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Fidelity has always been an important concept in quantum optics. Recently, it was found that fidelity can
also play a key role in quantum information and communication theory. Fidelity can be interpreted as the
probability that a decoded message possesses the same information content as the message prior to coding and
transmission. In this paper, we give a formula of Bures fidelity for displaced squeezed thermal states directly
by the displacement and squeezing parameters and briefly discuss how the results can apply to quantum
information theory[S1050-2947@8)05711-4

PACS numbe(s): 42.50.Dv, 03.67.Hk, 03.65.Fd

Bures fidelity has been an important concept in the field
of quantum opticgsee, for example, Ref1]). Recently, its F=2 p(a)Tr(mapy), v
importance has also been demonstrated in quantum informa- a
tion and communication theory. An important tenet in clas-
sical information theory is the rigorous establishment of thewhere w,=|ay)(ay| andp denotes the density operator of
Shannon noiseless coding theorem, in which one shows th@e final signal inM’. This definition applies strictly to pure
the Shannon entropy can be interpreted as the average nuitates and it is generally not clear how it can be applied to
ber of bits needed to code the output of a message sour¢gixed states.
under ideal conditions. The analogous quantum version of Ciosely related to the problem of coding is the process of
the Shannon Coding theorem is the Schumacher quantu@htangmment puriﬁcation protoc(EPF) and quantum error-
coding theorenj2]. In the quantum version, one introduces correction codesQECO [4,5]. These protocols essentially
the idea of fidelity, which can be interpreted as the probabilshjeld quantum states from the environment. In EPP, maxi-
ity that a decoded message carries the same information agally entangled states are extractém purified from a
the message prior to coding. More specifically, one cammixed states while in QECC, an arbitrary quantum state is
prove the Schumacher noiseless coding theorem, whicftansmitted at some rate through a noisy channel with mini-
states that ifM is a quantum signal source with signal en- mal degradation. Central to the idea of entanglement is the
semble described by the density operatothenV 5,6 need to define a measure of entanglement. Bennett and oth-
>0: ers have proposed a measure of entanglement using the von
(i) If S(p)+ & qubits are available pev signal, then, for  Neumann entropy. However, it is sometimes difficult to
sufficiently largeN, groups ofN signals from the signal compute and obtain a closed form using their definition. Re-
sourceM can be transposed through the available qubits witftently, Vedral and others have studied a wide class of mea-
fidelity F>(1—e). sures suitable for entanglement and they have proposed the
(ii) If S(p)— & qubits are available pev signal, then, for  Bures metric as an example of a possible means of quantify-
sufficiently largeN, groups ofN signals from the signal ing entanglement or fidelitj6].
sourceM can be transposed through the available qubits with It is well known that experimentally a squeezed electro-
fidelity F<e. S(p) denotes the von Neumann entropy for magnetic field 7] provides a means of overcoming the stan-
the signal. dard quantum limit for noise imposed by vacuum fluctua-
Suppose a quantum signal soufgkegenerates a signal tions. Furthermore, although the number-state channel is an
stateli ) with probability p(a) and the density operatpris  optimal channel for quantum communication theory, it is of-
described by the equation ten more realistic to consider the quadrature-squeezed chan-
nel [8] experimentally for several reasons. Firstly, one can-
not faithfully reproduce the number eigenstates easily and
p= 2 p(a)lay){awl, (1) secondly amplification of a quadrature-squeezed channel can
a be realized experimentally using a phase-sensitive amplifier.
Clearly, one should therefore investigate the plausibility of
one can define the Schumacher fidektgs the overall prob-  applying squeezed or displaced squeezed thermal states to
ability that a signal from an ensemblé can be transmitted quantum information and communication theory.
to M’ using the relation2,3] Recently, Twamley[9] has calculated the Bures fidelity
for squeezed thermal states. Due to some technical difficul-
ties, the displaced squeezed states was not considered in his

