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Dynamics of Movement Patterning in 
Learning a Discrete Multiarticular Action

Jia Yi Chow, Keith Davids, Chris Button, and Robert Rein

From a nonlinear dynamics perspective, presence of movement variability before 
a change in preferred movement patterns is hypothesized to afford the necessary 
adaptability and flexibility for seeking novel functional behaviors. In this study, 
four novice participants practiced a discrete multiarticular movement for 12 ses-
sions over 4 weeks. Cluster analysis procedures revealed how changes between 
preferred movement patterns were affected with and without the presence of vari-
ability in movement clusters before a defined change. Performance improved in 
all participants as a function of practice. Participants typically showed evidence of 
change between preferred movement clusters and higher variability in the use of 
movement clusters within a session. However, increasing variability in movement 
clusters was not always accompanied by transition from one preferred movement 
cluster to another. In summary, it was observed that intentional and informational 
constraints play an important role in influencing the specific pathway of change 
for individual learners as they search for new preferred movement patterns.

Keywords: learning, transitions, movement variability, cluster analysis, informa-
tional constraints

The question of how neurobiological systems successfully acquire movement 
skills has been studied from a number of theoretical perspectives including nonlinear 
dynamics, a theory particularly suited to the study of neuro-behavioral transitions 
(Newell, Liu, & Mayer-Kress, 2001). From this viewpoint, motor learning has been 
characterized as a process of change between stable movement patterns (e.g., Liu, 
Mayer-Kress, & Newell, 2003, 2006; Schöner, Zanone, & Kelso, 1992). A central 
tenet in nonlinear dynamics posits that dynamical structures of control spread 
across several levels of analysis and their functioning in neurobiological systems 
is bound by self-organization under constraints (Kauffmann, 1995). Patterns of 
behavior can spontaneously emerge as a consequence of the constraints present in 
specific learning contexts (Schmidt & Fitzpatrick, 1996).



220    Chow et al.

Studies in nonlinear dynamics have suggested that over time, learning can be 
characterized as the evolution of a potential landscape describing the destabilization 
of previously preferred movement solutions in neurobiological systems for a “to-be 
learned” coordination pattern (Thelen, 1995). The acquisition of coordination is 
viewed as a process of searching for appropriate attractors, preferred functional 
coordination patterns, into which a neurobiological system can settle during a task 
or activity (Liu et al., 2006). Consequently, motor learning can be characterized by 
nonlinearities under constraints in which transitions (including sudden jumps and 
regressions) between preferred movement patterns may be observed over different 
time scales (see Liu et al., 2006; Newell et al., 2001). Moreover, it has been further 
suggested that variability in movement typically accompanies pattern changes 
during motor learning in continuous cyclical tasks (e.g., Vereijken, Van Emmerik, 
Bongaardt, Beek, & Newell, 1997, in a slalom-like movement task; Zanone & Kelso, 
1997, in a bimanual finger coordination task). However, are critical fluctuations 
in movement variability a necessary prerequisite of transitions while learning a 
discrete multiarticular task?

Most studies of the dynamics of motor learning have tended to favor models of 
bimanual finger coordination (e.g., Schöner et al., 1992) or continuous movements 
(e.g., Ko, Challis, & Newell, 2003; Nourrit, Delignieres, Caillou, Deschamps, & 
Lauriot, 2003; Vereijken et al., 1997). In this study we investigated the learning of 
discrete multiarticular actions. Although Southard (2002, 2006) previously inves-
tigated changes in movement patterns in a discrete throwing task, the emphasis 
was on manipulating parameters, as well as instructions, in affecting a change in 
throwing patterns. Few studies in nonlinear dynamics have attempted to examine the 
process of change and the presence of transitions between preferred coordination 
patterns in a discrete multiarticular action over extended practice periods.

Discrete movements can provide useful models to investigate the process of 
change in coordination between distinct trials and practice sessions because they 
differ from continuous movements in important ways. One critical difference 
concerns the specificity of the constraints in many continuous and discrete tasks. 
In many discrete movements, like interceptive actions, positional accuracy in 
termination of the end point is most important in achieving the final goal (Guiard, 
1997). Task constraints differ considerably when one is learning to move a limb 
to a specific spatial location and timing the intended contact of an effector with an 
object, compared with when one is continuously waving an arm or waggling a finger. 
Schöner (1990) previously modeled differences between discrete and rhythmical 
movements, suggesting that the influence of each individual’s intentionality is a 
unique source of behavioral information stabilizing action pattern dynamics. He 
showed how performance of a discrete movement could, in principle, be stabilized 
or perturbed by the intentions of the performer.

Research on discrete movements is theoretically significant because it can pro-
vide a window on the interface of cognition and action during motor learning (see 
Summers, 1998). Between trials when learning discrete movements, more time and 
opportunity is available for learners to evaluate behavioral information that could 
impact the process of change between preferred movement patterns. The impact of 
intentions and behavioral information such as information from the environment or 
experience from previous trials and sessions can be examined in detail. Schöner’s 
(1990) modeling led us to expect a great amount of interindividual variability during 
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the performance of discrete multiarticular actions. The assumption is that because 
individuals’ intentions differ based on perceived physical competency to achieve 
the task goal (although the general intention to complete the task could be similar), 
so will the movement patterns produced during motor learning.

Questions arise over the existence of key hallmarks of change between preferred 
movement patterns when learning a multiarticular discrete action. For example, 
currently, it is not known whether nonlinear transitions between preferred move-
ment patterns may occur in a similar fashion as observed in previous studies of 
bimanual finger coordination. As a function of varying individual constraints, do we 
expect to see each learner showing distinct preferred movement patterns during the 
course of learning a skill? As well as pattern transitions, another important hallmark 
feature of learning in nonlinear dynamics to look out for is the presence of critical 
fluctuations or high levels of movement pattern variability immediately before a 
change in preferred movement patterns. Critical fluctuations have been observed 
in bimanual finger coordination studies and occur readily before a change in stable 
patterns (either to in-phase or antiphase). Critical fluctuations or high movement 
variability are vital in providing neurobiological systems with the requisite adapt-
ability and flexibility for exploring novel coordination solutions (Riley & Turvey, 
2002). It is not known if high levels of movement variability might be observed 
during the acquisition of discrete multiarticular actions during a prolonged period 
of practice. Therefore, high levels of movement variability were used in this study 
to interpret the presence of critical fluctuations as outlined in dynamical systems 
theory. Movement variability was considered important in studying adaptive changes 
in behavior during learning because a cluster analysis technique was used to iden-
tify movement patterns used by participants within distinct practice sessions. High 
levels of variability in movement clusters were regarded as a better reflection of the 
macro variability that might exist in the use of movement clusters by learners in 
this study because we are looking at a different timescale (i.e., learning) from that 
in which critical fluctuations were originally shown (i.e., motor control). Further-
more, understanding stability in dynamical movement systems entails examining 
concepts such as critical slowing down as a consequence of a perturbation inter-
vention. However, for this study, the term preferred was used instead of stable to 
acknowledge that the stability of a movement cluster was not determined, but rather 
movement clusters were categorized as being preferred by participants if the use 
of the movement clusters satisfied certain a priori criteria.

