatorname{End}(X)$ and $|\mathcal{F}|<|X|$. Take \mathcal{F}^{*} to be the subsemigroup of $(\operatorname{End}(X), \circ)$ generated by \mathcal{F}, where \circ is the composition operation. If \mathcal{F} is finite, then \mathcal{F}^{*} is finite or countably infinite. Since X is uncountable it follows that $\left|\mathcal{F}^{*}\right|<$ $|X|$. If \mathcal{F} is infinite, then $\left|\mathcal{F}^{*}\right|=|\mathcal{F}|<|X|$. Chose one element $a \in X$ and let $\mathcal{F}^{*} a=\left\{f(a): f \in \mathcal{F}^{*}\right\}$, called the orbit of a under \mathcal{F}. Clearly $\mathcal{F}^{*} a$ is a member of $\operatorname{Lat}(\mathcal{F})$. However, $\left|\mathcal{F}^{*} a\right| \leq\left|\mathcal{F}^{*}\right|<|X|$, implying $\mathcal{F}^{*} a \neq X$. Also as $\mathcal{F}^{*} a \neq \emptyset$, so $\operatorname{Lat}(\mathcal{F}) \neq\{\emptyset, X\}$. It thus follows that $\kappa_{X}(\{\emptyset, X\}) \geq|X|$. Now consider $\mathcal{K}=\left\{f_{a}\right.$: $a \in X\} \subseteq \operatorname{End}(X)$, where $f_{a}: X \longrightarrow X$ is the constant mapping that sends every $x \in X$ to a. Then for any nonempty set $B \subseteq X$, if $f_{a}(B) \subseteq B$ for all $a \in X$, then $X=B$. Therefore $\operatorname{Lat}(\mathcal{K})=\{\emptyset, X\}$ and so $\kappa_{X}(\{\emptyset, X\}) \leq|\mathcal{K}|=|X|$. All these show that $\kappa_{X}(\{\emptyset, X\})=|X|$.

Now we prove the main result of this paper.
Theorem 6. Let X be a finite or countably infinite set. Then for any finite family $\mathcal{A} \subseteq \operatorname{Sub}(X), \kappa(\mathcal{A})$ is finite.

Proof. Since the conclusion is clearly true if X is a finite set, we only give the proof for countably infinite sets X. To simplify the argument we take $X=I N$ (the set of all natural numbers) and denote $\kappa_{N}(\mathcal{F})$ simply by $\kappa(\mathcal{F})$. Without lose of generality, we assume that $\mathbb{N} \in \mathcal{A}$. By rearranging, if necessary, we can let $\mathcal{A}=\left\{A_{1}, A_{2}, \cdots, A_{m}\right\}$ such that $A_{1}=I N$ and $j>i$ if $A_{j} \subset A_{i}$ (however, $j>i$ need not imply $\left.A_{j} \subset A_{i}\right)$. Let $\Theta=\left\{\left(i_{1}, i_{2}, \ldots, i_{k}\right): 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq m, 1 \leq\right.$ $k \leq m\}$. For each $\sigma=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in \Theta$, define $X_{\sigma}=\bigcap_{t=1}^{k} A_{i_{t}}-\bigcup\left\{A_{s}: s \neq i_{t}, t=\right.$ $1,2, \cdots, k\}$. If $\sigma=\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in \Theta$, we call each $i_{t}, 1 \leq t \leq k$ a component of σ.

For each $\sigma \in \Theta$, we assume that $X_{\sigma}=\left\{a_{1}^{\sigma}, a_{2}^{\sigma}, \cdots\right\}$ such that $a_{1}^{\sigma}<a_{2}^{\sigma}<\cdots$ when $X_{\sigma} \neq \emptyset$.

For $\sigma_{1}=\left(s_{1}, s_{2}, \cdots, s_{k}\right), \sigma_{2}=\left(t_{1}, t_{2}, \cdots, t_{l}\right) \in \Theta$, define $\sigma_{1}<\sigma_{2}$ if $\left\{t_{1}, t_{2}, \cdots, t_{l}\right\} \subset\left\{s_{1}, s_{2}, \cdots, s_{k}\right\}$.

