Swee-Fong Ng, Kerry Lee, EeLynn Ng, \& Zee-Ying Lim, National Institute of Education, Singapore
The contribution of working memory to structural and procedural

errors in algebraic problem solving

Introduction

A number of studies in the psychological and educational literatures have examined the issues associated with learning and solving word problems (See Kintsch \& Greeno,
1985; Mayer \& Hegarty, 1996 for reviews). However the number of studies examin 1985; Mayer \& Hegarty, 1996 for reviews). However the number of studies examining
the role of working memory and word problem solving is small, with most studies conthe role of working memory and word problem solving is small, with most studies con-
centrating on arithmetic word problems. Much less is known about the contributions of working memory and reading abilities to the performance of more complex mathematical tasks such as solving algebraic word problems.

How do algebraic and arithmetic word problems differ? The most salient difference is that in algebraic word problems the unknowns are treated as knowns. Singapore primary children are taught to use the model method to solve arithmetic as well as algebraic word
problem . In algebraic word problems, rectangles reresent anknowns whilst in arithmeproblems. In algebraic word problems, rectangles repres.
tic type word problems, the rectangles are known values.
To draw the model, it is necessary for children to read the question presented as text (T), translate this information presented in the textual mode into a cohesive structure known
as the model (S). Next, to solve the problem; children translate the information embedas ted in the model into a set of arithmetic procedures (P). We hypothesise that strong linguistic skills are needed for each phase of the translation process - Text to Structure (TS) and from Structure to the Processes (SP)
 Give the dearth of information directly relevant to algebraic word problems; we used a
standardised measure, the Working memory Test Battery for Children (WMTB-C) (Pickering \& Gathercole, 2001) to examine the working memory span. The contribution of reading ability was measured using a comprehensive test that has been modified and
normed for the local population. We controlled for differences in general intellectual normed for the local population. We controlled for differences in general intellectual
functions by using an abbreviated intelligence measure. A mathematics test comprising ten complex word problems was used to assess children's ability to solve algebraic word
problems. problems.
In this study we examined the contribution of working memory to the types of errors
made in solving algebraic type word problems. Children's responses to each question was analysed for the types of translation errors made, TS, SP. Also the responses wer further analysed for the different types of errors. These errors are listed in Table 2.

Method

Please refer to Poster $B 2-60-$ The contributions of working memory, language, and in-
telligence to individual differences in algebraic word problem solving for der telligence to individual differences in algebraic word problem solving for details on participan

Results
Inter-correlations

Variables	TS	SP	C	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Phonological	$.33^{* *}$	$.32^{* *}$	$.17^{*}$				
lop	Visual spatial	$.34^{* *}$	$.35^{* *}$.09	$.21^{*}$		
Central execu-	$.47^{* *}$	$.45^{* *}$	$.24^{* *}$	$.51^{* *}$	$.37^{* *}$		
tive	Performance IQ	$.49^{* *}$	$.51^{* *}$	$.16^{*}$	$.29^{* *}$	$.40^{* *}$	$.35^{* *}$
Literacy	$.57^{* *}$	$.54^{* *}$	$.17^{*}$	$.57^{* *}$	$.40^{* *}$	$.56^{* *}$	$.39^{* *}$

**p<.01,* p<.05

	TS		SP		C	
Variables	$\boldsymbol{\beta}$	$\boldsymbol{s r}$	$\boldsymbol{\beta}$	$\boldsymbol{s r}$	$\boldsymbol{\beta}$	$\boldsymbol{s r}$
Phonological	-.08	-.07	-.06	-.05	-.03	-.02
Lop						
Visual spatial	.01	.01	.04	.04	.02	.02
Central executive	$.19^{* *}$.14	$.17^{* *}$.13	$-.22^{* *}$	-.17
Performance IQ	$.30^{* *}$.26	$.32^{* *}$.28	-.17	-.15
Literacy	$.40^{* *}$.29	$.34^{* *}$.25	-.07	-.05

Note,
for $T S: R^{2}=.44, R_{\text {adjused }}^{2}=.42, F(5,145)=22.49, p<.01, * * p<.05$

MANOVA analysis

This analysis was performed to examine group differences in working mem, langage and intelligence from the types of errors made.
The modal type of error, for the set of 10 questions, made by each individual was obtained. Those who scored perfectly or made multiple types of errors were excluded from this analysis.
Wilks' Lambda $\mathrm{F}(15,185.359)=1.799, \mathrm{p}<.04$
Tests of Between-Subjects Effects demonstrated that Literacy is the only variable that is significant $\mathrm{F}(3,71)=3.800, \mathrm{p}<02$

Pairwise Comparisons demonstrated that the AE group and
fered significantly in their Literacy measure, $\mathrm{D}=.934, \mathrm{p}<.02$

For a copy of this poster,

please write your name and business card here. Alternatively, you can email the corresponding author at klee@nie.edu.sg

Discussion

Children with greater central executive function were more accurate in both the translation tasks, TS and SP.

Also children with higher performance IQ and better literacy skills were more ccesstin two translation tasks.

Children with greater central executive function demonstrated greater accurac in their computation skills. Neither performance IQ nor literacy skills wer ignificant contributory factors towards success in this task. One reason fo his finding could be because children are so well drilled with arithmetic sums
that they are highly competent to complete such tasks. This would suggest that these children would score highly if they were given a test comprising purely of computation sums.
hat literacy skills is an important contributory factor towards success in both inderstand what is presented in the question in text mode.

Furthermore language is needed to translate the mathematical information in Furthermore language is needed to translate the mathematical information in
text mode into pictorial forms as children articulate relational information into appropriate shapes and also how to organize the shapes into a coherent whole

At the next level of translation, SP, language is again needed to translate infor nation presented in the model into arithmetic operations. For example, 4 equa ctangles placed below another should be translated as four times as many an erefore the operation needed could be multiplication or division.

Performance IQ is a contributory factor towards success suggests that children
who can manipulate shapes are likely to translate the text into the correct model who can manipulate shapes are likely to translate the ext into the correct mode and also from the model into the correct set of arithmetic procedures. This sugkely to be able to organize information into pictures, possibly they are able to sualize the model to be in their mind

Perhaps children with better central executive function, literacy skills and performance IQ may be more successful in the way they organize, visualize and old the information presented in the questions, hence explaining for their suc cess in these algebraic word problems.

Conclusion

rixal

Knowledge of pure computation skills does not mean success in algebraic word roblem solving. Rather children who can articulate their thoughts verbally and pictorially are more likely to succeed in such tasks.
The findings suggest that
Children need to understand what they read and to articulate their understanding into words, verbally as well as pictorially.

Children need to be exposed to activities where they use language to articulate arithmetic expressions verbally as well as pictorially

Acknowledgement

This study was partially supported by an EDRF grant \#2/02 KL. The authors would like to thank pupils and staff from the various primary schools that participated in this study. Thanks to Sean Kang and Mei-Ying Wong for assistance in data collection.