*Electronic address: scip7236@leonis.nus.edu.sg article. Very recently, Scutaril0] proposed an approach to
"Electronic address: phyohch@leonis.nus.edu.sg calculate the Bures fidelity for systems with a quadratic
*Electronic address: scip6051@Ileonis.nus.edu.sg Hamiltonian. Unfortunately, a closed form for the matrix el-

1050-2947/98/58)/41865)/$15.00 PRA 58 4186 ©1998 The American Physical Society



PRA 58 BURES FIDELITY OF DISPLACED SQUEEZED ... 4187

ements of the density operator is not explicitly given and thehe complex conjugate of. The density operator of dis-
final result does not relate fidelity directly with the squeezingplaced squeezed thermal states can be defined as
and displacement parameters. In fact, Paraoanu and Scutaru
have obtained, in a more recent papkt], an explicit form p=Z(B)DSAS'DT, (4)
for the Bures fidelity for two displaced thermal states. In this
article, we show an alternative method in which we can ac; _ T vk _ 1022 At ;
' hereD=exd(a',a and S=exgsr(a-—a'9)] are uni-
tually calculate the fidelity of displaced squeezed thermarv @A )] ) Har( )]
X . ary operators. Furthermore, in E@), the operatorA and
states by simply using the Baker-Campbell-Hausd@&H) o . .
the normalization factotZ(g8) are given respectively by
formula. We have also calculated a closed-form result fortheexq—(ﬂ/Z)(aaTJraTa)] and (trA)~T where 8 is the in-
Bures fidelity. This fidelity is expressed directly in terms of verse temperaturdThe dagger symbol in Eq4) denotes

the parameters found in the density operator for two dis- - : .
placed squeezed thermal states. Hermitian conjugatd. Note that we have considered the

Squeezed states occur in a myriad of nonlinear Optica§queezing parameter to be real since the most important pa-

phenomena such as optical parametric oscillation and four&asnéftirn?gna,tﬁsﬁluﬁef_ﬁg Stear:(:rlafl tcr;eses?:(\jvehzigﬁ Jﬁéag? Lr:cr::ent
wave mixing[12]. The single-mode squeezed states can &> g i 9 9

generated from the vacuum by the action of the squeeze§ is nonzero can be treated similarly. We next recall that the
operatorS ures fidelityF can be defined by the relation

S()=exd 3 ({*a’~fa'?)], 3 F=(trp1p201™)%. (5)

where =re'? is a complex number with modulusand  For two displaced squeezed thermal states, the Bures fidelity
argumentg, representing the squeezing parameter &his  can be expressed as

F=Z(B1)Z(B2)[tr V(D1S1A1°S]D])(D,S;A,S}D})(D1S1A1%S]D])]? (62)
=Z(B1)Z(B,)(tr yA{’SIDID,S,A,SIDID;S1A7%)2%. (6b)
[
To simplify Eq. (6), we need to rewriteE)ID2 as Note that in Eq(10), we have introduced the matrix
DID2=Do=exr{(aT,a)( _g* ” ! BE(GXD(—B) 0 )
9 0 exp )

where . .
Let us define the matrif) as A,*?S|DyS,A,S}DIS;A,*?
g kp— k& in Eq. (8). It is instructive to note that, by using the BCH
( *) =( N *). formula, we can readily express the matfix in a more
—-9g —(ka—kp) convenient form as

Thus, the formula for Bures fidelity of displaced squeezed g
thermal states becomes QIAll’ZSJ{SzAzl’Zex;{(aT,a)Bz1’2M21( ”

_g*
F=Z(B1)Z(B2) (tryA,72S]DS;A ,SID (S, A, 12)2.