The current study investigated individual transitions between preferred states 
of motor system organization during practice of a discrete multiarticular action. 
For this purpose, we studied the process of change in movement patterning of a 
lower limb interceptive action for kicking a ball. During practice, we examined 
movement variability and its effects on the nature of transitions from one preferred 
movement pattern to another novel preferred pattern. A small sample size of four 
participants was selected to allow an in-depth investigation of the processes under-
lying movement variability changes and transitions between preferred movement 
patterns, negating some of the previously acknowledged problems with averaging 
data across different individuals in group-based analyses (see Stergiou, 2004). The 
use of such multiple-baseline, single-participant analyses in examining human 
movement behavior can also provide a suitable methodological framework for 
understanding movement pattern changes as a function of practice. For these 
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reasons many recent studies have adopted such a research design (e.g., Chen, Liu, 
Mayer-Kress, & Newell, 2005, in learning a pedalo locomotion task; Haibach, 
Daniels, & Newell, 2004, in learning cascade juggling; Hodges, Hayes, Horn, & 
Williams, 2005, in learning a soccer kicking task; Hong & Newell, 2006, in learn-
ing a skiing task).

The aim of this study was to investigate learning of a discrete multiarticular 
action by identifying the presence of change between preferred movement patterns 
derived from relevant kinematic variables with cluster analysis procedures during 
the acquisition process. It is expected that participants will demonstrate different 
preferred movement patterns during the learning phase of the study. In addition, 
we seek to establish whether levels of variability in movement patterns increased 
before a change in preferred movement patterning. We predict that there will be 
increased levels of variability in movement patterns before a transition between 
preferred movement patterns.

Methods

Participants

Four male novice participants (age 27.3 ± 4.03 years) were recruited for this study. 
All had no competitive playing experience in ball games involving lower-limb 
interceptive actions, such as soccer, at any level. Voluntary and informed consent 
were obtained from all participants, and procedures employed in the study were in 
accordance with the participating institution’s ethical guidelines.

Task and Apparatus

In the experimental task, all participants were asked to kick a soccer ball (a FIFA-
approved size 5 ball; mass = 420 g; circumference = 68cm) over a barrier to a 
skilled receiver with their dominant foot. No explicit verbal or visual instructions 
were provided on how to kick the ball over the barrier. Participants were simply 
informed that the task goal was to kick the ball over the height barrier to land at 
the feet of a receiving individual or within a landing zone in front of the receiver 
with appropriate force control to allow easy control of the ball by the receiver. 
Video film capturing ball flight only onto the receiver’s feet was shown to ensure 
understanding of the task goal. The novice participants learned the task on a 2 × 
2 m area of a synthetic surface in a laboratory. Target positions were located on a 
field outside the laboratory, with the player kicking the ball onto the field for all 
trials. A horizontal bar (length = 4 m) supported by two adjustable vertical poles 
(2 m each) provided the height barrier for the task. Colored bands (approximately 
0.5 m) attached to the horizontal bar were used to simulate a perceptual barrier 
without occluding the receiver’s view of the participant. All participants were 
required to kick to seven different target positions located between 10 m and 14 
m perpendicular to the kicking position and with bar height manipulated between 
1.50 m and 1.70 m from the ground. However, for the practice target positions (i.e., 
T1, T2, T3, and T4), the bar height was kept at 1.6 m (see Figure 1 for detailed 
information about the setup).
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In the kicking task, all participants wore soccer indoor shoes and shorts for all 
test and practice sessions. Kinematic data were captured by six infrared cameras 
(ProReflex, Model MCU 1000). The cameras were connected to the Qualysis On-
line Motion Analysis system (Gothenburg, Sweden), and data were recorded at 240 

Figure 1 — Schematic representation of task set up to all target positions. Target T1: bar 
height (1.6 m), perpendicular distance of ball to bar (5 m), and perpendicular distance of 
ball to T1 (12 m); Target T2: bar height (1.6 m), perpendicular distance of ball to bar (5 m), 
and perpendicular distance of ball to T2 (12 m); Target T3: bar height (1.6 m), perpendicular 
distance of ball to bar (5 m), and perpendicular distance of ball to T3 (14 m); Target T4: bar 
height (1.6 m), perpendicular distance of ball to bar (5 m), and perpendicular distance of 
ball to T4 (12 m); Target T5: bar height (1.5 m), perpendicular distance of ball to bar (4 m), 
and perpendicular distance of ball to T1 (10 m); Target T6: bar height (1.6 m), perpendicular 
distance of ball to bar (5 m), and perpendicular distance of ball to T1 (14 m); Target T7: 
bar height (1.7 m), perpendicular distance of ball to bar (5 m), and perpendicular distance 
of ball to T1 (14 m).
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Hz. Twenty-nine spherical reflective passive markers were placed on key anatomi-
cal points. Surface markers were placed on the following anatomical landmarks: 
sphenoid, mandible, acromion process, lateral epicondyle (elbow), lateral point on 
the radial styloid and medial point on the ulnar styloid, superior iliac crest, greater 
trochanter, lateral epicondyle (knee), medial epicondyle (knee), lateral malleolus, 
medial malleolus, first metatarsal head (only for nonkicking foot), and fifth meta-
tarsal head. Three-dimensional Euler joint angles of flexion and extension were 
derived for the hip, knee, ankle, pelvis, and trunk from the respective segments as 
defined by the marker sets, but only the angle in the primary plane of motion was 
used for further analysis. A 20-m measuring tape was used to determine distance 
between the landing position of the ball on the field (when the ball did not contact 
the receiver) and the respective target position. Ball landing position for each trial 
was established visually and marked by two research assistants with one end of 
the measuring tape. All measurements were taken by three research assistants who 
were trained and supervised for 2 weeks as part of the pilot phase of the study to 
ensure measurement reliability.

