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Topologies generated by families of sets and strong
poset models

Zhao Dongsheng, Xi Xiaoyong, and Chen Yixiang

Abstract. A poset model of a topological space X is a poset P such
that X is homeomorphic to the maximal point space of P (the set
Max(P ) of all maximal points of P equipped with the relative Scott
topology of P ). The poset models of topological spaces based on other
topologies, such as Lawson topology and lower topology, have also been
investigated by other people. These models establish various types of
new links between posets and topological spaces. In this paper we intro-
duce the strong Scott topology on a poset and use it to define the strong
poset model: a strong poset model of a space X is a poset P such that
Max(P ) (equipped with the relative strong Scott topology) is homeomor-
phic to X. The main aim is to establish a characterization of T1 spaces
with T-generated topologies (such as the Hausdorff k-spaces) in terms
of maximal point spaces of posets. A poset P is called ME-separated if
for any elements x, y of P , x ≤ y iff ↑ y ∩Max(P ) ⊆↑x ∩Max(P ). We
consider the topological spaces that have an ME-separated strong poset
model. The main result is that a T1 space has an ME-separated strong
poset model iff its topology is T-generated. The class of spaces whose
topologies are T-generated include all Scott spaces and all Hausdorff
k-spaces.

A poset model of a topological space X is a poset P such that the
subspace Max(P ) of all maximal points of P of the Scott space ΣP is home-
omorphic to X. It has been proved by several authors that a topological
space has a poset model if and only if it is a T1 space (see [1][2][13]). In
[14], it was further proved that every T1 space has a directed complete poset
(dcpo, for short) model. Finding poset models with extra properties can help
us better understand the topologies of spaces modeled by these posets.

In [15], the topological spaces that have a bounded complete dcpo
model are investigated. In particular, they studied the spaces in which
all nonempty closed compact subsets form a dcpo model. One of the special
features of the dcpo CK(X) of all nonempty closed compact subsets of a
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2 D. ZHAO, X. XI, AND Y. CHEN

T1 space X is that elements A in CK(X) are determined by the maximal
elements above it: A ⊆ B iff (↑ B)∩Max(CK(X)) ⊆ (↑ A)∩Max(CK(X)).
A poset P satisfying this condition will be called “ME-separated”. In this
paper we investigate such posets and their maximal point spaces. We intro-
duce the notion of strong Scott topology on a poset and use it to define the
strong poset model of a topological space. The main result is that a T1 space
has an ME-separated strong poset model iff its topology is T-generated (to
be defined). The class of spaces whose topologies are T-generated include
all Scott spaces, metric spaces and even all the Hausdorff k-spaces. The
definition of T-generated topologies may suggest a new convenient method
of constructing topologies on a set.

1. The strong Scott topology on dcpos

Recall that a subset U of a poset P is Scott open if i) U =↑U = {x ∈
P : y ≤ x for some y ∈ U} and ii) for any directed subset D ⊆ P ,

∨
D ∈ U

implies D ∩U 6= ∅ whenever
∨
D exists. The Scott open sets of a poset P

form a topology on P , denoted by σ(P ) and called the Scott topology on P .
The space (P, σ(P )) is denoted by ΣP , called the Scott space of P . A subset
F of P is closed with respect to the Scott topology if it is a lower set and
closed under suprema of directed subsets (i.e. for any directed set D ⊆F ,∨
D ∈ F whenever

∨
D exists).

A poset is called a directed complete poset (dcpo, for short) if every
directed subset of the poset has a supremum. For more about the Scott
topology and dcpos, see [5][6].

For any poset P , let Max(P ) denote the set of all maximal points of
P . A poset model of a topological space X is a poset such that the subset
Max(P ) with the relative Scott topology is homeomorphic to X.

As our main focus will be on the subspace Max(P ), we shall assume that
in all the posets P considered below, every element x ∈ P is below some
maximal element. This is equivalent to ↓Max(P ) = P . Note that every
dcpo satisfies this condition.