g
(8) 5 ex;{ _ (aT,a)lelezl( ¢ ) }Azllzszsl/\ll/z,
Equation(8) needs some simplification before we can actu-
ally proceed with the detailed calculations. Before we do (13)

this, we need to invoke the BCH relati¢ph2,14),
whereB; andM; [according to the notation in E¢10)] are
Sa'a)s'=(a"am; s'(a'a)s=(a"aM™*, (9  the matrices
where exp — Bi) 0 coshr;  —sinhr;
coshr  —sinhr 0 exqBi))’
—sinhr  coshr

i=1,2
—sinhr; coshri)’ =5

respectively. The linear terms within the exponential factor
and in the above formulg11) can be collapsed into a simpler
term by using the following resultsee Appendix for a de-
A(a',a)At=(a',a)B. (10)  tailed proof:
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Z; Z3 B B B B I
ex;{(a*,a)Nl(zz) ex;{(a*,a)l\lz(z4 } (B, Y2M5 ™M, B, 1’2—821’2M21M1811’2)(_l*)
1 - z z g
—ext] — 5 (2. Z)NEN| | |exp (@, a)Ny| - =(By "*=B"M, (20
2 Z4 22 _g*
Z3
+(a"a)N, , (12  We get
4
I'y
whereN;,N, are arbitrary 2 2 complex matricesy. is the Q= F—Q’, (21
2

matrix (¢, 3) andzis an arbitrary complex numbéin Eq.
(12), the tilde above the matriNl; denotes the transpose of

the matrix] In this manner, we see that (tr\/5)2=£—z(tr\/Up+p_U+)2=%(tr\/P+P—)21
. (229
Q=Typ.exq (a’,a)(By =B IMH| _ . J|p-
13 r
(13 FZF—;Z(ﬁl)Z(ﬂz)(tr\/P+P—)2- (22b)
and

Since Z(81)Z(3,) (trVp, p_)? has already been computed
1 PP yonr—1| 9 in Ref[9], we can solve the whole problem by considering
I'y=exp5(9,-9")M; "B, 2B,V M, —g+ ]|’ the reduced calculation df,/T",. Following the Twamley
(14) paper, the quantitZ(3,)Z(8,)(tryp+p_)? in Eq. (22) can
be written as
er:All/ZSISzAZl/Z, p7:A21/252T31A11/2' (15) . .
2sini( B41/4)sinhB,/4

Z(B1)Z(B)(tr\psp_)?= , (23
Let us now consider another operator (BUZ(B)(trp--p-) JY—1 @3
Q'=Up,p_UT, (16)  where
where U=ex;i(a*,a)('_,*)]. If we apply the BCH formula Y=cosH(r,—r,)cost(B,+ B,)/4

again, we see that

—sink?(r;—r,)cost(B;— B,)/4.

|
Q’=p+exp{(aT,a)Bz‘1’2M21MlBl‘1’2( —I*” From Eqgs.(19) and(20), it follows that
T 1260 —1 1/2] I 1 * —1/257 -~ 1lp —1/2
Xexg —(a',a)B,"*M, *M B, _+ ] |- I',=ex E(I’_l )B, M M5 "B, 4. %,
(17) —12pg -1 —-1/2 l
X|B VM IMB Y
:Q':r2p+exp[(a*,a)(Bz—WM;lM131—1’2 g
_(BZI/Z_BZl/Z)MZl(_g*) } (24)

p- (18

_ 821/2M2_1M 1811/2)< I )
—I* It is instructive to note that the matricds and M are all
symplectic matrices, so that we have

and

~ ~ I
1 o (I,_l*)Bll/2M1M2182llZElelelelBlllz( _l*)
r2=exp[§(|,—|*)|311’2M1M21|321’22

|
| =(I,—I*)E<_I*>=O. (25)
Xle’ZleMlBlm(_l*”. (19

With this observation, it is straightforward to see that Eq.
Setting (19 can be simplified as
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1 *\R 127 -lp —1/2
Fo=exg — 5 (1,—1%)B, "M, M5B,

X 3(B, 2- le’z)Mz_l( _Z* ) } (26)

