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An Extended Singapore Mathematics 
Curriculum Framework

Wong Khoon Yoong

National Institute of Education

The Singapore Mathematics Curriculum Framework in the shape 
of the “Pentagon” was fi rst developed by a review committee 
in 1988-1989. That review committee decided that mathematics 
problem solving should be the main aim of the school mathematics 
curriculum, in line with the ministry’s thrust and international 
trends about problem solving and investigations at the time, as 
spelt out by the National Council of Teachers of Mathematics 
(1980) from the US and the Cockcroft’s report (1982) from UK. 
The committee also teased out from available research fi ve key 
factors that would help students become good solvers of various 
types of problems, ranging from simple exercises to open-ended 
investigative tasks. These fi ve factors were then placed along 
the sides of a pentagon, so that the pictorial framework will 
display the essential features of the curriculum. Specifi c topics 
were then selected to defi ne the coverage of the Concepts and 
Skills factors. (See Wong, 1991, for a description of the process 
undertaken to design this framework.)

Over the past fi fteen years, this framework has remained virtually 
unchanged even after the reviews conducted in 2000 and 2006. 
However, the 2006 revision has placed stronger emphasis on 
real-life applications and mathematical modelling than in the 
past. An ensuing pedagogical issue is: what additional factor(s) 
is required to enable students to solve these types of problems? 
I wish to propose here that the new factor should be “context 
knowledge.” With this additional factor, a hexagonal framework 
is obtained, as shown below. 

“Context knowledge” refers to knowledge outside of 
mathematics that students need to bring into the problem 
solving process in order to understand the context or “story 
line” of the problem and to make sense of the solutions. This 
knowledge is not necessary if the problem is free of contexts or 
involves only neutral contexts. Several examples illustrate this 
type of knowledge.

(1) Neutral contexts. Example: Ali has fi ve pens. His friend, 
John, has three more pens than him. How many pens does John 
have? The contexts of “pens” and “friends” are neutral as these 
can be replaced by pencils, marbles, apples, brothers, and so on, 
and the problem structure remains the same. 

Mathematics 
Problem 
Solving 

(2) Basic real-life experience. Example: Mary wants to cut a 
piece of string into six parts. How many cuts will she make? The 
problem solver needs to know the relationship between the 
number of cuts and the number of strings obtained. It is also 
assumed that a clumsy person might take more than one trial 
to make one cut, and that the person does not fold the string in 
any particular way before cutting! Similar context knowledge is 
also called into play to avoid giving fractional answers such as 
12.3 buses when whole numbers should be used and knowing 
that a rabbit has four legs and a chicken has two legs (usually), 
and the arms of a clock move clockwise (those who grow up 
using only digital clocks might not know this). 

A slightly harder problem is: A shopkeeper adjusted the 
weighing scale so that the zero mark is incorrect. One bag of 
apples weighs 2 kg and one bag of pears weighs 3 kg. When 
both are weighed together, the reading is 4.8 kg. What is the 
true weight of each bag of fruit? Many teachers in my inservice 
classes assumed that the error is proportional to the weight; 
they make the wrong assumption about how a weighing scale 
works. Teachers who assign real-world problems must ensure 
that they use authentic data. I have come across problems that 
mention: the length of a pendulum is 21 meters; a car took 12 
hours to travel from Toa Payoh to Johor Baru (massive jam, car 
break down?); exposing pupils to such improbable contexts may 
have led to the phenomenon called “suspension of meaning” 
when pupils solve school mathematics problems (Verschaffel, 
Greer & De Corte, 2000).

If the curriculum aim is to help pupils solve real-life problems, we 
need to identify the types and levels of real-world knowledge that 
pupils should have about the given problems. The mathematics 
items in the Program for International Student Assessment (PISA) 
(http://www.math.hawaii.edu/~tom/hctm/PISA_Highlights.pdf) 
are supposed to test this form of mathematics literacy.

(3) Confl icting contexts. Example: There were fi ve birds on a 
tree branch. A hunter fi red a shot and one bird dropped dead. 
How many birds were left? In the old days, the “mathematical” 
answer was 4, but a real context answer might be zero. Pupils 
who give the latter answer may be penalised! When pupils are 
confronted with such situations where their “real-world answers” 
are not accepted when compared to the “mathematical” 
answers, they may develop the “suspension of meaning” belief 
as mentioned above. 