It's easy to see that the following statements are true:
(a) X_{σ} and X_{β} are disjoint if $\sigma \neq \beta$;
(b) for each $A_{i} \in \mathcal{A}, A_{i}=\bigcup\left\{X_{\sigma}: i\right.$ is a component of $\left.\sigma\right\}$;
(c) for each $\sigma=\left(i_{1}, i_{2}, \cdots, i_{k}\right) \in \Theta$,

$$
\bigcap\left\{A_{i_{t}}: t=1,2, \cdots, k\right\}=\bigcup\left\{X_{\beta}: \beta \in \Theta, \beta \leq \sigma\right\}
$$

Now let $f^{0}: I N \longrightarrow I N$ be a mapping such that $\left.f^{0}\right|_{X_{\sigma}}=\mu_{X_{\sigma}}^{0}$ as constructed in the proof of Lemma 3 for each set X_{σ} (note that $X_{\sigma}^{\prime} s$ are disjoint sets and their
union is $\mathbb{N})$. Let $f^{1}: \mathbb{N} \longrightarrow \mathbb{N}$ be the mapping such that $f^{1}(x)=a_{1}^{\sigma}$ for each $x \in X_{\sigma}$.

For any $\sigma=\left(s_{1}, s_{2}, \cdots, s_{k}\right)>\beta=\left(t_{1}, t_{2}, \cdots, t_{m}\right)$ define $f_{\sigma, \beta}: \mathbb{I} \longrightarrow \mathbb{N}$, if X_{σ} and X_{β} are nonempty, as follows:

$$
f_{\sigma, \beta}(x)= \begin{cases}x, & \text { if } x \notin X_{\sigma} \\ a_{1}^{\sigma}, & \text { if } x \in X_{\sigma}-\left\{a_{1}^{\sigma}\right\} \\ a_{1}^{\beta}, & \text { if } x=a_{1}^{\sigma}\end{cases}
$$

Now consider the finite family $\mathcal{F}=\left\{f^{0}, f^{1}\right\} \bigcup\left\{f_{\sigma, \beta}: \sigma, \beta \in \Theta, \sigma>\beta, X_{\sigma} \neq\right.$ $\left.\emptyset, X_{\beta} \neq \emptyset\right\}$.
(1) Let $A_{i} \in \mathcal{A}$. By above (a) and (b), A_{i} is a disjoint union of some $X_{\sigma}^{\prime} s$. Since $f^{0}\left(X_{\sigma}\right) \subseteq X_{\sigma}, f^{1}\left(X_{\sigma}\right) \subseteq X_{\sigma}$, thus $f^{0}\left(A_{i}\right) \subseteq A_{i}$ and $f^{1}\left(A_{i}\right) \subseteq A_{i}$.

