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Abstract

A topological space is sober if every nonempty irreducible closed
set is the closure of a unique singleton set. Sobriety is precisely the
topological property that allows one to recover completely a topolog-
ical space from its frame of opens. Because every Hausdorff space is
sober, sobriety is an overt, and hence unnamed, notion. Even in non-
Hausdorff settings, sober spaces abound. A well-known instance of a
sober space appears in domain theory: the Scott topology of a continu-
ous dcpo is sober. The converse is false as witnessed by two counterex-
amples constructed in the early 1980’s: the first by P.T. Johnstone and
the second (a complete lattice) by J. Isbell. Since then, there has been
limited progress in the quest for an order-theoretic characterization of
those dcpo’s for which their Scott topology is sober. This paper pro-
vides one answer to this open problem.

Subject classification: 06B30, 06B35, 06F30, 68Q55
Keywords: Scott topology, sober space, dcpo, dominated dcpo, H-continuous,
H-algebraic, H-compact, [-stable, strongly H-algebraic

1 Introduction

A subset of a topological space is irreducible if it is not the union of two proper
closed subsets. A topological space is sober if the singleton closures are the
only nonempty irreducible closed sets. In the theory of Hausdorff topological
spaces, the notion of sobriety is overtly invisible since every Hausdorff (also
known as T2) space is sober. In turn, every sober space is T0. With regards to
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the separation axioms, one has the following chain of implications: T2 =⇒
sober =⇒ T0. Clearly, not every T1 space is sober since every infinite
set endowed with the cofinite topology is such an example. Even for non-
Hausdorff settings, sober spaces abound. We begin with two examples below:

Algebraic geometry. For any commutative ring R, the prime spectrum
Spec(R) with the Zariski topology is a compact sober space. Moreover, every
compact sober space arises in this way [12].

Pointless topology. A complete lattice is a frame if binary meets dis-
tribute over arbitrary joins. One trivial example of a frame is the two-
element chain 2. For a topological space X, the lattice of its open sets,
OX, ordered by inclusion is a frame. Given a frame L, one can endow
on its spectrum SpecL (i.e., the set of frame homomorphisms p : X−→2)
the hull-kernel topology. The opens are defined to be sets of the form
@a := {p : X−→2 | p(a) = 1}. It turns out that such a topology is al-
ways sober. Moreover, a topological space X is sober if and only if it is
homeomorphic to the hull-kernel topology defined on Spec(OX). In view of
this, sobriety is precisely the condition by which any topological space X
may be recovered from its frame of opens OX. Sobriety is also an essen-
tial ingredient in Thron’s characterization of those topological spaces X such
that for any topological space Y , X ∼= Y as spaces if and only if OX ∼= OY
as frames [27, 4].

Another rich resource of sober spaces is domain theory. Domain theory
may be construed as the topology of ordered structures. Given a poset, sev-
eral intrinsic topologies can be defined on it. One of the most important
topologies, purportedly, is the Scott topology. The Scott opens of a poset
P are just the upper sets which are inaccessible by directed suprema. This
topology was first introduced by Dana Scott while manufacturing denota-
tional models for programming languages [25]. In the Scott model, data types
are interpreted as domains and programs their elements. Roughly speaking,
domains are directed complete partial orders (dcpo, for short) which sup-
ports approximation – every data is the limit of its ‘finite’ approximants.
The technical way of saying this is that domains are continuous dcpo’s.

Continuous dcpo’s have many beautiful properties in connection to the
Scott topology, and amongst these is the well-known result that the Scott
topology on a continuous dcpo is sober. In a somewhat opposite direction, it
is equally well-known that the specialization order of a sober space is a dcpo.
This leads to a natural question of whether every dcpo has a sober Scott
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topology. The answer to this is negative. Johnstone [16] constructed the first
dcpo (and later Isbell [15] the first complete lattice) with a non-sober Scott
topology. Recently, H. Kou constructed yet another counterexample of a
Uk-admitting dcpo which is not sober with respect to its Scott topology [20].
Since Johnstone’s construction is not Uk-admitting, all these three partial
orders are pairwise non-isomorphic. To date, as far as the authors of this
paper know, these are the only three distinct dcpo’s whose Scott topologies
are not sober. The rarity of such counterexamples is anticipation of the
extreme difficulty involved in identifying precisely those dcpo’s which admit
sober Scott topologies. The degree of difficulty has been articulated in the
form of an open problem posed on p.155 of [9], which we quote below:

Problem. Find an order-theoretic characterization for those
dcpo’s which are sober with respect to their Scott topology.

Since then, limited progress has been made in settling the problem [30, 10].
In this paper, we introduce a new transitive relation, on each poset, anal-

ogous to the way-below relation � heavily used in domain theory. With
this new relation, we are able to formulate and prove the main result in this
paper, i.e., a necessary and sufficient condition for a dcpo to have sober Scott
topology. Applying our main result reported herein, we (1) give pathological
explanations of why three well-known dcpo’s cannot have sober Scott topolo-
gies, and (2) establish that two dominated dcpo’s are isomorphic if and only
if their Scott closed set lattices are isomorphic – thereby sharpening a key
result of [11].

The layout of this paper is as follows. In Section 2, we gather at one
place several well-known and essential definitions and results. In Section 3,
we introduce the new transitive relation C and the H-continuous posets. We
establish the union-completeness of the H as a subset selection in Section 4.
We then develop, in Section 5, the notion of an H-compact element. After
this, we single out a special class of dcpo’s called the dominated dcpos, which
will be useful in the subsequent development. This is done in Section 6. The
machinery invented thus far will result in the characterization of dcpo’s of the
form H(P ) for some dominated dcpo P , and this is done in Section 7. This
then brings the reader to Section 8, the climax of this paper, where we present
an answer to the aforementioned open problem. The paper culminates in
Section 9 with some categorical housekeeping of the main results obtained in
the preceding sections.

Readers are expected to be familiar with domain theory and category
theory. For in-depth treatment of these topics, one may consult [1, 9] for
domain theory and [21, 24] for category theory.

3



2 Preliminaries

A partially ordered set will be called a poset. In this paper, we shall use v
to denote the order relation, and

⊔
E and

d
E the supremum and infimum

of a subset E, respectively. A non-empty subset D of a poset is said to be
directed if any two elements in D have an upper bound in D. A poset P is
called a dcpo (short for directed complete poset) if every directed subset of
P has a supremum in P . A subset M of a dcpo P is called a sub-dcpo of P
if for all directed subsets D of M , it holds that

⊔
M D ∈ M exists, and thus⊔

M D =
⊔

P D. Since the empty set is not directed by definition, a dcpo may
fail to have a least element (called a bottom). A dcpo with a bottom ⊥ is
said to be pointed. A poset in which the supremum of every pair of elements
exists is called a join-semilattice. Dually, one defines the meet-semilattice.
A poset which is both a join-semilattice and a meet semi-lattice is called
a lattice. A lattice which has all suprema and infima is called a complete
lattice.

For any subset A of a poset P , the subset ↑A is defined by

↑A = {x ∈ P | ∃a ∈ A. a v x}.

A subset A of a poset P is upper if A =↑A. The lower subsets are defined
dually.

A subset U of a poset is called Scott-open if (i) U is upper, and (ii) for
any directed subset D of P ,

⊔
D ∈ U implies U ∩ D 6= ∅ whenever

⊔
D

exists. The set of all Scott-open sets of P forms a topology on P , called
the Scott topology, denoted by σ(P ). We use the notation ΣP to denote the
Scott topological space (P, σ(P )) of a poset P .