(4) Domain-specifi c knowledge. Many modelling problems 
require some knowledge of domains outside mathematics, for 
example, engineering, sciences, economics, and medicine. At 
school levels, the domain-specifi c knowledge may be given by 
an explanation or a formula, and the students are expected to 
work on the mathematics only. As a simple example: How high 
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Singapore 
(extended)

Kilpatrick 
et al. 
(2001)

Schoenfeld 
(2008)

Mayer 
(2006)

Concepts Conceptual 
Knowledge 
base

Conceptual 
knowledge

Skills
Procedural 
fl uency

Procedural 
knowledge

Processes
Adaptive 
reasoning

Problem 
solving 
strategies, 
heuristics

Strategic 
knowledge

Context 
knowledge

Factual 
knowledge

Attitudes
Productive 
disposition

Beliefs, values, 
orientations

Metacognitive 
knowledge, 
including 
monitoring, 
beliefs, self-
effi cacy

Metacognition
Strategic 
competence

Metacognition, 
monitoring, 
self-regulation

does a stone rise when it is thrown vertically at 2 ms-1? 

In the proposed hexagonal framework, Concepts form the 
foundation of the problem solving process. Metacognition is 
the over-arching factor that coordinates and monitors the other 
fi ve factors (Wong, 2002).  

In recent years, the Singapore framework has become well 
known as more and more visiting educators arrive here to fi nd 
out how Singapore manages to stay at the top of international 
mathematics studies such as TIMSS. It is instructive for us 
to compare these six factors with the types of knowledge 
mentioned by international educators. This comparison is shown 
in the table below.

Although the terms may have slightly different meanings, 
the fact that they deal with a similar set of factors is a strong 
indication that teachers should help their pupils develop this 
set of competency in a relational way in order to become good 
problem solvers.
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Questions from Teachers
Jaguthsing Dindyal

National Institute of Education

Reasoning is the basis of all mathematics. While teaching 
mathematics, one important aspect of the teacher’s role is to 
develop the reasoning ability of students. However, this is not 
an easy task, particularly as the teacher has to adopt a relational 
approach for teaching the subject. Given the fact that students 
try to model their teacher’s reasoning, it is extremely important 
for the teacher to have a very good understanding of the subject. 
Teachers have to nurture their students’ reasoning and they can 
confi dently do so only if they themselves question some of the 
practices about the teaching of mathematics. Amongst others, 
mathematics teachers usually ask three types of questions which 
can be broadly classifi ed as those pertaining to the curriculum, 
the content and the pedagogy.

Each of the three types of questions from teachers is briefl y 
described below with original questions from a group of 
secondary school teachers who participated in a workshop 
(original wording from teachers). It is not the purpose of this 

paper to answer these questions, but rather to highlight their 
importance in teachers’ on-going professional development.

Curriculum Questions
Questions pertaining to the curriculum refer to those that ask 
about the reasons for including or excluding particular topics in 
secondary school mathematics as well as those that pertain to 
the reasons why we have to teach particular topics. Questions 
about the mathematical content are considered separately. 
The questions listed below are among such questions (original 
wording from teachers):  

• Why the need to include standard deviation in the new 

syllabus?

• Why do we need to learn and teach trigonometry since 

it is hardly used in real life?

• With technology, do we still need students to plot and 
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• For differentiation of trigonometric functions, why is the 

angle in radians?

• Why exterior angle of a polygon is (180° - interior angle) 

and not (360° - interior angle)?

• Why the drawing of constant speed in a speed-time graph 

is empty in an acceleration-time graph?

• Why is the second derivative not always the best thing 

to use to check if it is a maximum or minimum value?

• Why zero is neither positive nor negative?

• Why zero is even?

• Why 1 is not a prime number? 

• Why 0Cn
 = 1 and a° = 1?

• Why ?,1,0
0

0
��

• Why do we use ,,, ��� for sets?

• Why is ?19.0
.

�

• Why the tangent and normal  of  a  c i rc le  i s 

perpendicular?

•                 Shouldn’t −
3

7
2

= 
9

49
,  =

2

3

7

9

49
. 

9

49
=

3

7
± ? 

Pedagogy Questions
Pedagogy questions are those that teachers ask about the 
approaches for teaching particular topics in secondary 
mathematics. Included among these are questions about 
misconceptions in mathematics. A list of such questions is given 
below (original wording from teachers): 

• Even after  correct ing/expla in ing s tudents ’ 

misconceptions, they get it right once or twice and 

then they still make the same mistakes? Why and how 

to change this?