Procedures

Pre- and Posttest Sessions.  Participants performed 5 habituation trials by kicking 
the ball out to the field without any requirement for satisfying constraints of height 
clearance or target accuracy. Thereafter, all participants performed 10 trials kicking 
to T1. Subsequently, participants performed another 5 trials each to T5, T6, and T7 
in a randomized order, completing a total of 25 test trials for the pre- and posttest 
sessions. The 10 trials to T1 enabled us to determine the coordination of the kicking 
action, and the 15 trials to T5, T6, and T7 were used to identify whether novices 
could vary kicking foot speed to achieve the task goal under the different height 
and distance constraints (see also Chow, Davids, Button, & Koh, 2006). Participants 
were allowed to rest as needed between trials, with intervals ranging between 10 
and 30 s in duration. Each test session took between 45 and 60 min to complete. 
Pre- and posttest sessions were separated by a 4-week practice phase.

Practice Sessions.  Participants performed the warm-up routine as in other ses-
sions before practicing 10 kicking trials each to T1, T2, T3, and T4 (a total of 40 trials 
per session) in a randomized order. The requirement for participants to perform 40 
trials was based on pilot work that was undertaken to verify an adequate number of 
trials within each session to observe possible changes in movement clusters, without 
incurring the negative effects of fatigue on participants during the practice. T1, T2, 
T3, and T4 did not differ greatly in relation to target distances, and bar height was 
also kept at 1.6 m for all the practice positions. These slight variations in target 
locations (see Figure 1) allowed us to observe how each participant explored their 
individual perceptual-motor workspaces to support their learning (see Newell, Liu, 
& Mayer-Kress, 2003). It was decided not to greatly vary the location of targets 
in terms of positional and height constraints so that the use of multiple, randomly 
ordered target positions would not have an inordinate impact on switches between 
specific movement clusters and to keep learners motivated in the kicking task. All 
novice participants underwent a 4-week practice phase with 3 sessions per week (a 
total of 12 sessions). A rest interval of 2 to 3 days between sessions conformed to 
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the recommendations of the benefits of a distributed practice schedule (see Magill, 
2007). In addition, they were required to perform an additional 15 kicking trials 
to T5, T6, and T7 (5 trials to each position) in a randomized order at every second 
session (i.e., at the 2nd, 4th, 6th, 8th, 10th, and 12th practice session; see Chow et 
al., 2006). In total, all participants performed 570 trials during the practice phase. 
Rest intervals between trials were similar to the pre- and posttest sessions, and each 
practice session took between 60 and 90 min to complete.

Data Analysis

Performance Outcomes.  Performance of the kicking task was assessed by how 
accurately and effectively weighted the chipped passes were to the receiver’s feet. 
Outcome scores were determined from a 7-point Likert rating scale, with emphasis 
on accuracy and ease of ball reception (see Table 1). For example, if the ball crossed 
the height barrier successfully and landed within 0.6 m from the receiver’s feet, a 
score of 7 was recorded. A measurement tape was used to determine the horizontal 
displacement between the landing position of the ball and the respective target 
position. All measurements were taken by the three research assistants, who were 
trained and supervised for 2 weeks as part of the pilot phase of the study to ensure 
measurement reliability. The scale was devised by the researcher and validated 
by two certified coaches from the Asian Football Confederation. Validity of the 
rating scale was verified in a series of pilot studies conducted on groups of skilled 
and novice participants to examine performance scores. To determine interscorer 
reliability between the experimenter and the certified coaches, a sample of 25 trials 
was captured on video film and presented to two certified coaches for scoring. 
Interscorer reliability between the experimenter and each coach was 100% and 
96%, respectively. The performance rating scale allowed the magnitude of error 
from the task goal to be determined for all trials because some kicks might have 
inadvertently contacted the receiver’s body, preventing error distance from being 
recorded. Means and SDs of individual participants’ performance outcome scores 
are presented only for trials selected for kinematic analysis.

Joint Range of Motion.  Kinematic variables provided information about the 
specific spatio-temporal patterning of the kicking coordination modes of all par-
ticipants. Time-continuous joint-angle data for the hip, knee, and ankle for the 
kicking and nonkicking limbs, as well as trunk (angle between pelvis and thorax 
segments) and trunk lean (angle between the thorax segment and the horizontal 
plane; in degrees), for each individual trial were collected for the duration of the 
limb-movement sequence beginning from the instant of initiation of knee flexion 
(before ball contact) to the end of peak hip flexion (after ball contact) of the kick-
ing limb (see Chow et al., 2006). After visual inspection, data were filtered using 
a low-pass Butterworth digital filter with the Visual 3D software at frequency 7Hz. 
All trials were normalized to 100 data points between the start event (initiation of 
knee flexion) and end event (peak hip flexion), with movement time normalized to 
allow for simultaneous comparison across individuals and trials.

Analytical techniques to examine timing relationships (e.g., time lags) and 
relationships between joint motions (e.g., cross-correlation ratio analysis), as pre-
viously described by Temprado, Della-Grasta, Farrell, and Laurent (1997) in their 
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Table 1  Performance Rating Scale for Soccer Kicking Task 
Emphasizing Weighting and Accuracy of Passes

Points/
Score Description

7 • Ball played to feet (below knee) or within landing zone in front of 
receiver (0 m to 0.6 m) and appropriately weighted for ease of control

6 • Ball played to the thighs (between the knee and the abdomen) and 
appropriately weighted for ease of control

• Ball played to feet (below knee) or landing zone but not weighted for 
ease of control

• Ball played to the sides of the receiver at any level below the head 
(which challenges the receiver to move one step to control the pass) 
and the ball lands within 1.0 m from the receiver but outside of landing 
zone (0.61 m to 1.0 m)

5 • Ball played to chest (above the abdomen) and appropriately weighted 
for ease of control

• Ball played to the thighs (between the knee and the abdomen) but not 
appropriately weighted for ease of control

• Ball played to the sides of the receiver at any level below the head 
(which challenges the receiver to move one step to control the pass) 
and the ball lands between 1.01 m and 1.5 m from the receiver

4 • Ball played to the head

• Ball played to chest (above the abdomen) but not appropriately 
weighted for ease of control

• Ball played to the sides of the receiver at any level below the head 
(which challenges the receiver to move one step to control the pass) 
and the ball lands between 1.51 m and 2.0 m from the receiver

3 • Ball lands between 2.01 m and 2.5 m from the receiver
2 • Ball lands between 2.51 m and 3.0 m from the receiver
1 • Ball lands more than 3.0 m from the receiver

• Ball fails to cross the net barrier or touches the net barrier before 
reaching the receiver

Note. Scoring was not dependent on how well the live receiver controls the ball. The presence of a 
live receiver is to provide a more ecologically valid representation in terms of target attainment for 
the kicker.

study on volleyball serves, were actually adapted for the same participants in Chow, 
Davids, Button, and Koh (2008) to investigate coordination changes. The focus for 
this study was to specifically identify differences between participants’ movement 
patterns, and cluster analysis procedures with time-continuous joint-angle data as 
input variables still provided an ideal approach to achieve this aim.