Now let $\sigma, \beta \in \Theta$ such that $\sigma>\beta$. If $x \in A_{i}$ and $x \notin X_{\sigma}$ then $f_{\sigma, \beta}(x)=x \in A_{i}$. If $x \in X_{\sigma}$, then i is a component of σ, so i is also a component of β. Now $f_{\sigma, \beta}(x) \in X_{\sigma}$ or $f_{\sigma, \beta}(x) \in X_{\beta}$. But $X_{\sigma}, X_{\beta} \subseteq A_{i}$, so $f_{\sigma, \beta}(x) \in A_{i}$, therefore $f_{\sigma, \beta}\left(A_{i}\right) \subseteq A_{i}$. It follows that $\mathcal{A} \subseteq \operatorname{Lat}(\mathcal{F})$. $\operatorname{Then} \operatorname{Alg}(\mathcal{A}) \supseteq \operatorname{Alg}(\operatorname{Lat}(\mathcal{F}))$ and so $\hat{\mathcal{A}}=\operatorname{Lat}(\operatorname{Alg}(\mathcal{A})) \subseteq \operatorname{Lat}(\operatorname{Alg}(\operatorname{Lat}(\mathcal{F})))=\operatorname{Lat}(\mathcal{F})$, the last equation holds for any \mathcal{F} (see Lemma 1(3) of [9]).
(2) Given any $C \subseteq \mathbb{N}$ such that $C \in \operatorname{Lat}(\mathcal{F})$, we show that $C \in \hat{\mathcal{A}}=$ $\operatorname{Lat}(\operatorname{Alg}(\mathcal{A}))$. First, if $C \cap X_{\sigma} \neq \emptyset$, then there is a point $x \in C \cap X_{\sigma}$, so as $f^{1} \in \mathcal{F}$, $f^{1}(x)=a_{1}^{\sigma} \in C$. Hence $a_{2}^{\sigma}=f^{0}\left(a_{1}^{\sigma}\right) \in C, a_{3}=f^{0}\left(a_{1}^{\sigma}\right) \in C$, etc. It then follows that $X_{\sigma} \subseteq C$. Now if $\beta<\sigma$, then $a_{1}^{\beta}=f_{\sigma, \beta}\left(a_{1}^{\sigma}\right) \in C$, so $X_{\beta} \cap C \neq \emptyset$, therefore we also can deduce that $X_{\beta} \subseteq C$. For any element $x \in C$, there exists $\gamma=\left(i_{1}, i_{2}, \cdots, i_{k}\right)$ such that $x \in A_{i_{t}}$ for each $t=1,2, \cdots, k$ and $x \notin A_{j}$ for all $j \notin\left\{i_{1}, i_{2}, \cdots, i_{k}\right\}$. Then $x \in X_{\gamma}$. In addition, $X_{\gamma} \subseteq C$ because $x \in X_{\gamma} \cap C$ which implies $X_{\gamma} \cap C \neq \emptyset$. By property (c), $\bigcap\left\{A_{i_{t}}: t=1,2, \cdots, k\right\}=\bigcup\left\{X_{\beta}: \beta \leq \gamma\right\} \subseteq C$. In addition, $x \in \bigcap\left\{A_{i_{t}}: t=1,2, \cdots, k\right\} \in \hat{\mathcal{A}}$ ($\hat{\mathcal{A}}$ is closed under arbitrary intersections and each $\left.A_{i} \in \mathcal{A}\right)$. All these show that C is a union of members of $\hat{\mathcal{A}}$, thus $C \in \hat{\mathcal{A}}$ because $\hat{\mathcal{A}}$ is closed under arbitrary unions. Hence $\operatorname{Lat}(\mathcal{F}) \subseteq \hat{\mathcal{A}}$.

The combination of (1) and (2) implies that $\operatorname{Lat}(\mathcal{F})=\hat{\mathcal{A}}$. Since $|\mathcal{F}|$ is finite, the proof is completed.

Now we consider $\kappa(\mathcal{A})$ for some special families \mathcal{A} of subsets of $I N$.
Example 7. Let $\mathcal{A}=\{2 \mathbb{N}, 3 I N, 5 I N\}$. We show that $\kappa(\mathcal{A}) \leq 4$.
Let $\mathbb{N}-(2 \mathbb{N} \cup 3 \mathbb{N} \cup 5 \mathbb{N})=\left\{a_{k}: k=1,2, \cdots\right\}, 2 \mathbb{N}-(3 \mathbb{N} \cup 5 \mathbb{N})=\left\{b_{k}^{1}: k=\right.$ $1,2, \cdots\}, 3 \mathbb{N}-(2 \mathbb{N} \cup 5 \mathbb{N})=\left\{b_{k}^{2}: k=1,2, \cdots\right\}, 5 \mathbb{N}-(3 \mathbb{N} \cup 2 \mathbb{N})=\left\{b_{k}^{3}: k=\right.$ $1,2, \cdots\}, 10 I N-3 I N=\left\{c_{k}^{1}: k=1,2, \cdots\right\}, 6 I N-5 I N=\left\{c_{k}^{2}: k=1,2, \cdots\right\}, 15 I N-$ $2 \mathbb{N}=\left\{c_{k}^{3}: k=1,2, \cdots\right\}, 30 \mathbb{N}=\left\{d_{k}: k=1,2, \cdots\right\}$.

