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THE NUMBER OF REPRESENTATIONS OF

A POSITIVE INTEGER BY TRIANGULAR, SQUARE AND

DECAGONAL NUMBERS

Uha Isnaini, Ray Melham, and Pee Choon Toh

Abstract. Let TaDb(n) and TaD′b(n) denote respectively the number

of representations of a positive integer n by a(x2 − x)/2 + b(4y2 − 3y)
and a(x2−x)/2+ b(4y2−y). Similarly, let SaDb(n) and SaD′b(n) denote

respectively the number of representations of n by ax2 + b(4y2 − 3y) and

ax2+b(4y2−y). In this paper, we prove 162 formulas for these functions.

1. Introduction

Consider a positive definite binary quadratic form ax2+bxy+cy2 where a, b, c
are integers with a > 0 and discriminant d = b2 − 4ac < 0. We let R(a,b,c)(n)
denote the number of representations of an integer n by this quadratic form as
x and y range over all integers. In other words, we have

(1) R(a,b,c)(n) =
∣∣{(x, y) ∈ Z× Z : n = ax2 + bxy + cy2}

∣∣ .
Jacobi’s celebrated two squares theorem [9] can be stated as

R(1,0,1)(n) = 4
∑
d|n

(
−4

d

)
for n > 1,(2)

where
( ·
·
)

is the Jacobi symbol.
The problem of finding the number of representations of an integer by

sums of squares has been studied by many mathematicians throughout history.
Formulas for R(1,0,2)(n) and R(1,0,3)(n) are usually attributed respectively to
Dirichlet and Lorenz.

R(1,0,2)(n) = 2
∑
d|n

(
−8

d

)
,(3)
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R(1,0,3)(n) = 2
∑
d|n

(
−3

d

)
+ 4

∑
4d|n

(
−3

d

)
.(4)

More details on the above formulas can be found in the accompanying notes
to [3, Chpt. 3]. More recently, mathematicians have been interested in finding
the number of representations in terms of polygonal numbers. The formula for
the k-th polygonal number is given by

(5) Fk(n) =
n2 (k − 2)− n (k − 4)

2
for k > 3.

In particular,

(6) F3(n) =
n2 + n

2
, F4(n) = n2, F5(n) =

3n2 − n
2

and F7(n) =
5n2 − 3n

2
,

giving us respectively, the triangular, square, pentagonal and heptagonal num-
bers.

The results that we briefly survey below all concern formulas for the number
of representations of n as a sum of a copies of a polygonal number and b copies
of another polygonal number. In other words, they are all closely related to
representations by binary quadratic forms.

In [5], Hirschhorn used elementary methods to prove 14 formulas for repre-
sentations in terms of various combinations of triangular and square numbers.
Subsequently, he [6] proved another 27 formulas, where each formula contained
at least a pentagonal or an octagonal number. Baruah and Sarmah [1] used one
of Ramanujan’s theta function identity, namely [2, p. 48, Entry 31], to prove
another 25 formulas. Each of their formulas contained at least a heptagonal,
decagonal, hendecagonal, dodecagonal or octadecagonal number.

Meanwhile, in a series of papers [14] to [17], Sun used results on binary
quadratic forms that he obtained together with Williams [18] to prove 191
formulas involving triangular, square and pentagonal numbers.