All trials for the pre- and posttest sessions were analyzed. However, because 
of the large number of observations, only selected practice trials were chosen for 
analysis within each practice session. Specifically, 18 trials per session were ana-
lyzed for kicks to T1, T2, T3, and T4. Table 2 shows the distribution of the selected 
trials that were analyzed.
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Cluster Analysis and Validation.  Following the methods used by Schöllhorn 
(1998) and Jaitner, Mendoza, and Schöllhorn (2001), a cluster analysis approach 
was used to determine preferred movement patterning. Hip, knee, and ankle-joint 
range-of-motion data for kicking and nonkicking limbs, as well as trunk and trunk-
lean angles, were selected as input variables during the preprocessing stage because 
these eight variables have been observed to be the most relevant in describing the 
kicking movement. Based on previous work (e.g., Lees & Nolan, 2002), it was 
expected that differences between kicking patterns would emerge by compar-
ing these selected variables. The angles were time normalized, and a matrix for 
each trial was obtained (see Jaitner et al., 2001). Differences between trials were 
calculated using the Euclidean distance. The AGNES clustering algorithm in R 
software (version 2.31) was used to construct a tree-like (dendrogram) hierarchy 
of clusterings of k clusters (where the most suitable value of k is subsequently 
validated through cluster validation techniques). A dissimilarity measurement was 
constructed with the DAISY function in the R software in which the dissimilarity 
between clusters was calculated using the “average” linkage method (see Kaufman 
& Rousseeuw, 1990).

The clustering distribution presented was validated using the multiscale 
bootstrap resampling procedure developed by Shimodaira (2002, 2004) in the R 
software (pvclust R package). This method is applicable to a large class of clustering 
problems including hierarchical clustering (Suzuki & Shimodaira, 2004), providing 
an indication of how strongly a cluster is supported by the data set. Accuracy of 
the probability of valid clustering was measured with alpha values ranging from 0 
to 1. For example, if the alpha value of a cluster was recorded as p = .90, it would 
indicate that there was a 10% chance that the clustering of data under the particular 
cluster occurred because of chance. The convergence of the bootstrapping proce-
dure was assessed investigating the standard errors of the p values. Furthermore, 
the Hubert-Γ statistic, which gives an indication of the partitioning that best fits 
a given data set (Halkidi, Batistakis, & Vazirgiannis, 2002), was used to validate 
the cluster results. The Hubert-Γ coefficient has been shown to be simple, precise, 
and robust (see Zhao, Liang, & Hu, 2006) and was used to determine the optimal 
number of clusters.

Even though it is the objective of the cluster analysis procedure to identify 
different movement patterns from the observed movement clusters, it is possible 
that different scaled movement patterns could be categorized as different movement 
clusters. In this study, however, different scaled movement patterns could still be 
important to identify because slight differences in kinetic (e.g., force exerted) or 
kinematic (e.g., joint range of motion) input into the kicking action can result in 
vastly different performance outcomes. So, in complex multiarticular movements 

Table 2  Distribution of Selected Trials Analyzed for Practice 
Sessions to Positions T1, T2, T3, and T4

Phases of practice session Trials 

1 Early 2nd, 4th, 6th, 8th, 10th, 12th
2 Middle 15th, 17th, 20th, 23rd, 25th, 27th
3 Late 29th, 31st, 33rd, 35th, 37th, 39th
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such as the kicking action, scaled movements can still be characterized as quite 
distinct from one another and can be considered to be a distinct preferred move-
ment cluster.

Cluster Movement Switch Ratio (SR).  Cluster movement switch ratio (SR) 
provides an index on the preferability of movement patterns and is defined as the 
number of switches divided by the maximal possible number of switches within a 
practice session (adapted from Wimmers, Savelsbergh, Beek, & Hopkins, 1998). 
A switch can occur between any two neighboring trials. For example, in a series 
of three trials, the maximum number of switches would be two. An additional 
point to note, consider two hypothetical practice sessions in which two movement 
clusters (C1 and C2) are used. In the first session, for the following sequence, 
C1C1C1C1C2C2C2C2, the SR would be 1:7 (or 0.143). In contrast, for the second 
session C1C2C1C2C1C2C1C2, the SR would be 7:7 (or 1) even though the prob-
ability of occurrence is 50% in both sessions. It should be noted that the SR is a 
ratio measure of the variability of the transitions between movement patterns and 
is not the variability of a given movement pattern before transition. Nevertheless, 
the SR provides an index to highlight the global movement variability in the neu-
robiological system through the amount of different movement pattern variability 
exhibited by individual participants.

Criteria for Transitions Between Preferred Movement Clusters.  Following Wim-
mers et al. (1998), we imposed the following criteria as evidence of a transition 
between movement clusters. A transition from one cluster of movement (e.g., C1) 
to another cluster of movement (e.g., C2) was deemed to be present when both 
clusters occurred in at least 14 out of 18 (78%) trials in their respective sessions. 
In addition, a switch ratio (SR) of not more than 0.235 (4:17) has to be present 
for those 18 trials within their respective session for a cluster to be considered as 
a preferred movement cluster in that session. Thus, SR ≤ 0.235 with ≥78% occur-
rence for a particular cluster will have to be observed for it to be categorized as 
a preferred movement cluster. An increasing switch ratio signals increasing vari-
ability in movement clusters within a session (Wimmers et al., 1998). Similarly, a 
low or decreasing switch ratio denotes decreasing variability in movement clusters 
in a session.