The complements of Scott-open sets are the Scott-closed sets. We use
Γ(P ) to denote the set of all Scott-closed sets of P . Thus a subset F ⊆ P
is Scott-closed if and only if (i′) F is lower, and (ii′) for any directed subset
D ⊆ F , if

⊔
D exists then

⊔
D ∈ F . Both σ(P ) and Γ(P ) are complete,

distributive lattices with respect to the inclusion relation.
An element x of a join-semilattice P is said to be coprime if for any

a, b ∈ P , x v a∨b implies that x v a or x v b. The set of all coprime elements
of a join-semilattice P is denoted by COPRIME(P ). For any complete lattice
L, COPRIME(L) is a sub-dcpo of L.

In a given topological space X, a subset A of X is said to be irreducible
if whenever A ⊆ B ∪ C for any closed sets B and C then A ⊆ B or A ⊆
C. A singleton and its closure are always irreducible. Also, a subset A is
irreducible if and only if its topological closure cl(A) is irreducible. Because
the lattice of closed sets of a topological space is distributive, a closed subset
of a topological space X is irreducible if and only if whenever A = B ∪ C
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for closed sets B and C, one has A = B or A = C. It follows that a closed
subset of a topological space X is irreducible if and only if it is coprime in
the closed set lattice of X. A topological space is said to be sober if every
irreducible closed subset is the closure of a unique singleton.

The set of all irreducible Scott-closed sets of a poset P , ordered by set
inclusion, is denoted by H(P ). In other words, H(P ) := COPRIME(Γ(L)).
Because Γ(P ) is a complete lattice, the poset (H(P ),⊆) is a dcpo.

Let P be a poset. The way-below relation � on P is defined by a � b
for a, b ∈ P if for any directed subset D of P for which

⊔
D exists, b v

⊔
D

implies a v d for some d ∈ D.
A poset P is continuous if for any a ∈ P , the set ↓↓x := {y ∈ P | y � x}

is directed and its supremum is a.

3 H-continuous posets

Given a poset P , we define an auxiliary relation on P which is instrumental
for capturing certain order-theoretic properties of the dcpo H(P ).

Definition 3.1. Let P be a poset and x, y ∈ P . We say that x is under
y, denoted by x C y, if for every non-empty irreducible Scott-closed subset
C ⊆ P for which

⊔
C exists, the relation y v

⊔
C always implies x ∈ C.

Warning. The reader needs to be wary that the symbol C used in this arti-
cle is not the long-way-below relation of G. Raney, as used in [11] for instance.

Here are some expected properties of the relation C.

Proposition 3.2. Let P be a poset and u, v, x, y ∈ P . Then the following
statements hold:

(i) xC y implies x v y.

(ii) u v xC y v v implies uC v, and

(iii) if P is pointed, then ⊥C x always holds.

Remark 3.3. Some early remarks set our perspective right.

1. For a dcpo (P,v) which is sober with respect to its Scott topology, the
relation C coincides with the underlying order. This indicates that for
most dcpo’s (as to which one, we shall characterize them later), the
relation C is trivially v.
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2. Specializing the above remark on any continuous dcpo, one can easily
distinguish between the relations � and C as (P ), σ(P )) is sober for
continuous P .

3. For the purpose of characterizing Scott-closed set lattices, a special
relation ≺ was employed in [11] and is defined as follows. Let P be a
poset and x, y ∈ P . Then x ≺ y if for every non-empty Scott-closed
subset C of P , whenever

⊔
C exists,

⊔
C w y implies x ∈ C. Trivially,

≺ ⊆ C. It is interesting to note that this relation ≺ has also been
considered independently by [7] for the characterization of injective
locales over perfect sublocale embeddings.

Proposition 3.4. For any element a of a given poset P , we have

H(a) := {x ∈ P | xC a} ∈ Γ(P ).

Proof. By virtue of Proposition 3.2, it is clear that H(a) is a lower subset of
P . Let D be any directed subset of H(a) where

⊔
D exists. We aim to show

that
⊔
D ∈ H(a). Take any non-empty irreducible Scott-closed subset C of

P with
⊔
C w a. By definition, for each d ∈ D, it holds that d ∈ C since

dC a. Thus, D ⊆ C. Because C is, in particular, a Scott-closed subset of P ,
it follows that

⊔
D ∈ C. Consequently,

⊔
D ∈ H(a).

Definition 3.5. A poset P is said to be H-continuous if it satisfies the
following approximation axiom with respect to C:
For each a ∈ P , the following conditions hold:

1. H(a) ∈ H(P ), and

2. a =
⊔
H(a).

The second condition we term it the approximation axiom.

Remark 3.6. By invoking Proposition 3.4, the task of verifying that a cer-
tain poset P is H-continuous simplifies to showing that the sets of the form
H(a) are irreducible subsets of P with respect to the Scott topology and that
P satisfies the approximation axiom.

4 Union completeness of H

The following proposition will come in handy in establishing the union-
completeness of H, in the sense of [28, 29, 5].
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Proposition 4.1. Let L be a complete lattice and E be a non-empty ir-
reducible Scott-closed subset of COPRIME(L). Then it holds that

⊔
LE ∈

COPRIME(L).

Proof. Suppose that
⊔

LE v a ∨ b. Then for each e ∈ E, e v
⊔

LE v a ∨ b.
Since each e ∈ E is an irreducible element of L, it follows that e ∈ Ea or
e ∈ Eb, where Ea :=↓a∩E and Eb :=↓b∩E. Hence E = Ea∪Eb. So Ea and
Eb are Scott-closed subsets of COPRIME(L). By assumption on E, it follows
that E = Ea or E = Eb. Thus,

⊔
LE v a or

⊔
LE v b. The set equality

in the last part holds since
⊔

LE is, in particular, an irreducible element of
L.

In what follows, we show that the subset system defined by H(P ) for each
poset P is union-complete in the sense of [28, 5].

Lemma 4.2. Let P be a poset and C ∈ Γ(H(P )) be non-empty. Then⋃
C ∈ Γ(P ).

In particular,
⊔

Γ(P ) C exists and is equal to
⋃
C.

Proof. Let E be any directed subset of
⋃
C whose supremum,

⊔
P E, exists.

We aim to show that
⊔

P E ∈
⋃
C, i.e., there exists C ∈ C such that

⊔
P E ∈

C. Consider the set E = {↓ e | e ∈ E}. For each e ∈ E, e ∈ C for some
C ∈ C and so ↓ e ⊆ C. Since C ∈ Γ(H(P )) and all principal ideals are
irreducible Scott-closed sets, it is lower in H(P ) and thus ↓e ∈ C. Thus E
is a directed subset (w.r.t. the order (H(P ),⊆)) of C. Next, we claim that⊔

H(P ) E exists and is equal to ↓(
⊔

P E). Firstly, ↓(
⊔

P E) is clearly an upper

bound of E since ↓(
⊔

P E) is an irreducible Scott-closed subset of P for which
↓e ⊆↓(

⊔
P E) for all e ∈ E. Secondly, for any given non-empty irreducible

Scott-closed set X of P where ↓e ⊆ X for all e ∈ E, it must be that E ⊆ X.
Since E is a directed subset of P and X is, in particular, a Scott-closed subset
of P , it follows that

⊔
P E ∈ X. Because X is lower, ↓(

⊔
P E) ⊆ X. Thus,⊔

H(P ) E =↓ (
⊔

P E). Together with the fact that C ∈ Γ(H(P )), it follows

that ↓(
⊔

P E) ∈ C. Thus
⊔

P E ∈ C for some C ∈ C.