Independently, Melham released an unpublished manuscript [10] in 2007
that contained a total of 298 conjectured formulas involving polygonal num-
bers from triangular to dodecagonal numbers. It is interesting to note that
none of the 298 conjectured formulas coincides with the 66 formulas proved in
[1, 5, 6]. Melham [11] subsequently extracted and published 21 of these con-
jectures which involved triangular, pentagonal and heptagonal numbers. He
noted in his paper that three of these conjectures involving triangular numbers
were equivalent to formulas proved by Sun [15]. In fact, another of these con-
jectures involving the sum of one pentagonal number and five copies of another
pentagonal number was already proved in [14]. A further eight can be found
in [16] which appeared in print in 2011. So 12 of the 21 conjectures in [11], in
addition to another 21 conjectures in [10] had in fact been proved by Sun. Toh
[20] subsequently proved all 21 conjectures in [11]. He also described a uni-
form approach to proving the remaining 277 conjectures in [10], and in doing
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so provided proofs for 13 of these 277 as examples. In Toh’s paper, he men-
tioned that Hirschhorn had already proved three of the 21 conjectures in [11].
Hirschhorn’s proofs had remained unpublished until recently, and they may
now be found in [7, Chpt. 29]. Using Ramanujan’s 1ψ1 summation formula,
Sarmah [12] also proved three of the 21 conjectures in [11]. He concluded his
paper by remarking that the rest of Melham’s conjectures may be formulated
in terms of the 1ψ1 summation formula but these “might be too complicated
to actually have a proof.” We note that two of the three conjectures proved by
Sarmah coincided with the three by Hirschhorn and these four conjectures were
a subset of those proved by Sun. Finally Humby, in his unpublished Masters
thesis [8], also proved all of Melham’s 21 conjectures in [11] by using the theory
of modular forms.

In this paper, we focus on representations of integers by a combination of
triangular or square numbers, and decagonal numbers. We shall denote these
numbers respectively as

T (n) = F3(−n) =
n2 − n

2
, S(n) = F4(n), D(n) = F10(n) = 4n2 − 3n,(7)

and adopt the following notation

TaDb(n) =

∣∣∣∣{(x, y) ∈ Z+ × Z : n = a

(
x2 − x

2

)
+ b(4y2 − 3y)

}∣∣∣∣ ,(8)

SaDb(n) =
∣∣{(x, y) ∈ Z× Z : n = ax2 + b(4y2 − 3y)

}∣∣ ,(9)

where a and b are positive integers. It turns out that every formula for TaDb(n)
that we found has a companion formula for TaD

′
b(n) where

TaD
′
b(n) =

∣∣∣∣{(x, y) ∈ Z+ × Z : n = a

(
x2 − x

2

)
+ b(4y2 − y)

}∣∣∣∣ .(10)

The same holds for every SaDb(n) and the corresponding SaD
′
b(n) defined by

SaD
′
b(n) =

∣∣{(x, y) ∈ Z× Z : n = ax2 + b(4y2 − y)
}∣∣ .(11)

We summarise our main findings below. First of all, we relate TaDb(n) and
SaDb(n) to representations by binary quadratic forms.

Theorem 1.1. Let a, b, n ∈ Z+. If b is odd, then

4TaDb(n) = R(8a,8a,2a+b)(16n+ 2a+ 9b).

The following is a consequence of Theorem 1.1.

Corollary 1.2. If 4 - a and b is odd, then

4TaDb(n) = R(2a,0,b)(16n+ 2a+ 9b).

Likewise for SaDb(n), we have:

Theorem 1.3. Let a, b, n ∈ Z+. If both a and b are odd, and 4 - (a− b), then
2SaDb(n) = R(a,0,b)(16n+ 9b).
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We also have the following corresponding results for the companion functions
TaD

′
b(n) and SaD

′
b(n).

Theorem 1.4. Let a, b, n ∈ Z+. If b is odd, then

4TaD
′
b(n) = R(8a,8a,2a+b)(16n+ 2a+ b).

Corollary 1.5. If b is odd, and 4 - a, then

4TaD
′
b(n) = R(2a,0,b)(16n+ 2a+ b).

Theorem 1.6. Let a, b, n ∈ Z+. If a and b are odd, and 4 - (a− b), then

2SaD
′
b(n) = R(a,0,b)(16n+ b).