Results

Performance Outcomes

Performance scores to T1, T2, T3, and T4 were measured for 18 trials per session. 
Although the practice data were noisy, all participants demonstrated a general 
increasing trend in performance scores from practice session 1 to session 12 (see 
Figure 2). There were significant improvements between pre- and posttest perfor-
mance scores for all participants (p ≤ .05).

Cluster Analysis and Cluster Movement Switch Ratios

Cluster analysis was performed on the practice trials for each individual participant, 
and an intraindividual analysis was undertaken to examine changes in movement 
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clusters as a function of practice. Later we examine how each participant adapted 
movement patterns during the extended practice period.

Participant YH

The Hubert-Γ index indicated that the most suitable number of clusters in the 
movement patterns observed by YH during practice was 7 (with the highest index 
of 0.6005). However, from the multiscale bootstrap resampling procedure (Shi-
modaira, 2002, 2004), when 7 clusters were included in the dendrogram, cluster 7 
exhibited an alpha value of only .58. When 6 clusters were constructed, the alpha 
value rose to .74 and above (see Figure 3). Consequently, a 6-cluster dendrogram 
was constructed because it provided a more accurate clustering representation of 
the data set based on the multiscale bootstrap procedure (see Figure 4).

To highlight differences between movement clusters, clusters 1 and 2 (which 
were some of the major clusters of trials for YH, comprising 12% and 68% of 
all trials analyzed, respectively) were compared. Means for individual kinematic 
variables were determined for all trials within the respective group of clusters and 
plotted to ascertain differences (see Figure 5). It must be stressed that the selection of 
only two movement clusters (clusters1 and 2) for participant YH is for presentation 
purposes only to highlight that the cluster analysis procedure was able to appropri-
ately identify differences between movement clusters. However, the importance and 

Figure 2 — Performance scores for individual participants for all practice sessions. 
Participant AD: pre (1.0 ± 0), post (2.6 ± 2.07); Participant CL: pre (1.0 ± 0), post (4.3 ± 
1.81); Participant YH: pre (1.0 ± 0), post (3.7 ± 2.31); Participant KL: pre (1.6 ± 1.26), 
post (4.4 ± 2.01).
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Figure 3 — Multiscale bootstrap resampling for Participant YH. Numbers represent the p 
values for the cluster of trials under the respective branch in the hierarchical dendrogram.

Figure 4 — Dendrogram with cluster partition for Participant YH. Numbers represent 
clusters.
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relevance of other movement clusters as demonstrated by participant YH should 
not be downplayed. Figure 5 provides the visual qualitative discrepancy between 
movement clusters evident in the performance of participant YH.

Figure 6 shows the distribution of movement clusters for individual trials as a 
function of practice sessions for participant YH. It can be observed that participant 

Figure 5 — Plots of individual kinematic variable input between clusters 1 and 2 for Participant 
YH.
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Figure 6 — Distribution of movement clusters over practice sessions for all participants. 
Number of trials per session is shown on the x axis. Movement clusters for each session 
are shown on the y axis.
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Figure 6 (continued)
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YH used mainly cluster movement C1 in session 1 before exploring four differ-
ent movement patterns (C1, C2, C4, and C5) in session 2. Increasing variability, 
expressed in the number of movement clusters used, was observed within sessions 
2 (SR = 0.529) and 3 (SR = 0.412). Cluster C6 was preferred at session 4 (SR = 
0.11, 94% occurrence).

Similarly, increasing variability in movement clusters within session 5 (SR = 
0.471) was observed before the use of C2 appeared to be preferred at session 7 (SR = 
0.118, 94% occurrence; C2 at session 6 was lower than session 5 [SR = 0.353, 78% 
occurrence] but was still higher than at session 4). Thereafter, C2 was continually 
the preferred movement cluster from sessions 8 through 12 (SR = 0.235, 88–100% 
occurrence). From the results, some features of pattern transitions were observed 
in movement clusters between sessions 1 and 4, as well as between sessions 4 and 
7. Specifically, increasing variability in use of movement clusters before a change 
to a preferred movement cluster was clearly evident in participant YH (e.g., from 
C1 to C6 and C6 to C2, respectively).

Participant KL

Hubert-Γ coefficient indicated the presence of 8 clusters with alpha values with p ≥ 
.90. Cluster C1 was mainly used by participant KL in session 1 before alternating 
between C1 and C2 in session 2 (see Figure 6). The use of C3 appeared in session 
3, but the switch ratio was higher for the session (SR = 0.471) before reverting back 
to the preferred movement cluster of C1 in sessions 4 (SR = 0.056, 94% occurrence) 
and 5 (SR = 0.235, 89% occurrence). Increasing variability in the use of movement 
clusters was observed in session 6 (SR = 0.706) before the reemergence of C2 as 
the preferred cluster in session 7 (with SR = 0.235, 89% occurrence). From sessions 
7 through 12, mainly C1 and C2 were present. Higher variability was observed in 
session 8 (SR = 0.529) and session 12 (SR = 0.588). Although there was higher 
variability in the movement clusters used in session 8, C1 was still the preferred 
movement cluster from sessions 9 through 11.

Similar to participant YH, evidence of increased movement pattern variability 
before a transition between movement clusters was observed for participant KL. 
Certainly, a higher variability of movement clusters was observed at session 6 (SR 
= 0.706) during the transition between C1 (in session 5) and C2 (in session 7). 
However, there were also instances when a higher variability of movement clusters 
did not result in a change from one preferred movement cluster to another (e.g., in 
session 3 and session 8 with SR = 0.471 and 0.529, respectively).

Participant CL

Hubert-Γ coefficient indicated the presence of 12 clusters with alpha values with 
p ≥ .74. There was higher movement cluster variability in session 1 (SR = 0.412) 
before C1 arose as the preferred movement cluster in session 2 (SR = 0, 100% 
occurrence). Subsequently, C7 replaced C1 as the preferred movement cluster 
from session 3 (SR = 0.118, 94% occurrence) to 4 (SR = 0, 100% occurrence; see 
Figure 6). A transition between movement clusters (C8) was observed in session 5 
without a clear increase in variability between movement clusters before a change 
in sessions 3 or 4. A change from C8 to C10 was further observed within session 
6. Thereafter, a switch back to C1 as the preferred movement cluster was present 
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during session 7, followed by another switch to C6 within session 8. From ses-
sion 9 through 12, C1 and C6 were the preferred movement clusters, alternating 
between those sessions.