Define the mappings f, g_{1}, g_{2}, g_{3} in $\operatorname{End}(\mathbb{I N})$ as follows:

$$
\begin{aligned}
& f(x)= \begin{cases}a_{k+1}, & \text { if } x=a_{k}(k \geq 1), \\
b_{k+1}^{i}, & \text { if } x=b_{k}^{i}(i=1,2,3, \text { and } k \geq 1), \\
c_{k+1}^{i}, & \text { if } x=c_{k}^{i}(i=1,2,3, \text { and } k \geq 1), \\
d_{k+1}, & \text { if } x=d_{k}(k \geq 1) .\end{cases} \\
& g_{1}(x)= \begin{cases}a_{1}, & \text { if } x=a_{k+1}(k \geq 1), \\
b_{1}^{1}, & \text { if } x=a_{1}, \\
c_{1}^{1}, & \text { if } x=b_{1}^{i}(i=1,3), \\
c_{1}^{3}, & \text { if } x=b_{1}^{2}, \\
b_{1}^{i}, & \text { if } x=b_{k+1}^{i}(i=1,2,3, \text { and } k \geq 1), \\
c_{1}^{i}, & \text { if } x=c_{k+1}^{i}(i=1,2,3, \text { and } k \geq 1), \\
d_{1}, & \text { if } x=d_{k}(k \geq 1) \text { or } c_{1}^{i}(i=1,2,3) .\end{cases} \\
& g_{2}(x)= \begin{cases}a_{1}, & \text { if } x=a_{k+1}(k \geq 1), \\
b_{1}^{2}, & \text { if } x=a_{1}, \\
c_{1}^{2}, & \text { if } x=b_{1}^{i}(i=1,2), \\
c_{1}^{3}, & \text { if } x=b_{1}^{3} \\
b_{1}^{i}, & \text { if } x=b_{k+1}^{i}(i=1,2,3, \text { and } k \geq 1), \\
c_{1}^{i}, & \text { if } x=c_{k+1}^{i}(i=1,2,3, \text { and } k \geq 1), \\
d_{1}, & \text { if } x=d_{k}(k \geq 1) \text { or } x=c_{1}^{i}(i=1,2,3) .\end{cases} \\
& g_{3}(x)= \begin{cases}b_{1}^{3}, & \text { if } x=a_{1}, \\
x, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Let $\mathcal{F}=\left\{f, g_{1}, g_{2}, g_{3}\right\}$ and $A \in \operatorname{Lat}(\mathcal{F})$.
(i) Each of $2 \mathbb{N}, 3 I N$ and $5 I N$ is invariant under every mapping in \mathcal{F}. Thus $\hat{\mathcal{A}} \subseteq \operatorname{Lat}(\mathcal{F})$.
(ii) If $A \cap(\mathbb{N}-(2 \mathbb{N} \cup 3 I N \cup 5 \mathbb{N})) \neq \emptyset$, then, as $g_{1}(A) \subseteq A$, it follows that $a_{1} \in A$. Then, each $a_{k+1}, k \geq 1$ is in A because $f(A) \subseteq A$. Since $g_{i}(A) \subseteq A$ it follows that $b_{1}^{i} \in A(i=1,2,3)$. Again, as $f(A) \subseteq A$, we deduce that A contains each of $2 \mathbb{N}-(3 \mathbb{N} \cup 5 \mathbb{N}), 3 \mathbb{N}-(2 \mathbb{N} \cup 5 \mathbb{N})$ and $5 \mathbb{N}-(2 \mathbb{N} \cup 3 \mathbb{N})$. Now A contains each of $c_{1}^{i}(i=1,2,3)$. With a similar argument we deduce that A contains each of $6 I N-5 I N, 10 I N-3 I N, 15 I N-2 I N$ and $30 I N$. Hence $A=I N \in \operatorname{Lat}(\mathcal{F})$.