Corollary 1.2 and Theorem 1.3 allow us to find the explicit formulas for
TaDb(n) and SaDb(n) through utilizing existing formulas for R(a,b,c)(n) from
[19] and [4]. In total, we proved formulas for TaDb(n) for 72 values of (a, b) and
SaDb(n) for 9 values of (a, b). These include the seven cases already proved by
Baruah and Sarmah [1] and all the eight conjectures for TaDb(n) in [10, Chpt.
11]. The remaining 66 formulas are new. Likewise, all the 72 formulas for
TaD

′
b(n) and 9 formulas for SaD

′
b(n) are also new. The complete list is given

in the following table.

Formula (a, b) Location of formula

(1, 1) Theorem 4.1 and [1, (37)]
(1, p), (p, 1), p = 3, 5, 11, 29 Theorem 4.2 and [10, Chpt. 11]
(2, 1) Theorem 4.3 and [1, (30)]
(1, 9), (9, 1) Theorem 4.4
(6, 1), (2, 3) Theorem 4.5 and [1, (32), (29)]
(14, 1), (2, 7) Theorem 4.5
(30, 1), (2, 15), (10, 3), (6, 5) Theorem 4.6
(1, 15), (3, 5), (5, 3), (15, 1) Theorem 4.7

TaDb(n) (1, 21), (3, 7), (7, 3), (21, 1) Theorem 4.8
or (1, 35), (5, 7), (7, 5), (35, 1) Theorem 4.9

TaD
′
b(n) (1, 39), (3, 13), (13, 3), (39, 1) Theorem 4.10

(1, 51), (3, 17), (17, 3), (51, 1) Theorem 4.11
(1, 65), (5, 13), (13, 5), (65, 1) Theorem 4.12
(1, 95), (5, 19), (19, 5), (95, 1) Theorem 4.13
(1, 105), (3, 35), (5, 21), (7, 15) Theorem 4.14
(15, 7), (21, 5), (35, 3), (105, 1)
(1, 165), (3, 55), (5, 33), (11, 15) Theorem 4.15
(15, 11), (33, 5), (55, 3), (165, 1)
(1, 231), (3, 77), (7, 33), (11, 21) Theorem 4.16
(21, 11), (33, 7), (77, 3), (231, 1)

SaDb(n) (1, 1) Theorem 4.17 and [1, (31)]
or (1, 3), (3, 1) Theorem 4.18 and [1, (28), (33)]

SaD
′
b(n) (1, 7), (7, 1) Theorem 4.18

(1, 15), (15, 1), (3, 5), (5, 3) Theorem 4.19
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In the next section, we recall known results required for our proofs. In Sec-
tion 3, we prove Theorems 1.1 to 1.6. The 162 explicit formulas are presented
in Section 4.

2. Preliminary results

In this section, we first recall some results from the literature. It is known
that the associated L-series of a genus character of an imaginary quadratic field
with discriminant d can be decomposed into a product of two Dirichlet L-series
[13, p. 62, Th. 4]. Consequently, for certain quadratic forms ax2 + bxy + cy2

with discriminant d, it is possible to write R(a,b,c)(n) as a convolution of two
divisor sums with characters [19]. Toh used this property to deduce R(a,0,c)(n)
for 11 pairs of (a, c) which are associated with imaginary quadratic fields with
class number 2 [19, p. 232].

Theorem 2.1 (Toh [19]). If p = 5, 13 or 37, then

R(1,0,p)(n) =
∑
d|n

(
−4p

d

)
+
∑
d|n

(p
d

)( −4

n/d

)
.(12)

If p = 3, 5, 11 or 29, then

R(1,0,2p)(n) =
∑
d|n

(
−8p

d

)
+
∑
d|n

(
d

p

)−
(
−1
p

)
2

n/d

(13)

and

R(2,0,p)(n) =
∑
d|n

(
−8p

d

)
−
∑
d|n

(
d

p

)−
(
−1
p

)
2

n/d

 .(14)

We remark that formulas equivalent to Theorem 2.1 also can be found in [18].
In the following, we recall several theorems for R(a,0,c)(n) that were proved by
Chan and Toh [4].