In order to extend the ways of constructing topologies from order struc-
tures, we introduce a new topology on posets, which is finer than the Scott
topology in general. The corresponding poset models of topological spaces
will be investigated.

Definition 1.1. Let P be a poset. The strong Scott topology σs(P )
on P consists of U ⊆ P such that (i) U =↑U and (ii) for any directed set
D ⊆ P ,

∨
D ∈ Max(P ) ∩ U implies D ∩ U 6= ∅.

It’s easy to verify that σs(P ) is indeed a topology on P and is finer than
the Scott topology in general.

Remark 1.2. In [8][4], the authors first defined the strong Scott topol-
ogy τsSc on the open set lattice O(Y ) of a topological space Y as follows:
H ⊆ O(Y ) is in τsSc iff (i) it is an upper set of the complete lattice (O(Y ),⊆)
and (ii) for any directed subfamily D of O(Y ) satisfying

⋃
D = Y , H∩D 6= ∅.
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Example 1.3. (1) Let P = [0, 1] be the unit interval of real numbers
with the ordinary order of numbers. Then a subset U of P is in σs(P ) iff it
has the form [a, 1] or (a, 1] (a < 1). Thus for this P , σ(P ) 6= σs(P ).

(2) Let I = {[a, b] : a, b ∈ R, a ≤ b} be the set of all nonempty closed
intervals of real numbers. Then (I,⊇) is a dcpo.

The set {I ∈ I : I ⊆ [0, 1]} ∪ {I ∈ I : I ⊆ (−1, 1/2) ∪ (1/2, 3/2)} is in
σs(I). But it is not Scott open.

In general, an upper set U ⊆ I is in σs(I) iff for any [x, x] = {x} ∈ U ,
there is I ∈ U such that x ∈ int(I).

Given two elements a, b in a poset P , a is way-below b, denoted by a� b,
if for any directed subset D of P , if

∨
D exists and b ≤

∨
D then there exists

d ∈ D such that a ≤ d. An element x is called compact, if x � x. The set
of all compact elements of P is denoted by K(P ).

A poset P is called a continuous poset if for any element a ∈ P , the set

�a = {x ∈ P : x� a} is a directed set and

a =
∨

�a.

A poset P is called an algebraic poset if for any element a ∈ P , the set
{x ∈ K(P ) : x ≤ a} is a directed set and

a =
∨
{x ∈ K(P ) : x ≤ a}.

Every algebraic poset is continuous.
Given a poset P , the subspace of (P, σs(P )) of all maximal points will

be denoted by Maxs(P ). Since the strong Scott topology is finer than the
Scott topology, the space Maxs(P ) is always T1.

Definition 1.4. A strong poset model of a T1 space X is a poset P
such that Maxs(P ) is homeomorphic to X.

Theorem 1.5. For any continuous poset P , the restrictions of σ(P ) and
σs(P ) on Max(P ) are the same.

Proof. Let W ∈ σs(P ) and B = W ∩Max(P ). For any b ∈ B, there is
a b∗ ∈ W such that b∗ � b. Since P is continuous, each {y ∈ P : b∗ � y}
is Scott open. Let W∗ =

⋃
b∈B{y ∈ P : b∗ � y}. Then B = W ∗ ∩Max(P ).

This shows that σs(P )|Max(P ) is contained in σ(P )|Max(P ). As the inverse

inclusion always hold, we have σs(P )|Max(P ) = σ(P )|Max(P ), thus the result

is proved. �

Therefore when considering the maximal point spaces of continuous
posets, it does not matter whether one uses the Scott topology or the strong
Scott topology.

The following is an immediate problem concerning the strong dcpo mod-
els: Which T1 spaces have a strong poset model?

By Theorem 1 of [13], every T1 space has a bounded complete alge-
braic poset model. Since every algebraic poset is continuous, we obtain the
following result by Theorem 1.5.
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Proposition 1.6. Every T1 space has a strong continuous poset model.