Proposition 4.3. Let P be a poset and C ∈ H(H(P )) be non-empty. Then⋃
C =

⊔
H(P )

C ∈ H(P ).

Proof. Apply Lemma 4.2 and Proposition 4.1 for the complete lattice L =
Γ(P ).
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Definition 4.4. A poset is said to be ISC-complete if it has suprema of all
irreducible Scott-closed subsets.

Remark 4.5. By Proposition 4.3, H(P ) is an ISC-complete dcpo for any
poset P .

5 H-compact elements

In this section, we define an important set of distinguished elements. Such
elements are analogous to the compact elements of a poset and hence are
expected to play an important role of characterizing those irreducible Scott-
closed subsets of P which are principal ideals.

Definition 5.1. An element of P of a poset P is called H-compact if xC x.
We use K(P ) to denote the set of all the H-compact elements of P .

Proposition 5.2. If M is a dcpo and K(M) 6= ∅, then K(M) is a sub-dcpo
of M .

Proof. Take any directed subset D of K(M). Since M is a dcpo,
⊔

M D
exists in M . We claim that

⊔
M D ∈ K(M). For any irreducible Scott-closed

subset C of M , whenever
⊔

M C w
⊔

M D, then
⊔

M C w d for every d ∈ D.
But for each d ∈ D, dC d so that by definition of C we have that d ∈ C, i.e.,
D ⊆ C. Since C is a Scott-closed subset of M , it follows that

⊔
M D ∈ C, as

desired.

In what follows, we aim to build a two-way passage between the lattice
of lower subsets of a dcpo M with its set of compact elements K(M). To do
this, we start with a more general setting as follows:

Definition 5.3. Let M be a poset and S a non-empty subset of M . Define
for each A ⊆M , a corresponding subset A] ⊆ S given by

A] := A ∩ S

and for each B ⊆ S, a corresponding subset of M given by

B[ := {m ∈M | ∃b ∈ B.m v b} =↓M B.

Lemma 5.4. Let M be a poset and S a non-empty subset of M . Then the
following statements hold.

1. Both ] and [ are monotone with respect to set inclusion.
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2. If A ⊆M is lower in M , then A] is lower in S. For any B ⊆ S, B[ is
lower in M .

3. For any x ∈ S, (↓Sx)[ =↓Mx and (↓Mx)] =↓Sx.

4. If A and B are lower subsets of M and S respectively, then

(A])[ ⊆ A and (B[)] = B.

Proof. We only check (4). Let A be a lower subset of M . For each x ∈ (A])[,
there exists y ∈ S ∩ A such that x v y. Since y ∈ A, it follows that x ∈ A.
Hence (A])[) ⊆ A.

Let B be a lower subset of S. For each b ∈ B, it holds trivially that b ∈ S
and, moreover, b v b. So, by definition, b ∈ (B[)] and thus, B ⊆ (B[)]. Next,
for each x ∈ (B[)], there exists b ∈ B such that x v b. Since B is lower in S,
it follows that x ∈ B. This implies (B[)] ⊆ B. Consequently, B = (B[)].

Remark 5.5. In summary, 〈[, ]〉 forms an e-p pair (i.e., embedding-projection
pair) between the lattices of lower subsets of M and that of S.

Proposition 5.6. Let M be a dcpo with a non-empty K(M). Then for each
A ∈ Γ(M), it holds that A] = A ∩K(M) ∈ Γ(K(M)).

Proof. By virtue of Lemma 5.4 (2), it suffices to show that A] is closed under
directed joins in K(M). Let D be a directed subset of A] whose sup exists in
K(M). We want to show that

⊔
K(M) D ∈ A]. Clearly, D is a directed subset

of A in M . Consequently,
⊔

M D ∈ A. By Proposition 5.2,
⊔

M D =
⊔

K(M) D

and so
⊔

K(M) D ∈ A ∩K(M) = A].

Proposition 5.7. Let P be a poset and X be a non-empty irreducible Scott-
closed subset of P . Then for each x ∈ X, ↓xCX holds in H(P ).

Proof. Let x ∈ X be given. Suppose that C ∈ H(H(P )) with
⊔

H(P ) C ⊇ X.

Then, by Proposition 4.3, X ⊆
⋃
C. Hence x ∈ C for some C ∈ C. Thus,

↓ x ⊆ C. Since C ∈ H(H(P )) is lower in H(P ) and that ↓ x ∈ H(P ), it
follows that ↓x ∈ C.

Corollary 5.8. Let P be a poset. Then for each x ∈ P , ↓x ∈ K(H(P )).

To characterize dcpo’s of the form H(P ) for some kind of posets P , it
is expected to formulate some version of algebraicity relevant to our current
context.
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Definition 5.9. A poset P is H-prealgebraic if for each a ∈ P ,

a =
⊔
{x ∈ K(P ) | x v a}.

A H-prealgebraic poset P is H-algebraic if for any a ∈ P , the following
conditions hold:

1. ↓P{x ∈ K(P ) | x v a} ∈ H(P ), and

2. {x ∈ K(P ) | x v a} ∈ H(K(P )).

Remark 5.10. Readers who are familiar with the existing concept of al-
gebraicity (with respect to the way-below relation �) might have already
noticed that the condition (ii) in Definition 5.9 seems to be an additional re-
quirement. As this condition is required later (and for a purely technical rea-
son), we have decided to include it as part of the definition of H-algebraicity
as opposed to inventing another definition later.

Proposition 5.11. For any poset P , the dcpo H(P ) is H-prealgebraic.

Proof. Since C =
⊔

H(P ){↓x | x ∈ C} for any C ∈ H(P ), the desired result
then follows from Corollary 5.8.

Proposition 5.12. Let P be an H-algebraic poset. Then for any a ∈ P , it
holds that

(H(a)])[ = H(a).

Proof. Since P is an H-algebraic poset, the set ↓PH(a)] =↓P{x ∈ K(P ) |
x C a} =↓P{x ∈ K(P ) | x v a} ∈ H(P ) with

⊔
P ↓PH(a)] = a. For each

x ∈ H(a), xC a then implies that there exists c ∈↓PH(a)] such that x v c.
There exists c′ ∈ H(a)] such that c v c′. Since x v c v c′ C c′ v a,
Proposition 3.2 forces x ∈ (H(a)])[. This proves that H(a) ⊆ (H(a)])[,
which is sufficient in light of Lemma 5.4(ii).

Proposition 5.13. Let P be an H-algebraic poset. Then P is H-continuous.

Proof. Since P is an H-algebraic poset. It follows that for any a ∈ P , the
set Ba :=↓P{x ∈ K(P ) | x v a} ∈ H(P ). Now

⊔
Ba =

⊔
{x ∈ K(P ) | x v

a} = a. So, for any x ∈ H(a), it holds that x ∈ Ba. On the other hand, if
y ∈ Ba, then y v d for some d C d v a. This implies that y ∈ H(a). thus,
H(a) = Ba ∈ H(P ). It follows that P is H-continuous.
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6 Dominated dcpo’s

In this section, we introduce a new class of dcpo’s called the dominated
dcpo’s. Such a class of dcpo’s is instrumental in the subsequent development
of our theory presented in this paper.

Definition 6.1. Let P be a poset and X ⊆ P be non-empty. A subset F
of P is X-dominated if there exists x ∈ X such that F ⊆↓x. A family F of
subsets of P is said to be X-dominated if every F ∈ F is X-dominated. A
poset P is called dominated if for every irreducible Scott-closed subset X of
P , the set

⋃
D is itself X-dominated for all directed X-dominated family D

of irreducible Scott-closed subsets of P .