Theorem 2.2 (Theorem 2.1 from [4]). The following identities hold.

R(1,0,15)(n) =
∑
d|n

(
−15

d

)
+
∑
d|n

(
−3

d

)(
5

n/d

)
− 2

∑
2d|n

(
−60

d

)

+ 2
∑
2d|n

(
−3

d

)(
20

n/(2d)

)
,

R(3,0,5)(n) =
∑
d|n

(
−15

d

)
−
∑
d|n

(
−3

d

)(
5

n/d

)
− 2

∑
2d|n

(
−60

d

)

− 2
∑
2d|n

(
−3

d

)(
20

n/(2d)

)
.
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Theorem 2.3 (Theorem 3.2 from [4]). The following identity holds.

R(1,0,4)(n) = 2
∑
d|n

(
4

d

)(
−4

n/d

)
+ 4

∑
4d|n

(
−4

d

)
.

Theorem 2.4 (Theorem 4.2 from [4]). The following identities hold.

R(1,0,18)(n) =
∑
d|n

(
9

d

)(
−72

n/d

)
+
∑
d|n

(
−3

d

)(
24

n/d

)
+ 2

∑
9d|n

(
−8

d

)
,

R(2,0,9)(n) =
∑
d|n

(
9

d

)(
−72

n/d

)
−
∑
d|n

(
−3

d

)(
24

n/d

)
+ 2

∑
9d|n

(
−8

d

)
.

Theorem 2.5 (Theorem 5.1 from [4]). If p = 3 or 7, set D = −p, N3 = 6 and
N7 = 2, then

R(1,0,4p)(n) =
∑
d|n

(
4

d

)(
4D

n/d

)
+ 2

∑
4d|n

(
4

d

)(
4D

n/(4d)

)
+Np

∑
16d|n

(
D

d

)

+
∑
d|n

(
−4

d

)(
−4D

n/d

)
,

R(4,0,p)(n) =
∑
d|n

(
4

d

)(
4D

n/d

)
+ 2

∑
4d|n

(
4

d

)(
4D

n/(4d)

)
+Np

∑
16d|n

(
D

d

)

−
∑
d|n

(
−4

d

)(
−4D

n/d

)
.

Theorem 2.6 (Theorem 5.3 from [4]). The following identities hold.

R(1,0,60)(n) =
1

2

(
1 +

(
−1

n

))∑
d|n

(
4

d

)(
−60

n/d

)
+
∑
4d|n

(
4

d

)(
−60

n/(4d)

)

+
∑
16d|n

(
−15

d

)
+

1

2

(
1 +

(
−1

n

))∑
d|n

(
−12

d

)(
20

n/d

)

+
∑
4d|n

(
−12

d

)(
20

n/(4d)

)
+
∑
16d|n

(
−3

d

)(
5

n/(16d)

)
,

R(3,0,20)(n) =
1

2

(
1−

(
−1

n

))∑
d|n

(
4

d

)(
−60

n/d

)
+
∑
4d|n

(
4

d

)(
−60

n/(4d)

)

+
∑
16d|n

(
−15

d

)
− 1

2

(
1−

(
−1

n

))∑
d|n

(
−12

d

)(
20

n/d

)

−
∑
4d|n

(
−12

d

)(
20

n/(4d)

)
−
∑
16d|n

(
−3

d

)(
5

n/(16d)

)
,
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R(4,0,15)(n) =
1

2

(
1−

(
−1

n

))∑
d|n

(
4

d

)(
−60

n/d

)
+
∑
4d|n

(
4

d

)(
−60

n/(4d)

)

+
∑
16d|n

(
−15

d

)
+

1

2

(
1−

(
−1

n

))∑
d|n

(
−12

d

)(
20

n/d

)

+
∑
4d|n

(
−12

d

)(
20

n/(4d)

)
+
∑
16d|n

(
−3

d

)(
5

n/(16d)

)
,

R(5,0,12)(n) =
1

2

(
1 +

(
−1

n

))∑
d|n

(
4

d

)(
−60

n/d

)
+
∑
4d|n

(
4

d

)(
−60

n/(4d)

)

+
∑
16d|n

(
−15

d

)
− 1

2

(
1 +

(
−1

n

))∑
d|n

(
−12

d

)(
20

n/d

)

−
∑
4d|n

(
−12

d

)(
20

n/(4d)

)
−
∑
16d|n

(
−3

d

)(
5

n/(16d)

)
.