Interestingly, cluster C1 disappeared in early practice sessions before reemerg-
ing at sessions 7, 10, and 12. There were even signs of “regression” in the use of 
movement clusters (e.g., using C1 during early and late practice sessions). How-
ever, the performance outcome score was higher at session 10 and 12 for C1 than 
at session 2. Although C1 was used in early and late practice sessions, the higher 
performance outcome attained by participant CL could be explained by the greater 
consistency of the movement at ball contact. Additional analysis for participant CL 
on foot speed at ball contact appeared to be more consistent in sessions 10 (10.06 ± 
0.39 m/s) and 12 (9.58 ± 0.31 m/s), compared with session 1 (10.04 ± 2.56 m/s).

There was some evidence of higher variability of movement clusters within 
sessions, especially sessions 1 (SR = 0.412) and 6 (SR = 0.471). But, in general, 
SR was low or close to zero for most practice sessions. Distinctive use of move-
ment clusters was observed between sessions (e.g., sessions 2–3 and sessions 9–10) 
without any variability in the use of movement clusters within sessions. Other 
than the change from C8 (session 5) to C1 (session7), where higher variability 
of movement clusters was present in session 6 (SR = 0.471), participant CL did 
not demonstrate a clear trend in variability of movement clusters within sessions 
before transitions.

Participant AD

From the Hubert-Γ coefficient, presence of 10 movement clusters was determined. 
However, alpha values from the multiscale bootstrapping procedure were not as 
high as for other participants, being only .57 at one of the major branches in the 
clustering tree. This finding suggests that clusters belonging to that branch might 
not have been a true clustering of trials because the observed subclusters might 
not have been different. It was then determined, based on the need to accept higher 
alpha values (where p = .94 in this dendrogram), that three clusters would be a 
more accurate clustering of the data set. Such a decision was made to preserve the 
stringency for interpreting the data to avoid biasness in suggesting a conclusion 
that might not be true. For participant AD, mainly one cluster of movement (C1) 
was used throughout the practice phase in this study. Clusters C2 and C3 appeared 
only in sessions 1 and 5. There was no evidence of any variability of movement 
clusters within or between practice sessions (see Figure 6).

Discussion

The aim of this article was to investigate learning of discrete multiarticular actions 
in neurobiological systems by examining (a) the presence of transitions between 
preferred movement clusters during practice and (b) the presence of increasing 
variability in movement pattern clusters accompanying a transition in preferred 
movements during practice. To summarize the main findings, all participants showed 
evidence of change between preferred movement clusters and higher variability 
in the use of movement clusters within a session except for participant AD. Data 
showed that participants YH, KL, and CL evidenced change between preferred 
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movement clusters and high variability of movement clusters within sessions. 
One participant showed consistent evidence of variable movement clusters within 
sessions before a change in preferred movement clusters, and two others showed 
mixed trends in this feature of learning. However, there were instances when 
increasing variability in movement clusters was not accompanied by transition 
from one preferred movement cluster to another. Moreover, distinct changes in 
different movement clusters between two neighboring practice sessions, without 
the presence of any variability in movement clusters in either of the two sessions, 
were sometimes observed (participant CL). One participant showed little evidence 
of movement pattern exploration during practice (participant AD), failing to show 
preferred movement cluster changes, as well as variability in movement clusters 
used within or between sessions. As expected, performance improved in all par-
ticipants as a function of practice.

Participant YH showed clear changes between preferred movement clusters 
and presence of variability before acquiring a preferred movement cluster within 
sessions. Specifically, the presence of higher levels of variability highlighted the 
functional role of movement variability during exploratory practice. Findings from 
the current study, when referenced to Liu et al.’s (2006) study on learning a novel 
roller ball task, also showed similarities in terms of the presence of increased vari-
ability before a change in movement patterns for successful learners. Variability 
in movement clusters afforded flexibility and adaptability in exploring functional 
movement solutions when attempting to satisfy specific task goals (see also Riley 
& Turvey, 2002). These findings suggest that movement variability is an important 
mechanism for strategically developing new ways to solve coordination problems 
and that behavioral variability can also lead to the discovery and selection of 
new cognitive-motor strategies (Siegler, 2000; Summers, 1998). Observations 
of changes in preferred movement clusters following high variability of clusters 
used supports the conceptualization of motor learning as an exploratory process 
(see Bernstein, 1967). It seems that movement stability might be traded off to help 
learners discover new patterns of coordination, and this was evident especially for 
participant YH. These behavioral trends were also observed to a lesser extent in 
participants KL and CL.

In the case of participant KL, there were occasions when high variability in 
movement clusters did not effect a change in preferred movement clusters in sub-
sequent practice sessions. In this case, it was possible that the level of variability 
exhibited might not have been of sufficient magnitude to effect a change between 
preferred movement clusters. The absence of a transition to a new movement pat-
tern even with increased variability can still be seen as a reflection of exploratory 
behavior. However, from a dynamical systems perspective, only a local search was 
conducted around the original preferred movement pattern that did not result in a 
successful assembly of a new movement pattern in the epigenetic landscape (Liu 
et al., 2006). It is notable that the switch ratio (SR) in sessions in which a change 
in preferred movement clusters followed in subsequent sessions was higher than 
in sessions in which a subsequent change in preferred movement cluster failed to 
occur (e.g., SR = 0.706 for session 6 compared with SR = 0.471 and 0.529 for ses-
sions 3 and 8). The mechanism of learning in the absence of transitional behavior 
between preferred movement clusters requires further investigation.
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A lack of variability in movement clusters within sessions was also observed for 
participants CL and AD. Similarly, in Liu et al. (2006), no changes, either discontinuous 
or continuous, were observed in movement dynamics adaptations for less successful 
learners. It is possible that intentions and informational constraints in meeting the 
task goal had an impact on the nature of change in the movement clusters shown by 
participants CL and AD. For participant CL, distinct movement clusters occurred 
mainly between sessions and very little variability in movement clusters was observed 
within each session. From the strip-plots between movement clusters and practice 
sessions, it seems likely that participant CL could have selected a movement strategy 
based on experiences from the previous practice session(s). Elsewhere, it has been 
acknowledged that the pathway of coordination changes is dependent on the task goal 
(Ko et al., 2003; Newell & McDonald, 1994). Information in the form of feedback or 
instructions shapes the intention of the learner, and these influences are important in 
helping us understand how coordination solutions evolve and how the task goal helps 
to direct learners toward specific movement behaviors (Jirsa & Kelso, 2004). Clearly 
self-reporting techniques would be necessary in future research to ascertain whether 
participants employ different cognitive strategies to satisfy task constraints resulting 
in intentional constraints actually overriding existing coordination dynamics.