Remark 1.7. The models of topological spaces with respect to other
topologies different from the Scott topology have already been considered
by other authors. For instance,

(i) Lawson proved that for every Polish space X there is an ω-domain
whose maximal point space with the relative Lawson topology is
homeomorphic to X([9]);

(ii) Liang and Keimel proved that a T1 space has a continuous poset
model with respect to the Lawson topology if and only if it is
Tychonoff([10]);

(iii) Kamimura and Tang proved that a T1 space is compact and sec-
ond countable iff it is homeomorphic to the maximal point space
of a bounded complete ω-algebraic dcpo with the relative lower
topology ([7]);

(iv) Mashburn studied the models with respect to the
wwb -topology([11][12]).

Here we consider the models with respect to the strong Scott topology and
use it to establish new links between domain theory and T1 spaces.

2. T-generated topologies

In [15], the authors defined the CK-generated topology and proved that
for a Hausdorff space (X, τ), the set of all nonempty compact subsets form
a dcpo model (in a specific sense) iff τ is CK-generated. In this paper we
shall study the general way of using families of sets to generate a topology
in a similar manner. We also study their links to the strong poset models
of topological spaces.

Definition 2.1. A T-family Ψ on a set X is a collection of nonempty
subsets of X such that for any x ∈ X, the family

{A ∈ Ψ : x ∈ A}

is a nonempty filter base.
Let cΨ(x) =

⋂
{A ∈ Ψ : x ∈ A} for each x ∈ X.

Definition 2.2. Given a T-family Ψ on a set X, a subset U ⊆ X is
called Ψ-open if for any filter base F ⊆ Ψ,

⋂
F = cΨ(a) and a ∈ U implies

F ⊆ U holds for some F ∈ F .
Let τΨ be the collection of all Ψ-open sets of X.

A subset A of a topological space (X, τ) is called saturated if it is an
intersection of open sets [5]. The saturation sat(A) of a set A is the intersec-
tion of all open sets containing A (it is the smallest saturated set containing
A).
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Proposition 2.3. Let Ψ be a T-family of subsets of a set X. Then we
have the following.

(1) τΨ is a topology on X.
(2) sat({x}) = cΨ(x) holds for any x ∈ X, where the saturation is the

one with respect to τΨ.
(3) For any U ∈ τΨ, U =

⋃
{cΨ(x) : x ∈ U}.

(4) The space (X, τΨ) is T0 iff x 6= y implies cΨ(x) 6= cΨ(y).
(5) The space (X, τΨ) is T1 iff cΨ(x) = {x} for all x ∈ X.

Proof. (1) is easy to verify.
(2). If x ∈ U and U is Ψ-open, then as {A ∈ Ψ : x ∈ A} is a filter

base and
⋂
{A ∈ Ψ : x ∈ A} = cΨ(x), so there there is an F ∈ Ψ such

that x ∈ F and F ⊆ U . Now cΨ(x) ⊆ F ⊆ U imply cΨ(x) ⊆ U . Hence
cΨ(x) ⊆ sat({x}).

Now assume that y 6∈ cΨ(x). Let U = {z ∈ X : y 6∈ cΨ(z)}. Then x ∈ U
and y 6∈ U . Note that for any F ∈ Ψ, F ⊆ U iff y 6∈ F . We show that U is
Ψ-open. Let F ⊆ Ψ be a filter base such that

⋂
F = cΨ(d) and d ∈ U . Then

y 6∈ cΨ(d) by the definition of U . Hence y 6∈ F for some F ∈ F with d ∈ F .
But then F ⊆ U . Hence U is Ψ-open. All these show that cΨ(x) = sat({x}).

(3) follows from (2) and the general fact that every open set is the union
of the saturations of elements in the set.

(4) and (5) follow from (2) and the general fact on the links between
saturations of singletons and T0 and T1 separations.

�

A topology β on a set X is called T-generated if β = τΨ for some T-
family Ψ on X. In this case we also call the space (X,β) T-generated.