We also require a formula for R(1,0,7)(n) which was known to Ramanujan
[2, p. 302].

R(1,0,7)(n) = 2
∑
d|n

(
−7

d

)
− 4

∑
2d|n

(
−28

d

)
.(15)

We end this section with the following lemma from Sun [16, Lemma 2.2].

Lemma 2.7. Let a, b, n ∈ Z+, with 2 - n.
i) If 2 - a and 4 - (a− b)b, then

R(a,0,4b)(n) =

{
R(a,0,b)(n), if n ≡ a (mod 4);

0, otherwise.
(16)

ii) If 2 - a, 2 | b and 8 - b, then

R(a,0,4b)(n) =

{
R(a,0,b)(n), if n ≡ a (mod 8);

0, otherwise.
(17)

iii) If 2 - (a+ b) and 8 - ab, then

R(4a,4a,a+b)(n) =

{
R(a,0,b)(n), if n ≡ a+ b (mod 8);

0, otherwise.
(18)

3. Relating TaDb(n) and SaDb(n) to R(a,b,c)(n)

In this section, we prove our main results by relating TaDb(n) and SaDb(n)
to R(a,b,c)(n).
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Proof of Theorem 1.1. Since T (n+ 1) = T (−n), we have

4TaDb(n) = 2

∣∣∣∣{(x, y) ∈ Z2 : n = a

(
x2 − x

2

)
+ b(4y2 − 3y)

}∣∣∣∣
= 2

∣∣{(x, y) ∈ Z2 : 16n+ 2a+ 9b = 2a(2x− 1)2 + b(8y − 3)2
}∣∣

=
∣∣{(x, y) ∈ Z2 : 16n+ 2a+ 9b = 2ax2 + by2,(19)

2 - x, y ≡ ±3 (mod 8)
}∣∣.

Similarly, we have

4TaD
′
b(n) =

∣∣{(x, y) ∈ Z2 : 16n+ 2a+ b = 2ax2 + by2,(20)

2 - x, y ≡ ±1 (mod 8)
}∣∣.

Combining (19) and (20) gives us

4TaDb(n) + 4TaD
′
b

(
n+

b

2

)
=
∣∣{(x, y) ∈ Z2 : 16n+ 2a+ 9b = 2ax2 + by2, 2 - xy

}∣∣
=
∣∣{(x, y) ∈ Z2 : 16n+ 2a+ 9b = 2ax2 + by2, 2 | (x− y)

}∣∣
−
∣∣{(x, y) ∈ Z2 : 16n+ 2a+ 9b = 2ax2 + by2, 2 | x, 2 | y

}∣∣
=
∣∣{(x, y) ∈ Z2 : 16n+ 2a+ 9b = 2a(2x+ y)2 + by2

}∣∣
−
∣∣{(x, y) ∈ Z2 : 16n+ 2a+ 9b = 2a(2x)2 + b(2y)2

}∣∣
=
∣∣{(x, y) ∈ Z2 : 16n+ 2a+ 9b = 8ax2 + 8axy + (2a+ b)y2

}∣∣
−
∣∣{(x, y) ∈ Z2 : 16n+ 2a+ 9b = 8ax2 + 4by2

}∣∣
= R(8a,8a,2a+b)(16n+ 2a+ 9b)−R(8a,0,4b)(16n+ 2a+ 9b).(21)

When b is odd, we get TaD
′
b(n+ b

2 ) = 0 and there are no solutions for

16n+ 2a+ 9b = 8ax2 + 4by2,

which implies R(8a,0,4b)(16n+2a+9b) equals zero. This completes the proof. �

We now deduce Corollary 1.2.