For participant CL, there was some evidence of “insight learning,” in which 
abrupt transitions in movement patterns occur (see Nourrit et al., 2003). It is likely 
that, for many learners, abrupt transition of movement patterns with high vari-
ability in movements as described in bimanual finger coordination studies might 
be infrequently observed during complex skill acquisition (Nourrit et al., 2003). 
Regardless, it is clear that learning is an intentional process, with future goals 
determining the changes a learner undergoes. In this study, there were two main 
intentional constraints: (a) one specifying the goal of the action (e.g., getting the 
ball over the bar) and (b) another specifying the goal of learning (i.e., become 
more skilled; see Schmidt & Fitzpatrick, 1996). Learning should, therefore, also 
be viewed as a process of searching the important constraints on performance, 
including those arising from task specificity and the interaction between physical 
and informational constraints (Rosengren, Savelsbergh, & van der Kamp, 2003). 
For participant CL, a nonlinear and sudden change between preferred movement 
patterns was established in some instances in the absence of high variability in 
movement clusters, and this could have been the consequence of the influence of 
behavioral information available in the learning context.

It was also noted how regression to previously explored movement clusters 
occurred, especially in participant CL (cluster 1 in session 1 and also in session 
12). Why regress to previous clusters of movement? Again, a likely constraint on 
motor learning could have been the specific intentions involved in the process of 
change in the use of movement clusters. Possibly, participant CL realized that there 
were certain features of previously used movement solutions that might have been 
effective through exploration of the perceptual motor workspace during practice, 
although no assessment of explicit knowledge acquisition was administered in 
this study to confirm this suggestion. Reparameterizing certain aspects of cluster 
movement C1 could be observed as an appropriate movement solution for partici-
pant CL in achieving the task goal by the end of the practice phase. Participant 
CL seems to have acquired better control of the use of movement cluster C1 later 
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in practice compared with using the same cluster in session 1, as evidenced by 
the more consistent foot speed values at ball contact in the later practice sessions. 
Certainly, this proposition requires investigation in future studies.

Participant AD showed little change in the clusters of movement used, and this 
lack of movement variability could have been an indication of the lack of effective 
exploration of the perceptual motor workspace. The lack of search activity was 
reflected through the absence of observed variability in the movement clusters used 
and was associated with a smaller rate of improvement between pre- and posttest 
sessions for this individual. Similarly, in Liu et al. (2006), no changes, either dis-
continuous or continuous, were observed in movement dynamics adaptations for 
less successful learners, as was apparent for participant AD in the current study.

It was also interesting to observe that there was no distinct decrease in perfor-
mance outcome during transition between preferred movement patterns (a decrease 
would be expected because participants were exploring for possible movement 
solutions and this would have affected performance). Moreover, there was also 
no clear trend for improved performance scores after a new preferred movement 
cluster was acquired, even though performance scores did increase as a function 
of practice. It is possible that further functional parameterization of the movement 
cluster is required before performance improvement can be seen. Alternatively, 
future performance measures could incorporate error distance values to increase 
the sensitivity of the performance outcome measures to better reflect changes in 
functional differences after a transition between preferred movement clusters. 
However, the measurement of error distances alone would not be possible in this 
study because some of the passes would have contacted the live receiver before 
landing on the ground. Nevertheless, these issues pertaining to providing a clearer 
link between performance changes and acquisition of new preferred movement 
clusters can provide stronger evidence for examining the process of transition 
between preferred movement clusters as described in concepts based on nonlinear 
dynamics in future work.

In conclusion, this study has shown that progression of learning is different 
between individuals because it is dependent on the interaction between the learner 
and available behavioral information, which is unique for each individual. There 
was also some indication that high variability in movement clusters can (but not 
necessarily) accompany a change between preferred movement clusters. Compared 
with learning in bimanual finger coordination tasks, the target pattern is unlikely 
to be immediately available in discrete multiarticular actions, because the pathway 
of change during learning is not easily predictable. Degeneracy, where different 
functional coordination solutions can be explored under the same task demands 
(see Hong & Newell, 2006), is omni-present during the learning of multiarticular 
movements. Based on the data from this study, it can be suggested that observing 
the nature of changes during practice might reveal insights into how movement 
variability can be used for adapting and refining complex multiarticular discrete 
actions during learning. The interpretation of the data was based on a stringent 
application of the cluster analysis procedure, and more work should also be done 
on examining the use of such cluster analysis tools for other movement models as 
well as experimental conditions.



Dynamics of Movement Patterning    239

References
Bernstein, N.A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon 

Press.
Chen, H.H., Liu, Y.T., Mayer-Kress, G., & Newell, K.M. (2005). Learning the pedalo loco-

motion task. Journal of Motor Behavior, 37, 247–256.
Chow, J.Y., Davids, K., Button, C., & Koh, M. (2006). Organization of motor system degrees 

of freedom during the Soccer Chip: An analysis of skilled performance. International 
Journal of Sport Psychology, 37, 207–229.

Chow, J.Y., Davids, K., Button, C., & Koh, M. (2008). Coordination changes in a discrete 
multi-articular action as a function of practice. Acta Psychologica, 127(1), 163–176.

Guiard, Y. (1997). Fitts’ law in the discrete vs. cyclical paradigm. Human Movement Sci-
ence, 16, 97–131.

Haibach, P.S., Daniels, G.L., & Newell, K.M. (2004). Coordination changes in the early 
stages of learning to cascade juggle. Human Movement Science, 23, 185–206.

Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2002). Cluster validity checking methods: 
Part 2. SIGMOD Record, 31(3), 19–27.

Hodges, N.J., Hayes, S., Horn, R.R., & Williams, A.M. (2005). Changes in co-ordination, 
control and outcome as a result of extended practice on a novel motor skill. Ergonom-
ics, 48, 1672–1685.

Hong, S.L., & Newell, K.M. (2006). Practice effects on local and global dynamics of the 
ski-simulator task. Experimental Brain Research, 169, 350–360.