Example 2.4. (1) For any set X, the family P0(X) of all nonempty
subsets of X is a T-family on X. The topology µ on X generated by P0(X)
is the co-finite topology (U ∈ µ iff U = ∅ or X − U is finite).

(2) Let I = {[a, b] : a ≤ b, a, b ∈ R} be the family of all closed intervals
of reals. Then I is a T-family on R and the topology generated by I is the
usual Euclidean topology.

(3) Let ω1 be the set of all countable ordinals and τ the co-countable
topology on ω1 (U ∈ τ iff U = ∅ or ω1−U is countable). Let Ψ be the family
of sets F such that there are x, y ∈ ω1 with x < y and F = {x} ∪ {z ∈ ω1 :
z ≥ y}. Then one can easily check that U ∈ τ iff U is Ψ-open.

(4) If (X, τ) is a Hausdorff first countable (more general, a k-space),
then the family CK(X) of all non-empty closed compact subsets of X is a
T-family and it generates the original topology τ (see [15]). In particular,
every topology defined by a metric is T-generated.



6 D. ZHAO, X. XI, AND Y. CHEN

Example 2.5. For any poset P , let Ψ = {↑ x : x ∈ P}. Then for any
x ∈ P ,

⋂
{A ∈ Ψ : x ∈ A} =↑x. It is then easy to check that U ⊆ P is Ψ-

open iff it is Scott open. Thus the Scott topology on posets are T-generated.

Probably a little more interesting type T-family on a poset is the follow-
ing one.

Example 2.6. Given a poset P , let

Ψuf = {↑F : F ⊆ P is a non-empty finite set}.

Every Ψuf -open set is clearly Scott open.
Consider the poset P below:

P = {a1, a2, · · · } ∪ {b},

the order is given by a1 < a2 < · · · < an < an+1 < · · · and a1 < b.
Then U = {b} is Scott open. For each i ∈ N, let Fi = {ai, b}. Then⋂
{↑ Fi : i ∈ N} = {b} ⊆ U , but Fi 6⊆ U for all i. Therefore U is not

Ψuf -open.

Proposition 2.7. For any dcpo P and U ⊆ P , U ∈ σ(P ) iff U is
Ψuf -open.

Proof. We only need to show that every Scott open set of a dcpo is
Ψuf -open.

Let P be a dcpo (every directed subset has a supremum) and U ∈ σ(P ).
Let {↑Ai : i ∈ I} be a filtered base with each Ai a nonempty finite subset and⋂
{↑Ai : i ∈ I} =↑x ⊆ U . If Ai−U 6= ∅ for all i ∈ I, then {↑ (Ai−U) : i ∈ I}

is a filtered family. By Rutin’s Lemma (Lemma III-3.3 of [5]), there is a
directed subset D ⊆

⋃
{Ai −U : i ∈ I} such that D ∩ (Ai −U) 6= ∅ for each

i ∈ I. Then, as D ⊆ P − U and P − U is Scott closed,
∨
D ∈ P − U . But∨

D ∈
⋂
{↑Ai : i ∈ I} ⊆ U . This leads to a contradiction. Hence there must

be i such that ↑Ai ⊆ U , showing that U is Ψuf -open. �

Remark 2.8. If (X, τ) is a T-generated space and Y is an open subspace
of X. Then Y is also T-generated (if τ = τΨ, then the topology on Y is
generated by Ψ ∩ Y = {A ∩ Y : A ∈ Ψ}).

It is still unknown whether a Gδ subset of a T-generated space is also
T-generated.

Remark 2.9. Given a collection U of nonempty subsets of set X with⋃
U = X, let Ψ be the family of nonempty intersections of a finite number

of members of U . Then Ψ is a T-family on X and it generates a topology
on X.
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Although T-generated spaces are quite general, we do have Hausdorff
spaces which are not T-generated.