Proof. From Theorem 1.1, when b is odd we have

4TaDb(n) = R(8a,8a,2a+b)(16n+ 2a+ 9b).

If we further assume 4 - a, then 2 - (2a+ b), 8 - (2a)b and

16n+ 2a+ 9b ≡ 2a+ b (mod 8).

By (18),

R(4(2a),4(2a),2a+b)(16n+ 2a+ 9b) = R(2a,0,b)(16n+ 2a+ 9b)

and the proof follows. �
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The proofs of Theorem 1.4 and Corollary 1.5 for TaD
′
b(n) follow in an anal-

ogous manner. We now proceed to the proof of Theorem 1.3.

Proof. We have

2SaDb(n) = 2
∣∣{(x, y) ∈ Z2 : n = ax2 + b(4y2 − 3y)

}∣∣
= 2

∣∣{(x, y) ∈ Z2 : 16n+ 9b = 16ax2 + b(8y − 3)2
}∣∣

=
∣∣{(x, y) ∈ Z2 : 16n+ 9b = 16ax2 + by2, y ≡ ±3 (mod 8)

}∣∣ .(22)

Similarly,

2SaD
′
b(n) =

∣∣{(x, y) ∈ Z2 : 16n+ b = 16ax2 + by2, y ≡ ±1 (mod 8)
}∣∣ .(23)

Combining (22) and (23) gives us

2SaDb(n) + 2SaD
′
b

(
n+

b

2

)
=
∣∣{(x, y) ∈ Z2 : 16n+ 9b = 16ax2 + by2, 2 - y

}∣∣
=
∣∣{(x, y) ∈ Z2 : 16n+ 9b = 16ax2 + by2

}∣∣
−
∣∣{(x, y) ∈ Z2 : 16n+ 2a+ 9b = 2ax2 + b(2y)2

}∣∣
= R(16a,0,b)(16n+ 9b)−R(16a,0,4b)(16n+ 9b).(24)

When b is odd, there are no solutions for

16n+ 9b = 16ax2 + 4by2,

which implies R(16a,0,4b)(16n+ 9b) equals zero. In other words,

2SaDb(n) = R(16a,0,b)(16n+ 9b).(25)

If we further assume that a is also odd, then all the conditions of (17) are
satisfied and we get

R(b,0,4(4a))(16n+ 9b) = R(b,0,4a)(16n+ 9b).

We can simplify further by adding another assumption that 4 - (b − a). Then
by (16) we get

R(b,0,4a)(16n+ 9b) = R(b,0,a)(16n+ 9b),

which completes the proof. �

4. Explicit formulas

In this section, we present the explicit formulas for TaDb(n) and SaDb(n).
As mentioned in the introduction, each formula has a companion formula. The
formulas for TaDb(n) are stated as a divisor sum for m = 16n + 2a + 9b. To
obtain the companion formula for TaD

′
b(n), one simply replaces m by m′ =

16n+ 2a+ b.
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Theorem 4.1. Let m = 16n+ 11. Then

2T1D1(n) =
∑
d|m

(
−8

d

)
.

Proof. From Corollary 1.2, we have

4T1D1(n) = R(2,0,1)(16n+ 11),

and the result follows from Dirichlet’s formula (3). �

Theorem 4.2. If p = 3, 5, 11 or 29, then

2T1Dp(n) =
∑
d|m

(
−8p

d

)
, where m = 16n+ 2 + 9p;

2TpD1(n) =
∑
d|m

(
−8p

d

)
, where m = 16n+ 2p+ 9.