In a similar way we can show the following statements are true:
(iii) If $A \cap(2 I N-(3 I N \cup 5 I N)) \neq \emptyset$ then A contains $2 I N$. If $A \cap(3 I N-(2 I N \cup 5 I N)) \neq$ \emptyset, then A contains $3 \mathbb{N}$. If $A \cap(5 I N-(2 I N \cup 3 I N)) \neq \emptyset$, then A contains $5 I N$.
(iv) If $A \cap(6 \mathbb{N}-5 \mathbb{N}) \neq \emptyset$, respectively, $A \cap(10 I N-3 \mathbb{N}) \neq \emptyset, A \cap(15 \mathbb{N}-2 \mathbb{N}) \neq$ \emptyset, then $A \supseteq 6 \mathbb{N}$, respectively, $A \supseteq 10 \mathbb{N}, A \supseteq 15 \mathbb{N}$.
(v) If $A \cap 30 \mathbb{N} \neq \emptyset$, then $A \supseteq 30 \mathbb{N}$.

From (i)-(v), it follows that A either equals $I N$ or is a union of intersections of $2 I N, 3 I N, 5 I N$, that is $A \in \hat{\mathcal{A}}$ and so $\hat{\mathcal{A}}=\operatorname{Lat}(\mathcal{F})$.

Thus $\operatorname{Lat}(\mathcal{F})=\hat{\mathcal{A}}$, so $\kappa(\mathcal{A}) \leq 4$.

Remark 8. From the proof in the above example, we can see that a more general conclusion is true: if $p_{1}, p_{2}, \cdots, p_{m}$ are distinct primes, then $\kappa\left(\left\{\left\{p_{i} \mathbb{N}: i=\right.\right.\right.$ $1,2, \cdots, m\}) \leq m+1$.

Proposition 9. If $\mathcal{A}=\left\{A_{1}, A_{2}, \cdots, A_{m}\right\}$ is a finite chain of distinct subsets of \mathbb{N} with $m \geq 2$, then $\kappa(\mathcal{A})=2$.

Proof. Without lose of generality, we assume that $A_{1} \subset A_{2} \subset \cdots \subset A_{m}$ and $A_{1} \neq \emptyset$ and $A_{m}=\mathbb{N}$. Let $A_{1}=\left\{a_{1}^{1}, a_{2}^{1}, \cdots\right\}, A_{2}-A_{1}=\left\{a_{1}^{2}, a_{2}^{2}, \cdots\right\}, \ldots, A_{m}-A_{m-1}=$ $\left\{a_{1}^{m}, a_{2}^{m}, \cdots\right\}$. Define $f, g \in \operatorname{End}(\mathbb{N})$ as follows: for $i=1,2, \cdots, m$, and $k \in \mathbb{N}$,

$$
\begin{aligned}
f\left(a_{k}^{i}\right) & = \begin{cases}a_{k+1}^{i}, & \text { if } a_{k}^{i} \text { is not the last element in } A_{i}-A_{i-1}, \\
a_{k}^{i}, & \text { if } a_{k}^{i} \text { is the last element in } A_{i}-A_{i-1}\end{cases} \\
g(x) & = \begin{cases}a_{1}^{i}, & \text { if } x=a_{k+1}^{i} \\
a_{1}^{i}, & \text { if } x=a_{1}^{i+1}\end{cases}
\end{aligned}
$$

Since $\hat{\mathcal{A}}$ is the smallest family containing \mathcal{A} which is closed under arbitrary unions and intersections, $\hat{\mathcal{A}}=\mathcal{A} \cup\{\emptyset\}$. Furthermore, $\mathcal{A} \cup\{\emptyset\}=\operatorname{Lat}(\{f, g\})$. Thus $\kappa(\mathcal{A}) \leq 2$. By Remark $2(2)$, for any $h \in \operatorname{End}(\mathbb{N})$, $\operatorname{Lat}(\{h\})$ is an infinite family, so $\kappa(\mathcal{A}) \neq 1$, therefore $\kappa(\mathcal{A})=2$.

Remark 10.