Recall that for any directed subset D of a poset, the Scott closure cl (D)
is irreducible.

Proposition 6.2. Every dominated poset is a dcpo.

Proof. Let P be a dominated poset and D = {xi | i ∈ I} be a directed subset
of P . So, D := {↓xi | i ∈ I}. Then D is cl(D)-dominated. Here, cl(D) refers
to the Scott-closure of D. Since P is dominated,

⋃
D is dominated by cl(D),

i.e., there exists x ∈ cl(D) such that ↓x ⊇↓xi for all i ∈ I. We now claim
that x =

⊔
D. Firstly, it is clear that x is an upper bound of D. Next,

if xi v y for all i ∈ I, then ↓ xi ⊆↓ y. This implies that D ⊆↓ y. Thus,
↓x ⊆ cl(D) ⊆↓y, which then implies that x v y.

Hereafter, we only use the term ‘dominated dcpo’ instead of ‘dominated
poset’.

For a poset P and X ∈ Γ(P ), we use the notation:

CX := {F ∈ H(P ) | ∃x ∈ X.F ⊆↓x}.

Proposition 6.3. For any irreducible Scott-closed set X of P , it holds that⊔
H(P )

CX = X.

Proof. This is because ↓x ∈ CX for each x ∈ X.

Theorem 6.4. Let P be a poset. Then the following statements are equiva-
lent.

(i) P is dominated.
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(ii) For every irreducible Scott-closed subset X of P ,
⊔

H(P )D is X-dominated
for all directed X-dominated family D of irreducible Scott-closed subsets
of P .

(iii) For every irreducible Scott-closed subset X of P ,

CX ∈ H(H(P )).

(iv) For every irreducible Scott-closed subset X of P ,

CX ∈ Γ(H(P )).

Proof. (i) =⇒ (ii): Let X ∈ H(P ) and D a directed X-dominated family
of irreducible Scott-closed subsets of P . Note that

⋃
D ⊆

⊔
H(P )D. Now, by

assumption, there exists a ∈ X such that
⋃
D ⊆↓a. Since ↓a ∈ H(P ) is an

upper bound of D, it follows that
⊔

H(P )D ⊆↓a.

(ii) =⇒ (i): Suppose X and D were as above, and there exists, by
assumption, a ∈ X such that

⊔
H(P )D ⊆↓ a. Because

⋃
D ⊆

⊔
H(P )D, it

follows that
⋃
D ⊆↓a.

(i) =⇒ (iii): Since CX is clearly a lower subset of H(P ), it remains
to show that (1) CX is closed under directed joins, and that (2) CX is an
irreducible subset of H(P ).

To achieve (1), we pick an arbitrary directed subset E of CX . Since H(P )
is a sub-dcpo of Γ(P ), it follows that

⊔
H(P ) E =

⊔
Γ(P ) E . We must show that⊔

Γ(P ) E ∈ CX . Notice that E is a directed X-dominated family of irreducible
Scott-closed subsets of P . Since P is a dominated dcpo, it follows that⊔

H(P ) E ⊆↓x for some x ∈ X. Thus,
⊔

Γ(P ) E ⊆↓x and so,
⊔

Γ(P ) E is X-

dominated. Hence
⊔

H(P ) E =
⊔

Γ(P ) E ∈ CX .

We now verify that (2), i.e., CX is an irreducible subset of H(P ). Suppose
that

CX ⊆ A ∪ B

for two Scott-closed subsets A and B of H(P ). Taking set union on both
sides, we have that ⋃

CX ⊆
⋃
A ∪

⋃
B.

Now, by Proposition 4.2, we know that the three sets
⋃
CX ,

⋃
A and

⋃
B

are Scott-closed subsets of P . We denote the latter two sets by A and B
respectively. By Proposition 4.2, we know that

⋃
CX =

⊔
Γ(P ) CX . Crucially,

at this juncture, note that
⊔

Γ(P ) CX = X. Thus X ⊆ A ∪ B. Since X is
an irreducible Scott-closed subset of P , it follows that X ⊆ A or X ⊆ B.
Without loss of generality, assume that X ⊆ A. For each C ∈ CX , there is
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an x ∈ X such that C ⊆↓x. Now ↓x ⊆ X ⊆ A implies that x ∈ A. This
means that x ∈ Y for some Y ∈ A, and consequently, C ∈ A since it is a
lower subset of H(P ). Thus, we have shown that CX ⊆ A. This completes
the proof of (2) that CX is an irreducible subset of H(P ).

(iii) =⇒ (iv): Trivial.
(iv) =⇒ (i): Let X be any irreducible Scott-closed subset of P and D be

a directed X-dominated family of irreducible Scott-closed subset of P . Then
D is a directed subset of CX by definition. Since CX is a Scott-closed subset
of P , it follows that

⊔
H(P )D ∈ CX . Thus, there exists x ∈ X such that⊔

H(P )D ⊆↓x. But
⋃
D ⊆

⊔
H(P )D implying that D is X-dominated.

The definition of a dominated dcpo seems so unnatural and complicated
that one may be led to believe in their rarity. Hopefully, the following exam-
ples should convince the reader of their abundance.

Example 6.5. 1. Every complete semilattice is dominated. Recall that
L is a complete semilattice if every subset which is bounded above
has supremum. Equivalently, a poset is a complete semilattice if every
non-empty subset has an infimum. All complete lattices and complete
semilattice are dominated. In particular, all complete lattices are dom-
inated.

2. If P is a poset where every irreducible Scott-closed subset bounded
above has a supremum, then P is dominated. In particular, every ISC-
complete poset is dominated. Because of this, if a poset P is such that
ΣP is sober, then P is dominated.

Proposition 6.6. For any poset P , the dcpo H(P ) is dominated.

Proof. This is because H(P ) is ISC-complete by Lemma 4.3.

Remark 6.7. The above proposition is a concrete instance of Example 6.5(2).
We shall need this important example later in the development of our theory.

7 Characterization of H(P ) for dominated dcpo’s

P

The dcpo H(P ) has been used (and called the directed completion of P ) by X.
Mao and L. Xu [23] to study B-posets and FS-posets, which are generaliza-
tions of FS-domains created earlier by A. Jung in [17]. In their study, P has
always been restricted to a continuous dcpo. However, little is known about
the order-theoretic properties of H(P ) for non-continuous posets P . In this
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section, we make use of the H-compact elements of H(P ) to recover P for a
dominated dcpo, and subsequently arrive at our desired characterization of
H(P ) over the class of dominated dcpo’s P .

Theorem 7.1. Let P be a dominated dcpo. Then X ∈ K(H(P )) if and only
if X is a principal ideal, i.e., X =↓x for some x ∈ P .

Proof. By Corollary 5.8, it suffices to show the “only if ” part. Suppose that
X ∈ K(H(P )). By Theorem 6.4(iii), CX is an irreducible Scott-closed subset
of H(P ). As said earlier, it is clear that

⊔
H(P ) CX = X. Since X C X, it

follows that X ∈ CX . Thus, X ⊆↓ x for some x ∈ X. Hence X =↓ x, as
desired.

Corollary 7.2. Let P be a dominated dcpo. Then the principal ideal mapping
ηP : P → K(H(P )), x 7→↓x is an order-isomorphism.

Corollary 7.3. For dominated dcpos P and Q, the following statements are
equivalent:

(i) P ∼= Q.

(ii) Γ(P ) ∼= Γ(Q).

(iii) H(P ) ∼= H(Q).