• How geometry can be applied to real life situation?

• (x + y)(x – y) = x² - y² by expansion, so x² - y² = (x + y)(x 

– y). Another way to prove without memorization?

• How to explain a² - b² is not (a – b)²?

• Why do most teachers always start teaching a topic 

by the formula followed by examples? Other ways of 

approach?

Why Would Teachers Ask Such Questions?
Mathematics teachers in secondary schools come with different 
backgrounds in mathematics. Although they have all undergone 
a formal training for teaching mathematics, many teachers still 
have some diffi culties with the subject after competing their 
training. These questions are asked by both novice teachers and 
more experienced teachers. Some of the questions may seem very 
trivial. However, for the teachers these questions are legitimate 
and represent stumbling blocks that they wish to overcome to be 
better at teaching the subject. Teachers must ask more and more 
questions like these to have a better understanding of the subject 
they have to teach at school level. Asking such questions should 
be seen as a natural process of growing into the profession and 
not be equated with being ineffective or lacking in some way. 
While professional development can be a good avenue for 
discussing these questions, discussions within the department at 
the school level should not be ignored. Teachers who ask such 
questions and seek answers to them are professionally in a better 
position to teach mathematics to school students.

draw graphs? Should efforts be used on interpreting 

the data?

• Why do we need to teach vectors as pupils may not be 

able to relate it to daily life?

• Why do students learn logarithms? What is the use?

• Why study algebra? What can algebra do that the model 

method cannot?

• Why do we teach the box and whisker plot?

• Why introduce standard deviation in statistics? It is not 

easy for students to understand this topic. 

• Why do students always have problems with algebra?

• Why are some important reasonings or sections of part 

of the syllabus, e.g. functions or other topics removed 

from the syllabus when it is benefi cial to the student 

to see the linkage within that topic?

• Why study angle properties of circle?

• Why is sketching of quadratic graphs in E. Mathematics? 

Even A. Mathematics students have problems with it.

• Why is ‘A’ level stuff moved in A. Mathematics? 

Content Questions
Questions pertaining to the content refer to those questions 
that teachers generally ask about particular aspect of the 
mathematical content that they may not be very familiar with. 
These may include questions about particular concepts, results, 
techniques or conventions used in mathematics. Some such 
questions are listed below (original wording from teachers)

• Why is there a need to measure the spread of data in 

standard deviation from the mean? Since there are other 

measures of central tendency (i.e. mode and median), 

why are they not used instead?

• Why when corresponding angles are equal in triangles, 

they are similar?

• How do we determine and design interesting shapes that 

tessellate?

• Why prime numbers can only be positive?

• Why is 2 an irrational number? How to prove?

• Why �
a

b
y dx = - �

b

a
y dx?

• Does the graph of 72² ��� xxy have a maximum 

value for the range -2 5�� x ?

• Why is the product of 2 negative numbers positive?
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Introduction
Expressing generality, a notion fundamental and central to 
mathematics learning, is most apparent in the teaching of 
number patterns.  A typical task on number patterns involves 
such skills as identifying a numerical pattern, extending the 
pattern to the next few terms, calculating the value of specifi ed 
terms, as well as using symbols to articulate the functional 
relationship that defi nes the pattern.  With symbols being used 
as a means for expressing generality, generalising tasks are thus 
regarded as important and helpful for developing algebraic 
thinking and reasoning (Blanton & Kaput, 2005; Carpenter & 
Levi, 2000; Mason, 1996).  Despite its importance for algebraic 
learning, generalisation seems to remain rather elusive for many 
students however.  For instance, the GCE “O” level examiners’ 
reports for 1996 and 2004 examinations highlighted students’ 
diffi culties in expressing generality (University of Cambridge 
Local Examinations Syndicate, 1997; Cambridge International 
Examinations, 2005).  In the 2004 examination, fi nding the nth 
term of a sequence whose fi rst fi ve terms are 1, 4, 7, 10 and 13 
was a challenge to several students.  The wrong answer 3�n  
was fairly common.  The failure to correctly fi nd the functional 
relationship defi ning the pattern is quite a concern given that 
generalising tasks, which have been a feature in the Singapore 
secondary school mathematics textbooks for over a decade, are 
not totally new to students.  Consequently, there is a need to 
understand more about how secondary school students deal 
with generalising tasks. Therefore, this article aims to shed 
light on how secondary school students make generalisations in 
ways that are meaningful to them based on a numerical linear 
generalising task. This task is so called because it involves a linear 
pattern that lists the numbers sequentially instead of being set 
in a pictorial context.