To obtain the final explicit form of’,, we have from Eqg.
(20
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1 ~ _ B ~
| 2_—6X[{ - —2 (g,—g*)Mz 1(82 v2_ 821/2)P lBl vz

~ ~ g
X M 1M2—182—1/22(Bz—1/2_ le/Z)Mz—l( _g* ) } )

(28)

In our case, it is not difficult to evaluate the expression for
I'; andT’, explicitly. To do this, we note that if we denote

(1, =1%)=(g,—g* )M, '(B,"**~B,"?)P~%,  (27)
1 g
where the matrix P=(B, M, 'M,B, Flzexr{z(g1_g*)Ql( _ *” (29
—B,YM, *M;B,'?). If we plug Eq.(27) into Eq.(26), we 9
arrive at the following formula for calculation df5: then the matrixQ is simply
sinhB,sinh(2r ) coshB,+sinhB,cosh 2r )
Q1= — coshpB,+ sinhB,cosh 2r,) sinhB,sinh(2r ) 30
ForT',, a straightforward computation for the matixyields
1 smhﬁﬂcosr{r1 ro) sinh@sinl‘(rl—rz)
p_t (31)
A B2~ B B2t B1
—smh—smr(rl rs) —smh—cosr(rl rs)
with A =coshg;coshgB,+sinhB;sinhB,cosh 2f,—r,)—1, so that if we denote
LIE W PR 32
Fz =ex 2 (g! g ) _g* ’
then a straightforward, albeit tedious, calculation yields
0 2 B, sinh(2r;) cosk2r) 2 B sinh(2r,) cosh2r,)
= +
R (—l 0 Asmhﬂlsmhz ( cosh2r,) smr(2r1) sml*? smh,B cosh2r,) sinh(2r,) 33

so that the factol"; /I", works out explicitly into

1
ex K(€l+ 62) y

(34)

where

€= sinhﬁlsinhz%[(gz+ g*?)sinh 2r,— 2|g|?cosh 2],
(353

—sinhB,[(g%+g*?)sinh 2r ,— 2|g|?cosh 2 ,].
(35b

ez—smI*FB

We can easily show that thdt, /T',<1 as it should be
and that in the limitg=g* =0, the ratio reduces to unity so

that we obtain the Bures fidelity for the undisplaced

squeezed states as shown in Ref. Further, we should also
note that in the limit whem= 0, we get the Bures fidelity for

the displacedinsqueezethermal coherent states. This Bures
fidelity is the same as the result previously obtained by
Paraoanu and Scutaf@i1].

APPENDIX

In this appendix, we shall explicitly show the proof for
Eq. (12). For simplicity and convenience, we defifg as
the expression

Zoi _
Qi=(aT,a)Ni( 22 1) for i=1,2. (AL)
2i

To show Eq.(12), we need to compute®ie®2, SinceN;
andN, are simply two arbitrary X2 matrices, in all gener-
ality they can be written as

a d e h
bc’Nz_fg'

We next compute the commutator fOr; and ().
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[Q41,Q5]=—(az;+dz)(fzz+gzy) =—(bz;+cz)(ez+hz)+(azy+dz)(fzg
+(bz;+cz)(ez+hzy). (A3) +9z). (Adb)

On the other hand, we should note that
Consequently, using Baker-Campbell-Hausdorff formula,

~ Z3 one gets
(21,2,)N1ZN, 7 ) g
a b\/ 0 1\/e h\[z; elielle= 221,22l g1 702 (A5a)
=(2y,2
@2y )21 ol g/lz,
o b 0 1\(ez+hz 1 RS Z3 + Z;
=(az;+dz,,bz;+cz =exp — 5(z21,2,)N12N expg (a',a)N
(azy 2,02, 5) ~1 0/\fztgz 2(1 2)N1 224 ( )122
o g ez+hz, . Z3 b
=(—bz —cz,az;+dz A4da) +(a",a)N . A5
(-ba—cpan+dz)| | (A (a" Ny (AS)
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