Proof. (i) ⇐⇒ (iii): Immediate from Corollary 7.2.
(i) =⇒ (ii): Trivial.
(ii) =⇒ (iii): Obvious since H(P ) = COPRIME(Γ(P )).

Remark 7.4. The equivalence of (i) and (ii) strengthens a similar result
known to be true for complete-semilattices P and Q (c.f. Corollary 5.7 of
[11]).

Corollary 7.5. For any dominated dcpo P , the dcpo H(P ) is H-algebraic.

Proof. We first show that for any X ∈ H(P ), the set

↓H(P ){C ∈ K(H(P )) | C ⊆ X} ∈ H(H(P )).

By Lemma 7.1, every H-compact element of H(P ) is a principal ideal. Thus,
this set is just CX as defined earlier, which by Lemma 6.4 is an irreducible
Scott-closed subset of H(P ) because P is dominated.

Next, we show that the set

{C ∈ K(H(P )) | C ⊆ X} ∈ H(K(H(P ))).

Now the above set is just {↓ x | x ∈ X}. By Corollary 7.2, ηP is an iso-
morphism between P and K(H(P )). Thus {↓x | x ∈ X} = ηP (X). Since
X ∈ H(P ), it follows that ηP (X) ∈ H(K(H(P ))).
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Corollary 7.6. For a dominated dcpo P , the dcpo H(P ) is H-continuous.

Proof. A direct consequence of Corollary 7.5 and Proposition 5.13.

Corollary 7.7. Let P be a dominated dcpo. Then every irreducible Scott-
closed subset of K(H(P )) has a supremum in H(P ).

Proof. Let C ∈ H(K(H(P ))) be given. Since P is dominated, the map
η−1

P : K(H(P ))−→P is an isomorphism. This induces an order isomorphism
θ : H(K(H(P ))) ∼= H(P ). We claim that θ(C) =

⊔
H(P ) C. To establish

this, we write C = {↓xi | i ∈ I}. This is legitimate since every member of
K(H(P )) for a dominated dcpo P is a principal ideal. So θ(C) = {xi | i ∈ I}
which is an irreducible Scott-closed subset of P since θ is an isomorphism
between H(K(H(P )) and H(P ). Clearly, for any i ∈ I, ↓xi ⊆ θ(C) because
the latter is lower. Furthermore, for any irreducible Scott-closed subset X
of P which contains C as a subset, it must that for all i ∈ I, it holds that
xi ∈↓xi ⊆ X, implying xi ∈ X (since X is lower). Thus {xi | i ∈ I} ⊆ X
which implies that θ(C) is the least upper bound of {↓xi | i ∈ I} taken in
H(P ).

We add to the list of equivalent conditions for a dcpo P to be dominated
the following item.

Proposition 7.8. Let P be a dcpo. The following statements are equivalent.

(i) P is dominated.

(ii) For every irreducible Scott-closed subset C of H(P ), it holds that

(C])[ ∈ H(H(P )).

Proof. Before we commence on the proof, let us understand what the set
(C])[ for a given C ∈ H(H(P )) really looks like. Using the definition of ] and
[, we may unwind the definition of (C])[ as follows:

(C])[

=(C ∩K(H(P )))[

={F ∈ H(P ) | ∃C ∈ C ∩K(H(P )).F ⊆ C}.

(i) =⇒ (ii): Since P is dominated, C ∈ C ∩K(H(P )) if and only if C =↓x
for some x ∈

⋃
C, relying on Theorem 7.1. Thus, we may continue to rewrite

(C])[ in the following way:

{F ∈ H(P ) | ∃x ∈
⋃
C.F ⊆↓x}.
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Denote
⋃
C by X. By Proposition 4.3, X ∈ H(P ) is the least upper bound of

C in H(P ). Then (C])[ is just nothing but CX , recycling our earlier notation.
Because P is dominated, it follows from Theorem 6.4 that CX , i.e., (C])[, is
a irreducible Scott-closed subset of H(P ).

(ii) =⇒ (i): Given anyX ∈ H(P ), just set C to be {F ∈ H(P ) | F ⊆ X}.
Apply (ii) directly to obtain the desired result.

We are able to present the first characteristic of dcpo’s P such that ΣP
is sober.

Proposition 7.9. Let P be a dcpo. Then the following statements are equiv-
alent.

(i) ΣP is sober.

(ii) For every irreducible Scott-closed subset C of H(P ), it holds that

C = (C])[.

Proof. (i) =⇒ (ii): If ΣP is sober, then P is dominated. Then we gather
from the proof of Proposition 7.8 that for any C ∈ H(H(P )),

(C])[ = {F ∈ H(P ) | ∃x ∈
⋃
C.F ⊆↓x}.

Because ΣP is sober, the irreducible Scott-closed subset X :=
⋃
C of P is

just the closure of a singleton, i.e., there exists x ∈ X such that X =↓ x.
Then for any F ∈ C, we must have F ⊆ X =↓ x. Thus F ∈ (C])[. By
Lemma 5.4, the desired equality of sets holds.

(ii) =⇒ (i): Let X be any irreducible Scott-closed subset of P . We aim
to show that there exists x ∈ X such that X =↓x. Define the irreducible
Scott-closed subset C of H(P ) as follows: C := {F ∈ H(P ) | F ⊆ X}. By the
assumption in (ii), C = (C])[. In particular, X ∈ C so that the set equality
forces the existence of x ∈

⋃
C = X such that X ⊆↓x. This then implies

that X =↓x since ↓x ⊆ X always holds.

Remark 7.10. The above result characterizes the class of those dcpo’s whose
Scott topology are sober as those such that the natural transformation [ ◦ ] :
H2 −→ H2 gives the identity map.

Definition 7.11. Let M be a dcpo. We say that M is [-stable if for every
B ∈ H(K(M)), it holds that B[ =↓MB ∈ H(M).

Proposition 7.12. For an H-algebraic dominated dcpo M , the following
statements are equivalent.
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(i) M is [-stable.

(ii) K(M) is dominated.

Proof. (i) =⇒ (ii): Assume that M is [-stable. We prove that K(M) is
dominated. Let X ∈ H(K(M)) be given. Suppose D is an X-dominated
directed family of irreducible Scott-closed subsets of K(M). We aim to show
that

⊔
H(K(M))D is itself X-dominated. For each C ∈ D, there exists x ∈ X

such that C ⊆↓ K(M)x. Since M is [-stable, each C[ ∈ H(M). Also, we
have C[ ⊆ (↓K(M)x)[ =↓Mx by Lemma 5.4(1) and (3). Since x ∈ X[ for
each x ∈ X, it follows that the family D[ := {C[ | C ∈ D} of irreducible
Scott-closed sets of M is X[-dominated, where X[ ∈ H(M) by assumption.
Because M is dominated,

⊔
H(M)D[ ⊆↓My for some y ∈ X[. Since y ∈ X[,

there exists x∗ ∈ X such that
⊔

H(M)D[ ⊆↓Mx
∗. Relying on the monotonicity

of ] (Lemma 5.4),
⊔

H(K(M))D =
⊔

H(K(M))(D[)] ⊆ (
⊔

H(M)D[)] ⊆↓K(M)x.