(1) The reader may wonder whether there is a set family whose reflex index is 1. Consider $\mathcal{A}=\{\emptyset, I N\} \cup\left\{C_{n}: n=1,2, \cdots\right\}$, where $C_{n}=\{n, n+1, \ldots\}$. Then $\mathcal{A}=\hat{\mathcal{A}}=\operatorname{Lat}(\{f\})$, where f is defined by

$$
f(m)= \begin{cases}1, & \text { if } m=1 \\ m-1, & \text { if } m>1\end{cases}
$$

(2) The following is a chain of subsets of $I N$ whose reflexive index is not finite. Put $\mathcal{B}=\{\emptyset, \mathbb{N},\{k: k \in \mathbb{N}, k \geq 2\}\} \bigcup\left\{D_{n}: n \in \mathbb{N}, n>1\right\}$, where for each $n>1, D_{n}=\{2,3, \cdots, n\}$. Clearly $\hat{\mathcal{B}}=\mathcal{B}$. Let $\mathcal{F} \subseteq \operatorname{End}(\mathbb{N})$ be any finite family of endomappings on \mathbb{N} satisfying $\mathcal{B} \subseteq \operatorname{Lat}(\mathcal{F})$. If $f(1)=1$ for all $f \in \mathcal{F}$, then $\{1\} \in \operatorname{Lat}(\mathcal{F})-\hat{\mathcal{B}}$. If there is $f \in \mathcal{F}$ with $f(1) \neq 1$, let $l=\max \{f(1): f \in \mathcal{F}\}$, then $l \geq 2$ and the subset $\{1\} \cup D_{l}$ is in $\operatorname{Lat}(\mathcal{F})-\mathcal{B}$. Thus for any finite $\mathcal{F} \subseteq \operatorname{End}(\mathbb{N})$, $\operatorname{Lat}(\mathcal{F}) \neq \mathcal{B}=\hat{\mathcal{B}}$, therefore $\kappa(\mathcal{B})$ is not finite.

Remark 11.

(1) It is possible and necessary to identify the exact values of the reflexive indices of more concrete families (such as $\mathcal{A}=\left\{p_{i} I N: i=1,2, \cdots, n\right\}$ for any distinct prime numbers $\left.p_{1}, p_{2}, \cdots, p_{n}\right)$. We leave this to interested readers to try.
(2) In [7][8], the reflexive families of closed subsets of a topological space are studied. We can also define the reflexive index for a family of closed sets. One of the natural problems would be: for which spaces, does every finite family of closed
sets have a finite reflexive index? Furthermore, one can introduce and consider the reflexive index of a family of closed subspaces of a Hilbert space.

Acknowledgements. I would like to thank Professor Carsten Thomassen for a very helpful conversation with him while he was visiting our department in 2009, which led me to prove the main result in this paper. I also must thank the referees for identifying some errors in the earlier draft and giving me valuable comments and suggestions for improvement.

References

[1] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc., 76(1970), 887933.
[2] P. R. Halmos, Reflexive lattices of subspaces, J. London Math. Soc., 4(1971), 257-263.
[3] K. J. Harrison and W.E. Longstaff, Automorphic images of commutative subspace lattices, Proc. Amer. Math. Soc., 296(1986), 217-228.
[4] W. E. Longstaff, Strongly reflexive subspace lattices, J. London Math. Soc.,11(1975), 2:491-498.
[5] W. E. Longstaff, On lattices whose every realization on Hilbert space is reflexive, J. London Math. Soc., 37(1988), 2:499-508.
[6] W. E. Longstaff and O. Panaia, On the ranks of single elements of reflexive operator algebras, Proc. Amer. Math. Soc., 125(1997), 10:2875-2882.
[7] Z. Yang and D. Zhao, Reflexive families of closed sets, Fund. Math., 192(2006), 111-120.
[8] Z. Yang and D. Zhao, On reflexive closed set lattices, Comment. Math. Univ. Carolinae, 51(2010), 1:23-32.
[9] D. Zhao, On reflexive subobject lattices and reflexive endomorphism algebras, Comment. Math. Univ. Carolinae, 44(2003), 23-32.