Proof. We consider the case p = 3 or 11. Corollary 1.2 and (14) give,

4T1Dp(n) = R(2,0,p)(16n+ 9p+ 2)

=
∑

d|16n+9p+2

(
−8p

d

)
−

∑
d|16n+9p+2

(
d

p

)(
2

d

)2
(

2
16n+9p+2

d

)

=
∑

d|16n+9p+2

(
−8p

d

)
−

∑
d|16n+9p+2

(
−2p

d

)(
2

16n+ 9p+ 2

)

=
∑

d|16n+9p+2

(
−8p

d

)(
1−

(
2

16n+ 9p+ 2

))

= 2
∑

d|16n+9p+2

(
−8p

d

)
.

The other cases can be proved in a similar manner. �

The following theorem is obtained from Corollary 1.2 and Theorem 2.3.

Theorem 4.3. Let m = 16n+ 13. Then

2T2D1(n) =
∑
d|m

(
−4

d

)
.

The following theorem is an immediate consequence from Corollary 1.2 and
Theorem 2.4.

Theorem 4.4. If (a, b, α) = (1, 9,−1) or (9, 1, 1), then

4TaDb(n) =
∑
d|m

(
9

d

)(
−72

m/d

)
+ α

∑
d|m

(
−3

d

)(
24

m/d

)
+ 2

∑
9d|m

(
−8

d

)
,

where m = 16n+ 2a+ 9b.
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By Theorem 2.5, we can employ computations similar to those in the proof
of Theorem 4.2 to obtain the following.

Theorem 4.5. If p = 3 or 7, then

2T2pD1(n) =
∑
d|m

(
−p
d

)
, where m = 16n+ 4p+ 9;

2T2Dp(n) =
∑
d|m

(
−p
d

)
, where m = 16n+ 4 + 9p.

Likewise, by Theorem 2.6 we can prove the following.

Theorem 4.6. If (a, b, α) = (30, 1, 1), (2, 15, 1), (10, 3,−1) or (6, 5,−1), then

4TaDb(n) =
∑
d|m

(
4

d

)(
−60

m/d

)
+ α

∑
d|m

(
−12

d

)(
20

m/d

)
,

where m = 16n+ 2a+ 9b.

The proofs of the remaining theorems follow in an analogous manner by
using Corollary 1.2 and the corresponding R(a,b,c)(n) formulas in [19] or [4].

Theorem 4.7. If (a, b, α) = (15, 1, 1), (5, 3, 1), (3, 5,−1) or (1, 15,−1), then

4TaDb(n) =
∑
d|m

(
−120

d

)
+ α

∑
d|m

(
10

d

)(
−3

m/d

)
,

where m = 16n+ 2a+ 9b.

Theorem 4.8. If (a, b, α) = (21, 1, 1), (3, 7, 1), (7, 3,−1) or (1, 21,−1), then

4TaDb(n) =
∑
d|m

(
−168

d

)
+ α

∑
d|m

(
14

d

)(
−3

m/d

)
,

where m = 16n+ 2a+ 9b.

Theorem 4.9. If (a, b, α) = (35, 1, 1), (7, 5, 1), (5, 7,−1) or (1, 35,−1), then

4TaDb(n) =
∑
d|m

(
−280

d

)
+ α

∑
d|m

(
−14

d

)(
5

m/d

)
,

where m = 16n+ 2a+ 9b.

Theorem 4.10. If (a, b, α) = (39, 1, 1), (3, 13, 1), (13, 3,−1) or (1, 39,−1), then

4TaDb(n) =
∑
d|m

(
−312

d

)
+ α

∑
d|m

(
26

d

)(
−3

m/d

)
,

where m = 16n+ 2a+ 9b.
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Theorem 4.11. If (a, b, α) = (51, 1, 1), (17, 3, 1), (3, 17,−1) or (1, 51,−1), then

4TaDb(n) =
∑
d|m

(
−408

d

)
+
∑
d|m

(
34

d

)(
−3

m/d

)
,

where m = 16n+ 2a+ 9b.