This shows that D is X-dominated. Thus, K(M) is a dominated dcpo.
(ii) =⇒ (i): Assume that K(M) is dominated. We prove that M is

[-stable. Let B ∈ H(K(M)). To show that B[ ∈ H(M), we must prove that
it is an irreducible Scott-closed subset of M . We start by verifying that B[ is
a Scott-closed subset of M . Firstly, by its definition, it is a lower set. Next,
we prove that B[ is closed under directed joins in M . Let D be a directed
subset of B[. For each d ∈ D, there exists bd ∈ B such that d v bd. Since M
is H-algebraic, (H(d))] ∈ H(K(M)). Because

⊔
M(H(d))] = d v bd for each

d ∈ D and that D is directed, we have a B-dominated directed family D′ :=
{(H(d))] | d ∈ D} of irreducible Scott-closed subsets of K(M). Since K(M)
is dominated, there exists b ∈ B such that

⊔
H(K(M))D′ ⊆↓ K(M)x. This

implies that (
⋃

d∈D(H(d))]) ⊆↓K(M)b. Now, for each d ∈ D,
⊔

M(H(d))] = d
by the H-algebraicity of M . Thus d v b for each d ∈ D. Hence

⊔
M D v b.

This means
⊔

M D ∈ B[. To complete the proof that B[ ∈ H(M), we must
show that it is an irreducible subset of M . Suppose that B[ ⊆ X ∪Y for two
Scott-closed subset of M . By Proposition 5.6, we notice that X] and Y ] are
Scott-closed subsets of K(M). By the definition of ], (X ∪ Y )] = X] ∪ Y ],
and thus (B[)] ⊆ X] ∪ Y ]. By Lemma 5.4, B = (B[)] and so B ⊆ X] ∪ Y ].
Since B is an irreducible subset of K(M), it follows that B ⊆ X] or B ⊆ Y ].
Without loss of generality, assume that B ⊆ X]. Applying [ on both sides of
the inclusion, we have, by Lemma 5.4, that B[ ⊆ (X])[ ⊆ X, as desired.

Definition 7.13. A dcpo M which has all suprema of irreducible Scott-
closed subsets of K(M) is called H-coherent.

Remark 7.14. From Corollary 7.7, H(P ) is H-coherent for any dominated
dcpo P .
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Definition 7.15. In the following, a [-stable, H-coherent H-algebraic dcpo
which has suprema of all irreducible Scott-closed subsets will be called a
stably H-algebraic dcpo, for short.

Theorem 7.16. A dcpo M is isomorphic to H(P ) for a dominated dcpo P
if and only if M is stably H-algebraic.

Proof. ( =⇒ ) Assume that M ∼= H(P ) for a dominated dcpo P . By Corol-
lary 7.5, M is H-algebraic. By Proposition 4.3, H(P ) has suprema of all
irreducible subsets. Corollary 7.7 asserts that M is H-coherent. Since P
is dominated, K(H(P )) ∼= P must be dominated by Corollary 7.2. Thus
K(M) ∼= K(H(P )) ∼= P must also be dominated. Thus, by Proposition 7.12,
it follows that M is [-stable. Combining all these properties of M , we obtain
the result that M is stably H-algebraic.

(⇐=) Assume that M is stably H-algebraic. Since M has suprema of
all irreducible Scott-closed subsets, it follows from Example 6.5(3) that M is
dominated. Thus, by Proposition 7.12, K(M) is dominated. We now show
that M is isomorphic to H(P ) with P = K(M). We aim to prove that the
mapping φ : M → H(P ), x 7→ (↓x) ∩ P , is an order-isomorphism of dcpo’s.
By Proposition 5.2, P is a dcpo with respect to the order inherited from M .
Now, the set φ(x) = (↓x)∩P = {y ∈ P | y v x} is an irreducible Scott-closed
subset of M since M is H-algebraic. This justifies that φ : M → H(P )
is well-defined. For trivial reasons, φ is monotone. We now proceed to
show that φ is an order-isomorphism. To this end, we aim to prove that
the mapping

⊔
M : H(P ) → M is the inverse of φ. Notice that

⊔
M is

a well-defined mapping since M is H-coherent. Clearly, for each x ∈ M ,⊔
M φ(x) =

⊔
M(↓ x) ∩ P =

⊔
M{y ∈ K(M) | y v x} = x because M

is H-algebraic. Now for each C ∈ H(P ), let
⊔

M C = a. We claim that
C = (↓ a) ∩ P . Since (↓ a) ∩ P ⊇ C is trivial, we only need to show that
(↓a) ∩ P ⊆ C. Let x ∈ (↓a) ∩ P , i.e., x C x and x v a. This implies that
x C a =

⊔
M C. But since M is [-stable, C[ is an irreducible Scott-closed

subset of M with
⊔

M C[ =
⊔

M C = a. So xC
⊔

M C[. Since C[ ∈ H(P ), it
follows that x ∈ C[, i.e., there exists c ∈ C such that x v c. Because C is a
Scott-closed subset of P , C is a lower subset in P . But x ∈ P so that x ∈ C.
Thus, we have (↓a) ∩ P ⊆ C.

From the above proof, we distill an important fact:

Corollary 7.17. Let M be a stably H-algebraic lattice and P = K(M).
Then

φ : M → H(P ), x 7→ (↓x) ∩ P
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is an order-isomorphism, whose inverse is given by

ε : H(P )→M, C 7→
⊔
M

C.

8 Dcpo’s with sober Scott topology

Definition 8.1. A stably H-algebraic dcpo P with K(P ) = P will be called
strongly H-algebraic.

Theorem 8.2. Let P be a poset. The following statements are equivalent.

(i) ΣP is sober.

(ii) P is strongly H-algebraic.

Proof. (i) =⇒ (ii): Since P is sober, every irreducible subset X of P has
its supremum equal to the unique point x for which X = cl({x}). Thus,
θ : H(P )−→P, ↓ x 7→ x is an isomorphism. Because P is sober, P
is dominated. So, by Theorem 7.16, P is stably H-algebraic. By Corol-
lary 7.2, η : P−→K(H(P )), x →↓ x is an isomorphism. Since ΣP is
sober, K(H(P )) = H(P ) and consequently, θ ◦ K(η) is the identity map,
i.e., K(P ) = P . So, P is strongly H-algebraic.

(ii) =⇒ (i): Since P is stably H-algebraic and contains only H-compact
elements, i.e., P = K(P ), it follows from Corollary 7.17 that the map φ :
P−→H(K(P )), x 7→↓x∩P is an isomorphism. Thus, for each F ∈ H(P ), it
holds that F =↓x for some x ∈ P , i.e., F = cl {x}. So (P, σ(P )) is sober.

Corollary 8.3. Let P be a dominated dcpo. Then the following statements
are equivalent:

1. ΣP is sober.

2. ΣH(P ) is sober.

Proof. (1) =⇒ (1): Assume that P is sober with respect to its Scott
topology. Then H(P ) ∼= P by the proof of Theorem 8.2. So the Scott
topology on H(P ) is sober.

(2) =⇒ (1): Assume that H(P ) is sober with respect to its Scott
topology. Since P is dominated, K(H(P )) ∼= P by Corollary 7.2. Since
H(P ) is sober with respect to its Scott topology, by Theorem 8.2 H(P )
contains nothing but all its H-compact elements, i.e, K(H(P )) = H(P ).
Thus H(P ) ∼= P , and hence P is sober with respect to its Scott topology.
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Corollary 8.4. The following statements are equivalent for a dominated dcpo
P .

1. ΣP is not sober.

2. ΣHk(P ) is not sober for each k ∈ N.

Proof. (2) =⇒ (1): Obvious.
(1) =⇒ (2): This is easily verified by induction. The base case is just (1).
For the inductive step, suppose that ΣHk+1(P ) is sober. ThenK(Hk+1(P )) ∼=
Hk(P ) by Corollary 7.2. Since Hk+1(P ) is sober, K(Hk+1(P )) = Hk+1(P ).
Thus, Hk(P ) ∼= Hk+1(P ) implying that ΣHk(P ) is sober, contradicting the
inductive hypothesis.