Example 2.10. Let X = R, the set of all real numbers. The topology
τ on X is the coarsest one containing the Euclidean topology and the co-
countable topology. Equivalently, U ∈ τ iff U = V − C, where V is an open
set in the Euclidean topology and C is a countable set. Assume that τ is
generated by a T-family Ψ (thus U ∈ τ iff U is Ψ-open). Then, as (X, τ) is
T1, cΨ(x) = {x} for all x ∈ X by Proposition 2.3(5).

The set {0} is clearly not in τ , hence not Ψ-open. Therefore there must
be a filter base F ⊆ Ψ such that

⋂
F = {0} and {0} 6∈ F .

Now for each n ∈ N, the set (− 1
n ,

1
n) is Ψ-open (because it is in τ). So

there is an Fn ∈ F such that Fn ⊆ (− 1
n ,

1
n). Since F is a filter base, we can

chose F ′ns so that Fn+1 ⊆ Fn hold for all n. Now let F∗ = {Fn : n ∈ N}.
Then F∗ is a filter base in F and

⋂
F∗ = {0}. For each n, as Fn 6= {0},

we can choose a bn ∈ Fn − {0}. Let B = {bn : n ∈ N}. Then R − B is in
τ and contains 0. But there exists no Fn ∈ F∗ that is contained in R − B.
This contradicts the assumption that τ is generated by Ψ.

Remark 2.11. By Proposition 1.6, the space X in the above example
has a strong continuous poset model. Thus a space having a strong poset
model need not have a T-generated topology. We can even construct a space
which has an algebraic dcpo model and whose topology is not T-generated
(e.g. the dcpo Z(X) in (2) of Section 4 of [16] is an algebraic model of the
space (R, τ), and τ is not T-generated).

In the following we prove a new link between T-generated topologies and
k-spaces. For any topological space (X, τ), let CK(X) be the collection of
all nonempty compact subsets of X. It is easy to check that CK(X) is a
T-family. In [15], we introduced the CK-filter generated spaces and proved
that every Hausdorff k-space (or compactly generated space) is CK-filter
generated, and thus deduce that every Hausdorff k-space has a bounded
complete dcpo model. It is still open whether every Hausdorff CK-filter
generated space is a k-space (page 8 of [15]). We now give a positive answer
to this problem.

By [15], a space (X, τ) is CK-filter generated if a subset U is open iff
for any filtered family F ⊆ CK(X) with

⋂
F = {x} and x ∈ U , there is an

F ∈ F such that F ⊆ U .
Note that for any T1 space X and a ∈ X, cCK(X)(a) =

⋂
{K ∈ CK(X) :

a ∈ K} = {a}. Thus, in terms of the notion of T-generated topology, a T1

space (X, τ) is CK-filter generated iff the topology τ is T-generated by the
family CK(X).

A space (X, τ) is called a k-space if a subset U ⊆ X is open iff for any
closed compact subspace A ⊆ X, U ∩A is open in A.

Theorem 2.12. Every CK-filter generated T1 space is a k-space.
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Proof. Let (X, τ) be CK-filter generated T1 space. Note that for any
x ∈ X, cCK(X)(x) = {x} because (X, τ) is T1.

Assume that U is a subset of X such that for any closed compact subset
A of (X, τ), U ∩ A is open in the subspace A. Let {Ki : i ∈ I} ⊂ CK(X)
be a filtered family and ⋂

{Ki : i ∈ I} = {x} ⊆ U.

Without lose of generality, we can assume that all k′is are contained in some
Ki0(otherwise we can consider the family {Ki ∩Ki0 : i ∈ I}). Then each Ki

is a compact closed subset of the subspace Ki0 .
If for each i ∈ I, Ki ∩ U c 6= ∅, then, as U ∩Ki is open in Ki, Ki ∩ U c is

closed in Ki. Hence Ki − U is closed in Ki0 . Now⋂
{Ki − U : i ∈ I} =

⋂
{Ki : i ∈} − U = ∅.

This contradicts that Ki0 is compact. Hence there exists Ki such that
Ki ⊆ U . By the assumption, we deduce that U is open in X.