The Generalising Task
The numerical linear generalising task that was given to some 
Secondary One students from different schools is presented in 
Figure 1.

 The fi rst fi ve terms of a sequence are given as follows:

    1,  4,  7,  10,  13,  …

 (a) What is the 10th term in this sequence?  Show how   
  you obtained your answer.
 (b) What is the 100th term in this sequence?  Show how   
  you obtained your answer.
 (c) Write down a rule for fi nding the nth term in this   
  sequence if you were told what n is.  Show how you  
  obtained your answer.

Figure 1.  The numerical linear generalising task

It comprises two questions that ask for what Stacey (1989) 
calls a near and far generalisation to the 10th and 100th terms, 
and a third on fi nding a general rule for the nth term of the 
sequence. Item (a) is viewed as a near generalisation question 
because its answer can be obtained from step-by-step listing of 
the successive terms. Item (b) is a far generalisation question 
because the listing of terms is no longer a practical approach 

for obtaining a large term like the 100th term. In Item (c), the 
rule for fi nding the nth term is described as functional because it 
produces an output (i.e., the value of the term) when given any 
input (i.e., the ordinal number indicating the term’s position), 
thus encapsulating the idea of a function.  

Readers should take note that the fi rst fi ve terms of the sequence 
may not be suffi cient to predict its subsequent terms.  This is 
because the sequence could develop in many ways such as 1, 4, 
7, 10, 13, 1, 4, 7, 10, 13, … or 1, 4, 7, 10, 13, 13, 10, 7, 4, 1, 1, 4, 
7, 10, 13, …. However, the sequences in such generalising tasks 
are usually assumed to follow the simplest and most sensible 
hypothesis.  So in this present linear generalising task, the next 
term is assumed to be obtained by adding 3 to the immediate 
term preceding it.  In fact, all the participating Secondary One 
students seemed to be aware of this assumption and calculated 
the subsequent terms in this expected way. Based on this 
hypothesis, the 10th term is 28 and will be denoted by 10(T   in 
this article, the 100th term is 298 and denoted by )100(T , and 
the nth term is 23)( �� nnT . As the intention of this article 
is to mainly focus on the strategies used by these students in 
their dealing with the task, no statistical data will be reported 
herein to overwhelm the readers.

Students’ Strategies
Four methods were commonly used by the Secondary One 
students to fi nd             and )100(T .

Method 1 By listing

Students list the next 
term by adding 3 to the 
immediate term preceding 
it. That is, 31 ��

� nn TT .

Method 2
By looking for a 
pattern

Students search for a 
consistent structure that 
gives rise to the pattern 
among the given terms.

Method 3 By formula

Students directly apply the 
formula for fi nding 
the nth term of an 
arithmetic progression, 
T (n) = a + (n - 1)d, 
where a is the fi rst term and 
d the common difference of 
the progression.

Method 4
By direct 
proportion

Students take a multiple 
of a smaller term, thinking 
that T (mn) = m x T (n), 
where nm � .

The near generalisation question was straightforward to 
students, with all successfully fi nding                 .  The Listing method 
was most commonly used although the Looking for a Pattern 
and Formula methods were also seen in some cases.  A typical 
working by listing, which shows how the sequence is continued 

Chua Boon Liang
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10(T )

10(T )
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using the recursive rule of 31 ��� nn TT , is presented below:

In contrast, the far generalisation question of fi nding )100(T  
proved to be challenging for many students. Many students who 
succeeded in determining            by listing failed to correctly 
generalise )100(T , despite having identifi ed the recursive 
rule in the previous question. This observation resonates with 
the fi nding that being able to recognise the pattern does not 
automatically lead to the generalisation of the pattern (English & 
Warren, 1995; Ursini, 1991).  A few wrong answers were detected 
in an analysis of the students’ workings for this question but only 
the two most common mistakes will be discussed here.  The fi rst 
one involved fi nding )100(T  from          by using the Direct 
Proportion method.  A sizeable number of students calculated it 
by multiplying their near generalisation answer by 10, thinking 
that )100(T �      .Their calculation was frequently 
accompanied by the following working:

10th term = 28
100th term = 28 x 10 =280 

The other mistake, also somewhat involving direct proportion, 
stemmed from the following flawed reasoning as clearly 
explained by a student:

 For every 10 numbers, you need to add 3 
nine times. So when you reach the 100th 
term, you need to add 3 ninety times.