Theorem 4.12. If (a, b, α) = (65, 1, 1), (13, 5, 1), (5, 13,−1) or (1, 65,−1), then

4TaDb(n) =
∑
d|m

(
−520

d

)
+
∑
d|m

(
−26

d

)(
5

m/d

)
,

where m = 16n+ 2a+ 9b.

Theorem 4.13. If (a, b, α) = (95, 1, 1), (5, 19, 1), (19, 5,−1) or (1, 95,−1), then

4TaDb(n) =
∑
d|m

(
−760

d

)
+
∑
d|m

(
−38

d

)(
5

m/d

)
,

where m = 16n+ 2a+ 9b.

Theorem 4.14. Let m = 16n+ 2a+ 9b. Then

8TaDb(n) =
∑
d|m

(
−840

d

)
+ α2

∑
d|m

(
280

d

)(
−3

m/d

)

+ α3

∑
d|m

(
−168

d

)(
5

m/d

)
+ α4

∑
d|m

(
120

d

)(
−7

m/d

)
,

where the values for a, b, αi are listed in the following table.

a b α2 α3 α4

1 105 −1 −1 1
3 35 −1 1 −1
5 21 1 1 −1
7 15 −1 1 1

15 7 1 −1 1
21 5 −1 −1 −1
35 3 1 −1 −1

105 1 1 1 1

Theorem 4.15. Let m = 16n+ 2a+ 9b. Then

8TaDb(n) =
∑
d|m

(
−1320

d

)
+ α2

∑
d|m

(
440

d

)(
−3

m/d

)

+ α3

∑
d|m

(
−264

d

)(
5

m/d

)
+ α4

∑
d|m

(
120

d

)(
−11

m/d

)
,

where the values for a, b, αi are listed in the following table.
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a b α2 α3 α4

1 165 −1 −1 −1
3 55 1 1 −1
5 33 1 −1 −1

11 15 1 −1 1
15 11 −1 1 −1
33 5 −1 1 1
55 3 −1 −1 1

165 1 1 1 1

Theorem 4.16. Let m = 16n+ 2a+ 9b. Then

8TaDb(n) =
∑
d|m

(
−1848

d

)
+ α2

∑
d|m

(
616

d

)(
−3

m/d

)

+ α3

∑
d|m

(
264

d

)(
−7

m/d

)
+ α4

∑
d|m

(
168

d

)(
−11

m/d

)
,

where the values for a, b, αi are listed in the following table.

a b α2 α3 α4

1 231 −1 1 −1
3 77 −1 −1 −1
7 33 −1 −1 1

11 21 1 1 −1
21 11 −1 1 1
33 7 1 −1 −1
77 3 1 −1 1

231 1 1 1 1

Formulas for SaDb(n) and SaD
′
b(n) are presented in the next three theorems.

Although we only list the formulas for SaDb(n) with divisors sum over m =
16n + 9b, each entry has a corresponding formula for SaD

′
b(n) where m is

replaced by m′ = 16n+ b.

Theorem 4.17. Let m = 16n+ 9. Then

S1D1(n) =
∑
d|m

(
−4

d

)
.

Proof. From (25), we have

2S1D1(n) = R(1,0,16)(16n+ 9).

From (17), we get

R(1,0,16)(16n+ 9) = R(1,0,4)(16n+ 9).
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The proof follows from Theorem 2.3. �

The next theorem follows from Theorem 1.3 and (4) and (15).

Theorem 4.18. If p = 3 or 7, then

S1Dp(n) =
∑
d|m

(
−p
d

)
, where m = 16n+ 9p;

SpD1(n) =
∑
d|m

(
−p
d

)
, where m = 16n+ 9.

The following theorem is an immediate consequence of Theorem 1.3 and
Theorem 2.2.

Theorem 4.19. If (a, b, α) = (1, 15, 1), (15, 1, 1), (3, 5,−1) or (5, 3,−1), then

2SaDb(n) =
∑
d|m

(
−15

d

)
+ α

∑
d|m

(
−3

d

)(
5

m/d

)
,

where m = 16n+ 9b.
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