Conversely, if U ⊆ τ and {Ki : i ∈ I} ⊂ CK(X) is a filtered family such
that ⋂

{Ki : i ∈ I} = {x} ⊆ U,
then trivially we have Ki ⊆ U for some i. Therefore (X, τ) is a k-space. �

The following result provides a new characterization for Hausdorff K-
spaces.

Corollary 2.13. A Hausdorff space is a k-space iff it a CK-filter gen-
erated.

3. ME-separated strong poset models

Consider the dcpo (I,⊇) in Example 2.4(2). For any I = [a, b] ∈ I,
↑ I ∩ Max(I) = {[x, x] : x ∈ [a, b]}. Thus for any two I, J ∈ I, I ⊇ J iff
↑ I ∩Max(I) ⊆↑J ∩Max(I). For any T1 space X, the dcpo (CK(X),⊇) of
all nonempty closed compact sets also has this property.

Definition 3.1. A poset P is called ME-separated if for any x, y ∈ P ,

x ≤ y iff ↑y ∩Max(P ) ⊆↑x ∩Max(P ).

Example 3.2. (1) The poset P = [0, 1] of real numbers between 0 and
1, with the usual order, is not ME-separated.

(2) Let X = Rn be the Euclidean n-space. For each x ∈ X and ε ∈ R
with ε ≥ 0, let B(x, ε) = {y ∈ X : d(x, y) ≤ ε}. Then the set BX =
{B(x, ε) : x ∈ X, ε ≥ 0} is a dcpo with respect to the reverse inclusion order
(see Example V-6.8 of [5] for a more general conclusion). It’s easy to see
that BX is ME-separated.

Lemma 3.3. If a T1 space has an ME-separated strong poset model, then
X is T -generated.
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Proof. Assume that P is an ME-separated poset and X is homeomor-
phic to Maxs(P ). To simplify the statements, we assume X = Maxs(P ).

Let Ψ = {↑u ∩X : u ∈ P}. For any x ∈ X,

{A ∈ Ψ : x ∈ A}
has a smallest member {x}, so it is a nonempty filter base. Therefore Ψ is a
T-family on X and cΨ(x) = {x} holds for every x ∈ X. We now show that
the restriction of σs(P ) on X is generated by Ψ.

Let U ∈ σs(P ) and F ⊆ Ψ a filter base such that
⋂
F = {m} ⊆ U .

Assume that F = {↑ pi ∩ X : i ∈ I}. Then A = {pi : i ∈ I} is a directed
subset of P because P is ME-separated.

Since m ∈
⋂
{↑ pi : i ∈ I}, m is an upper bound of A = {pi : i ∈ I}.

Assume that d is any upper bound of A, then d ∈
⋂
{↑pi : i ∈ I} and thus

↑d ⊆
⋂
{↑pi : i ∈ I}. Then

↑d ∩X ⊆
⋂
{↑pi : i ∈ I} ∩X = {m}.

As ↑d∩X 6= ∅ (every element is below some maximal point), it follows that
↑d∩X = {m}. Noting that m ∈ X, ↑m = {m}. Therefore ↑d∩X =↑m∩X,
which implies d = m because P is ME-separated. All these show that∨
A = m (in fact, m is the unique upper bound of A). Since U ∈ σs(P ),

there exists pi0 ∈ U . Then ↑ pi0 ⊆ U because U is an upper set, thus
↑pi0 ∩X ⊆ U ∩X. This shows that U ∩X ∈ τΨ, the topology generated by
Ψ on X.

Conversely, assume that V ⊆ X is nonempty and is in τΨ. Let V ∗ =
{p ∈ P :↑ p ∩ X ⊆ V }. Then V ∗ contains V and is an upper set of P ,
again because P is ME-separated. For any directed set D ⊆ P such that∨
D ∈ X ∩ V ∗, the family {↑ r ∩ X : r ∈ D} is a filter base in Ψ and⋂
{↑ r ∩ X : r ∈ D} = {

∨
D} ⊆ X and {

∨
D} ⊆ V , thus there is d ∈ D

such that ↑d ∩X ⊆ V , which implies d ∈ V ∗. Thus V ∗ ∈ σs(P ). Trivially
V = V ∗ ∩X.