Example 8.5. (Johnstone’s construction)
Let P = N× (N ∪ {∞}) where (m,n) v (m′, n′) if

either (m = m′ & n v n′) or (n′ =∞ & n v m′).

Since P itself is an irreducible Scott-closed set whose supremum does not
exists, it fails to be a stably H-algebraic dcpo by Definition 7.15. So, by
Theorem 8.2, P cannot be sober with respect to its Scott topology.

Example 8.6. (Kou’s construction)
Let

X = (0, 1] = {x ∈ R | 0 < x ≤ 1}

and
P0 = {(k, a, b) ∈ R3 | 0 < k < 1, 0 < b ≤ a ≤ 1}.

Define P = P0 ∪X, ordered by

• x1 v x2 iff x1 = x2 for x1, x2 ∈ X;

• (k1, a1, b1) v (k2, a2, b2) iff k1 ≤ k2, a1 = a2 and b1 = b2;

• (k, a, b) v x iff a = x or kb ≤ x < b.

It can be shown that P is an irreducible Scott closed set whose supremum
does not exist, and thus fails to be ISC-complete. By Theorem 8.2, P cannot
be sober with respect to its Scott topology.

Example 8.7. (Isbell’s construction)
In [15]J, Isbell constructed a complete lattice L for which the Scott topol-
ogy is not sober. Since every complete lattice is dominated, it follows that
Isbell’s construction is an example of a dominated dcpo with a non-sober
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Scott topology. We can analyse why L is not sober, exploiting Theorem 8.2.
Suppose that L is sober. Then every element of L is H-compact. However,
according to Isbell’s argument, there is an irreducible subset X of L such that⊔

LX 6∈ X. Consequently, X is not principally generated. So the element⊔
LX, in particular, is not H-compact.

Let’s say more. Because L is not sober, L cannot be isomorphic to H(L).
Indeed, since L is complete and thus dominated, H(L) cannot be sober with
respect to its Scott topology by Corollary 8.3. Furthermore, H(L) is stably
H-algebraic by Theorem 7.16. Thus, H(L) fails to be sober for the only
reason that it has some element which is not H-compact.

9 Some categorical aspects

In this section, we explain how Theorem 7.16 can be better understood in a
categorical setting. More precisely, we aim to establish a categorical equiva-
lence between the category of dominated dcpo and that of stably H-algebraic
dcpo’s. To achieve this, we begin by showing that there is a categorical ad-
junction between a certain luff subcategory of posets and the category of
[-stable, H-algebraic ISC-complete dcpo’s. Then, we restrict this adjunction
to the desired equivalence.

In this section, whenever we write clP (A) (or sometimes cl(A) if there is
no confusion) for any subset A of a poset P , we mean the closure of A taken
with respect to the Scott topology on P . Suppose M is a sub-poset of P and
A ⊆M . Then we write clM(A) to mean the closure of A taken with respect
to the Scott topology on M , distinguishing it from clP (A).

Consider POSd the category whose objects are posets and whose mor-
phisms are the Scott-continuous maps (i.e., monotone maps preserving suprema
of directed sets). This is the luff subcategory of the category of posets and
monotone maps.

Let ISCD be the category whose objects are ISC-complete dcpo’s and
whose morphisms are the Scott-continuous mappings which preserve the
suprema of irreducible Scott-closed sets. Denote by SHAD the full sub-
category of ISCD whose objects are the stably H-algebraic dcpo’s.

Definition 9.1. A mapping h : P−→Q between dcpo’s is said to preserve
the relation C if for any x, y ∈ P , xC y implies f(x) C f(y).

Proposition 9.2. Let f : P → Q be a morphism in POSd. Define the
mapping

h : H(P )−→H(Q), X 7→ cl(f(X)).

Then h is a morphism in ISCD.
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Proof. Note that if g : X−→Y is a continuous map between topological
spaces X and Y , then for any irreducible set A of X, g(A) is irreducible
in Y . It follows from this general fact that the above-mentioned h is well-
defined.

To show that h is Scott-continuous, we proceed as follows. Define h :
Γ(P )−→Γ(Q) by

h(F ) = cl (h(F )), F ∈ Γ(P ).

Clearly, h is left adjoint to f−1 : Γ(Q)−→Γ(P ) and so h preserves joins
of arbitrary suprema. Since H(P ) and H(Q) are sub-dcpo’s of P and Q
respectively, the restriction of h on H(P ) preserves the directed suprema,
i.e., h is Scott-continuous.

Lastly, we prove that h preserves the suprema of irreducible Scott-closed
sets. Let C ∈ H(H(P )). Then its supremum is given by

⋃
C by Lemma 4.3.

Now, ⊔
H(Q)

{h(C) | C ∈ C} ⊆ h(
⊔

H(P )

C)

= h(
⋃
C)

= cl (f(
⋃
C∈C

C))

= cl (
⋃
C∈C

f(C))

= cl (
⋃
C∈C

cl (f(C)))

=
⊔

Γ(Q)

{h(C) | C ∈ C}.

Since
⊔

Γ(Q){h(C) | C ∈ C} is an irreducible Scott closed set, it holds that⊔
Γ(Q)

{h(C) | C ∈ C} =
⊔

H(Q)

{h(C) | C ∈ C}.

It follows that
h(
⊔

H(P )

C) =
⊔

H(Q)

h(C).

Remark 9.3. The preceding result enables us to extend the assignment
P 7→ H(P ) to a functor H : POSd−→ISCD.
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Let us now consider the restriction of H on the subcategory DP whose ob-
jects are the dominated dcpo’s and whose morphisms are the Scott-continuous
mappings. Given a dominated dcpo P , the dcpo H(P ) is an stably H-
algebraic dcpo. In the opposite direction, given a stably H-algebraic dcpo
M , the poset K(M) is actually a dominated dcpo (which in fact is a sub-dcpo
of M). If f : A−→B is a morphism in SHAD, since f is Scott-continuous,
and K(A) and K(B) are sub-dcpo’s of A and B respectively, then f restricts
to a morphism K(f) : K(A)−→K(B) in DP. In summary, we have the
following pair of functor:

H : DP−→SHAD, K : SHAD−→DP.

Before we prove that H a K, we need the following technical proposition,
whose corollary is useful.

Proposition 9.4. Let A and X be topological spaces such that A ⊆ X and

idA : A ↪→ X

is continuous w.r.t. the respective topologies. Then, for any closed subset F
of X, whenever B ⊆ A is such that B ⊆ F then clA(B) ⊆ F .

Proof. Just note that B ⊆ idA
−1(F ) = A ∩ F ⊆ F and that idA

−1(F ) is
closed in A.

Corollary 9.5. Let A be a sub-dcpo of P and E ⊆ A. If E ⊆↓b for some
b ∈ P , then clA(E) ⊆↓b.

Proof. Apply the preceding proposition to the fact that idA is a Scott-
continuous map and the choice of F := clP ({b}) =↓b.

Proposition 9.6. Let D be a directed family of irreducible Scott closed sub-
sets of a poset P . Then ⊔

H(P )

D = clP (
⋃
D).

Proof. Immediate from the fact that H(P ) is a sub-dcpo of Γ(P ) for any
poset.

Theorem 9.7. DP is equivalent to SHAD.
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Proof. For each dominated dcpo P , let ηP : P−→K(H(P )) be the mapping
defined by ηP (x) =↓x for all x ∈ P . ηP is an isomorphism in DP by Corol-
lary 7.2. Suppose that Q is a stably H-algebraic dcpo and f : P−→K(Q) is
a morphism in DP. Define f : H(P )−→Q by

f(X) =
⊔
Q

(clK(Q)(f(X)))[, X ∈ H(P ).