Jaitner, T., Mendoza, L., & Schöllhorn, W.I. (2001). Analysis of the long jump technique 
in the transition from approach to takeoff based on time-continuous kinematic data. 
European Journal of Sport Science, 1(5), 1–12.

Jirsa, V.K., & Kelso, J.A.S. (2004). Coordination dynamics: Issues and trends. London: 
Springer.

Kauffmann, S.A. (1995). At home in the universe: The search for laws of complexity. 
London: Viking.

Kaufman, L., & Rousseeuw, P.J. (1990). Finding groups in data: An introduction to cluster 
analysis. New York: Wiley.

Ko, Y-G., Challis, J.H., & Newell, K.M. (2001). Postural coordination patterns as a function 
of dynamics of the support surface. Human Movement Science, 20, 737–764.

Ko, Y-G., Challis, J.H., & Newell, K.M. (2003). Learning to coordinate redundant degrees 
of freedom in a dynamic balance task. Human Movement Science, 22, 47–66.

Lees, A., & Nolan, L. (2002). Three-dimensional kinematic analysis of instep kick under 
speed and accuracy. In W. Spinks, T. Reilly, & A. Murphy (Eds.), Science and football 
IV (pp. 16–21). London: Routledge, Taylor & Francis.

Liu, Y.T., Mayer-Kress, G., & Newell, K.M. (2003). Beyond curve fitting: A dynamical 
systems account of exponential learning in a discrete positioning task. Journal of Motor 
Behavior, 35, 197–207.

Liu, Y.T., Mayer-Kress, G., & Newell, K.M. (2006). Qualitative and quantitative change in 
the dynamics of motor learning. Journal of Experimental Psychology. Human Percep-
tion and Performance, 32(2), 380–393.

Magill, R.A. (2007). Motor learning and control (8th ed.). New York: McGraw Hill.
Newell, K.M., Liu, Y.T., & Mayer-Kress, G. (2001). Time scales in motor learning and 

development. Psychological Review, 108(1), 57–82.
Newell, K.M., Liu, Y.T., & Mayer-Kress, G. (2003). A dynamical systems interpretation 

of epigenetic landscapes for infant motor development. Infant Behavior and Develop-
ment, 26, 449–472.

Newell, K.M., & McDonald, P.V. (1994). Learning to coordinate redundant biomechanical 
degrees of freedom. In S. Swinnen, J. Heuer, J. Massion, & P. Casaer (Eds.), Interlimb 
coordination: Neural, dynamical and cognitive constraints (pp. 515–536). San Diego, 
CA: Academic Press.



240    Chow et al.

Nourrit, D., Delignieres, D., Caillou, N., Deschamps, T., & Lauriot, B. (2003). On dis-
continuities in motor learning: A longitudinal study of complex skill acquisition on a 
ski-simulator. Journal of Motor Behavior, 35(2), 151–170.

Riley, M.A., & Turvey, M.T. (2002). Variability and determinism in motor behavior. Journal 
of Motor Behavior, 34(2), 99–125.

Rosengren, K.S., Savelsbergh, G., & van der Kamp, J. (2003). Development and learning: 
A TASC-based perspective of the acquisition of perceptual-motor behaviors. Infant 
Behavior and Development, 26, 473–494.

Schmidt, R.C., & Fitzpatrick, P. (1996). Dynamical perspective on motor learning. In H.N. 
Zelanik (Ed.), Advances in motor learning and control (pp. 195–223). Champaign, 
IL: Human Kinetics.

Schöllhorn, W.I. (1998). Systemdynamische Betrachtung komplexer Bewegungsmuster im 
Lernprozess [System-dynamic consideration of complicated movement patterns in 
learning process]. Frankfurt am Main: Lang.

Schöner, G. (1990). A dynamic theory of coordination of discrete movement. Biological 
Cybernetics, 63, 257–270.

Schöner, G., Zanone, P.G., & Kelso, J.A.S. (1992). Learning as a change of coordination 
dynamics: Theory and experiment. Journal of Motor Behavior, 24, 29–48.

Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection. 
Systematic Biology, 51, 492–508.

Shimodaira, H. (2004). Approximately unbiased tests of regions using multistep-multiscale 
bootstrap resampling. Annals of Statistics, 32, 2616–2641.

Siegler, R.S. (2000). The rebirth of children’s learning. Child Development, 71(1), 26–35.
Southard, D. (2002). Change in throwing pattern: Critical values for control parameter of 

velocity. Research Quarterly for Exercise and Sport, 73(4), 396–407.
Southard, D. (2006). Changing throwing pattern: Instruction and control parameter. Research 

Quarterly for Exercise and Sport, 77(3), 316–325.
Stergiou, N. (2004). Innovative analyses of human movement. Champaign, IL: Human 

Kinetics.
Summers, J.J. (1998). Has ecological psychology delivered what it has promised? In J. 

Piek (Ed.), Motor control and skill: A multidisciplinary perspective (pp. 218–230). 
Champaign, IL: Human Kinetics.

Suzuki, R., & Shimodaira, H. (2004). An application of multiscale bootstrap resampling 
to hierarchical clustering of microarray data: How accurate are these clusters? The 
Fifteenth International Conference on Genome Informatics 2004, p. P034.

Temprado, J., Della-Grasta, M., Farrell, M., & Laurent, M. (1997). A novice-expert com-
parison of (intra-limb) coordination subserving the volleyball serve. Human Movement 
Science, 16, 653–676.

Thelen, E. (1995). Motor development: A new synthesis. The American Psychologist, 50(2), 
79–95.

Vereijken, B., Van Emmerik, R.E.A., Bongaardt, R., Beek, W.J., & Newell, K.M. (1997). 
Changing coordinative structures in complex skill acquisition. Human Movement Sci-
ence, 16, 823–844.

Wimmers, R.H., Savelsbergh, G.J.P., Beek, P.J., & Hopkins, B. (1998). Evidence for a phase 
transition in the early development of prehension. Developmental Psychobiology, 32, 
235–248.

Zanone, P.G., & Kelso, J.A.S. (1997). Coordination dynamics of learning and transfer: Col-
lective and component levels. Journal of Human Psychology: Human Perception and 
Performance, 23(5), 1454–1480.

Zhao, H., Liang, J., & Hu, H. (2006). Clustering validity based on the improved Hubert Γ 
statistic and the separation of clusters. Proceedings of the First International Confer-
ence on Innovative Computing, Information and Control (ICICIC’06).


	MC-12-3-219_cover
	MC-12-3-219