The proof is completed. �

Corollary 3.4. If a T1 space has an ME-separated domain model, then
it is T-generated.

Proof. Let P be an ME-separated domain model of space X. Then,
by Theorem 1.5, P is an ME-separated strong poset model of X, so X is
T-generated. �

Lemma 3.5. If a T1 space is T-generated, then it has an ME-separated
strong poset model.

Proof. Assume that (X,µ) is a T1 space such that there is a T-family Ψ
satisfying µ = τΨ. We show that the space X is homeomorphic to Maxs(P ),
where P = Ψ ∪ {{x} : x ∈ X} with the reverse inclusion order. Clearly
Max(P ) = {{x} : x ∈ X}. Let f : X−→Max(P ) be the trivial bijection. Let
U ∈ σs(P ) and F ⊆ Ψ a filter base such that

⋂
F = {x} ⊆ f−1(U∩Max(P )).
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Then F is a directed subset of P such that supF = {x} ∈ U ∩ Max(P ).
Hence there is F ∈ F ∩U . Then for any x ∈ F , f(x) = {x} ≥P F , implying
f(x) ∈ U∩Max(P ). So F ⊆ f−1(U∩Max(P )). Therefore f−1(U∩Max(P )) ∈
τΨ = µ, showing the continuity of f .

Now let U ∈ τΨ.
(i) Clearly f(U) = {{x} : x ∈ U} = U∗ ∩Max(P ), where U∗ = {A ∈ P :

A ⊆ U}.
(ii) The set U∗ is in σs(P ). As a matter of fact, U∗ is clearly an upper

set in P . Assume that F ⊆ P is a directed subset such that supPF =
{x0} ∈ U∗. Then x0 ∈

⋂
F . If y ∈

⋂
F , then {y} is an upper bound of F ,

so x0 = y. All these show that {x0} =
⋂
F . Since {x0} ∈ U∗, x0 ∈ U . If

one of F0 ∈ F is a singleton, then F0 = {x0}, so F0 ∈ U∗. Otherwise, as
F ⊆ Ψ is a filter base and U ∈ τΨ, we have that that F ⊆ U holds for some
F ∈ F , which implies F ∈ U∗. Therefore U∗ ∈ σs(P ). Hence f(U) is open
in Maxs(P ).

In all we have shown that f is a homeomorphism.
Therefore (P,⊇) is a strong poset model of X. In addition P is easily

seen to be ME-separated. �

The combination of the above two lemmas leads to the following theo-
rem.

Theorem 3.6. A T1 space is T-generated iff it has an ME-separated
strong poset model.

In [15] it was proved that for any Hausdorff k-space, a subset U is open
if and only for any filter base F of closed compact sets,

⋂
F ⊆ U implies

F ⊆ U for some F ∈ F . This means exactly that the topology of every
Hausdorff k-space is generated by the family CK(X) of all nonempty closed
compact sets of X. Also as CK(X) is closed under the intersection of filter
bases, CK(X) is a dcpo with respect to the reverse inclusion order. Thus
we have the following.

Corollary 3.7. Every Hausdorff k-space has an ME-separated strong
dcpo model.

We close the paper with some problems for further work on this topic.
The metric space R of real numbers with the Euclidean topology has an

ME-separated domain model, that is (I,⊇). For any complete metric space
(Y, d), the domain BY of all closed formal balls of Y is a domain model of
Y [3] (and hence also a strong dcpo model). But, in general, BY need not
be ME-separated.

Thus we have the problem:

1. Which complete metrizable spaces have an ME-separated domain
model?
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We hope to know more about the T-generated spaces. The following is
a very natural problem on T-generated space.

2. Is the product of any two T-generated spaces also T-generated?
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