Note that f(X) is an irreducible set of K(Q) for each X ∈ H(P ) and so its
closure in K(Q) is irreducible. It follows that f is well-defined since Q is
[-stable and ISC-complete. Also, it is clear that for every x ∈ P ,

K(f) ◦ ηP (x) =
⊔
Q

(clK(Q)(f(↓x)))[

= f(x).

Thus, f = K(f) ◦ ηP .
We have to now prove that f is

1. Scott-continuous, and

2. preserves the suprema of irreducible Scott-closed sets.

To prove (1), we take any directed family of irreducible Scott-closed sub-
sets of P , say D and aim to show that

f(
⊔

H(P )

D) =
⊔
Q

f(D).

Since f is clearly monotone,

f(
⊔

H(P )

D) ⊇
⊔
Q

f(D).

It remains for us to show the reverse inclusion. Since f is Scott-continuous,
for any E ⊆ P ,

clK(Q) (f(E)) ⊆ clK(Q) (f(clP (E)))

⊆ clK(Q)(clK(Q) (f(E)))

= clK(Q) (f(E)),
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and so clK(Q) (f(E) = clK(Q) f(clP (E)). Now, f is Scott-continuous from P
to K(Q) and

⊔
H(P )D = clP (

⋃
D) by Proposition 9.6, we have:

f(
⊔

H(P )

D) =
⊔
Q

(clK(Q) f(clP (
⋃
D)))[

=
⊔
Q

(clK(Q)(f(
⋃
D)))[

=
⊔
Q

clK(Q)(f(
⋃
D))

=
⊔
Q

clK(Q)(
⋃

D∈D

f(D)).

On the other hand, since D is a directed family, we have:⊔
Q

f(D) =
⊔
Q

{
⊔
Q

(clK(Q) f(D))[ | D ∈ D}

=
⊔
Q

(⋃
D∈D

(clK(Q) f(D))[

)

=
⊔
Q

(⋃
D∈D

clK(Q)(f(D))

)
Denote by b the element

⊔
Q

⋃
D∈D clK(Q)(f(D)) and byX the subset

⋃
D∈D f(D)

of the subdcpo K(Q). Because X ⊆
⋃

D∈D clK(Q)(f(D)), it follows that
X ⊆↓b. By Lemma 9.5, clK(Q)(X) ⊆↓b. So it follows that⊔

Q

clK(Q)(
⋃

D∈D

f(D)) =
⊔
Q

X v b =
⊔
Q

(⋃
D∈D

clK(Q)(f(D))

)
,

as desired.
To prove (2), we must show that

f(
⊔

H(P )

C) =
⊔
Q

f(C)

holds for every C ∈ H(H(P )). Firstly, we have:

f(
⊔

H(P )

C) =
⊔
Q

(clK(Q)(f(
⊔

H(P )

C)))[

=
⊔
Q

(clK(Q)(f(
⋃
C)))[ (since

⊔
H(P )

C =
⋃
C)

=
⊔
Q

clK(Q)(f(
⋃
C))
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Now with the same argument as of (1), we deduce that f(
⊔

H(P ) C =
⊔

Q f(C)).
We now show that f is the unique SHAD-morphism for which

K(f) ◦ ηP = f.

Suppose we have another SHAD-morphism g such that

K(g) ◦ ηP = f.

Let X ∈ H(P ) be arbitrary. Then, we have:

g(X) = g(
⊔

H(P )

↓H(P ){C ∈ K(H(P )) | C ⊆ X})

=
⊔
Q

g(↓H(P ){C ∈ K(H(P )) | C ⊆ X}) (since g is an ISCD-morphism)

=
⊔
Q

{g(C) | C ∈ K(H(P )) ∧ C ⊆ X}

=
⊔
Q

{g(↓x) | x ∈ X} (since K(H(P )) = {↓x | x ∈ P} by Theorem 7.1)

=
⊔
Q

{f(x) | x ∈ X}

=
⊔
Q

f(X)

=
⊔
Q

clK(Q)(f(X))

= f(X).

Note that the last-to-second equality holds by virtue of Lemma 9.5.
In summary, one has H a K where the unit η and conunit ε are natural

isomorphisms such that

η : idDP
∼= KH and ε : HK ∼= idSHAD,

and hence DP is equivalent to SHAD.

10 Conclusion

As explained earlier on, sobriety is more than a desirable topological property
which appears in different branches of mathematics. There are at least two
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important examples worth mentioning which we have not cited in the intro-
duction. The first one is the famous Hofmann-Mislove Theorem [13]. For any
T0 space X and K ⊆ X a compact subset, the subset {U ∈ OX | K ⊆ U}
forms an Scott-open filter of the frame of opens OX. The Hofmann-Mislove
Theorem asserts that for a sober spaceX, every Scott-open filter ofOX arises
in this way. The second is a result that provides a convenient construction
for continuous distributive lattice. Given any continuous distributive lattice
L, there exists a locally compact sober space X (namely the spectrum) such
that L is order-isomorphic to OX [22]. In both examples, sobriety emerges
as an indispensable concept. Because of its importance in topology, it is
natural to ask: What kind of dcpo P yields a sober Scott topology σ(P )?

In this paper, we first obtain an order-theoretic characterization of dcpo’s
Q which is isomorphic to H(P ) for some dominated dcpo P . Then, we suc-
cessfully formulate and prove a necessary and sufficient condition for a dcpo
to have sober Scott topology. Relying on Theorem 8.2 and the functor H, we
managed to manufacture an infinite chain of pairwise non-isomorphic dcpo’s
whose Scott topologies are not sober. There is, however, one major drawback
of our main result, i.e., Theorem 8.2. Notice that this characterization makes
use of notions that involve directly the irreducible Scott-closed sets, e.g., C,
H-algebraicity, H-compactness and H-coherence. Because of this, in the pro-
cess of establishing or refuting strong H-algebraicity one has to identify the
‘shape’ of an irreducible Scott-closed set in the given poset. In practice, such
an identification can be very difficult as irreducibility and Scott-closedness
are more of topological attributes, rather than order-theoretic ones. Our
examples of dcpo’s with non-sober Scott topologies are built from Isbell’s
construction. At present, we are still unable to manufacture fresh (and rela-
tively simple) counterexamples without the use of existing ones.

Many open problems in domain theory centre around the lattice-theoretic
properties of the frame of opens σ(P ) for a dcpo P . One of these asks for the
order-theoretic characterization of those complete lattices L whose frame of
Scott opens σ(L) is continuous. It is known that σ(L) is continuous implies
that ΣL is sober [9]. Moreover, for any topology X, it is known that the
frame of opens OX is continuous if and only if X is core-compact. Addi-
tionally, in the presence of sobriety, core-compactness is equivalent to local
compactness [14]. When applied to the Scott topology, this result implies that
σ(L) is continuous for a complete lattice if and only if ΣL is locally compact
and sober. In view of our present result, the aforementioned open problem
reduces to obtaining an order-theoretic characterization of those complete
lattices L whose Scott topology is locally compact. Locally compact spaces
(and their generalizations) have attracted increasing attention over the past
60 years in several areas of mathematics: C∗-algebra [3], locale theory [6],
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Abstract Stone Duality [26], the theory of stably compact spaces [19, 18, 2]
and even potential theory [8]. With the aim to contribute in this area, it will
be a meaningful enterprise to investigate local compactness in connection to
the Scott topology.
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