Students thinking in this way would add 270 (that is, ninety times 
of 3) to the fi rst term 1 to derive the wrong answer of 271 for 

)100(T , in tandem with the way                         is calculated by 
adding nine times of 3 to 1.

An analysis of the successful students’ workings for the far 
generalisation question found that the Looking for a Pattern 
and Formula methods were predominantly used as compared 
to the Listing method.  This fi nding was perhaps not surprising 
given that )100(T  was large enough to deter students from 
fi nding it by listing, which was also not at all an effi cient 
method to calculate it. Among the students who looked for 
a pattern, a majority of them found )100(T by determining 
the number of times the common difference has to be added 
to either the fi rst term or the fi fth term of the sequence.  For 
instance, the common difference 3 has to be added 99 times 
to the fi rst term 1 to get )100(T . Figure 2 shows a typical 
working of how a student had calculated )100(T  in this 
manner. The same reasoning applies to fi nding )100(T  from 
the fi fth term 13, with 3 being added 95 times to it to yield 
such an expression as (95 x 3) + 13.)100( �T  A few students 
used another variation of this reasoning to compute )100(T  
from T(10)  , instead of the fi rst or fi fth term, thus producing   

(90 x 3) + 28.)100( �T Besides this line of reasoning, some 
students offered another way of seeing how each term in the 
given sequence was being constructed. They noticed that each 
term is 2 less than 3 times the ordinal number indicating its 
position. That is, the fi rst term is 2 less than 3 times 1 and can 
be written as 213 �� , the second term is 2 less than 3 times 
2 or, symbolically, 223 �� , and continuing in this manner, 

 3x10 - 2T(10) �   

10(T )

 Figure 2.  A working for Item (b) 

The Formula method was used only by a group of students 
from the same school. Figure 3 shows how a student could have 
used the formula for determining the nth term of an arithmetic 
progression to correctly answer the near and far generalisation 
questions.  

 Figure 3.  Use of formula: explicit

Working such as this, where the use of the Formula method was 
explicitly shown, was very few.  In most instances, it was not 
apparent whether the Formula method was actually used.  But 
the intuition of its use comes from the students’ unconventional 
way of dealing with the generalising task.  Many of them were 
able to write down the correct functional rule for Item (c) way 
before Items (a) and (b) were even answered (see Figure 4).  
So how did they construct the correct functional rule at the 
beginning when the near and far generalisation questions were 
supposed to give them a sense of the underlying pattern to be 
used subsequently for deriving the rule? 

 Figure 4.  Use of formula: inexplicit

When it came to fi nding the expression of generality in Item 
(c), numerous students who had used the Looking for a Pattern 
and Formula methods in Item (b) proceeded on to produce 
the correct general rule.  It is particularly notable that many 
using the Looking for a Pattern method were able to make a 
smooth transition from arithmetic to algebra.  For instance, 
students who answered (95 x 3)   13.)100( �T could 
express the functional rule as (n - 5) x 3   13 ; those who gave 

21003)100( ���T  wrote down 23 �� n . There were 
some unexpected answers though. A few students accurately 
worked out � � 1399)100( ���T  and yet expressed the nth 
term as � � 13 ��n . But not so surprising was the sighting of 
the wrong answer 3�n  on several occasions. However, not 
all students explained how they made such a generalisation 
but the following justifi cations provided by two students (see 
Figure 5) should shed light on some students’ thinking processes 
in constructing this rule.

10(T )

10 x T (10)

T(10) = 28

and  3x100 - 2 .�)100(T

(a) (b)

(a) (b)

�
�

 Figure 5.  Students’ justifi cations for Item (c)

9
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should continue for a few more terms.Then to consolidate 
the pattern they see, teachers can encourage students to test 
the pattern on T(10) and other near generalisation terms.  
Subsequently, it is hoped that students are able to abstract the 
pattern for far generalisation terms as well as to generalise 
it to � � 311 ��� n  for the nth term. Developing the general 
rule through this manner can accentuate the dual role of the 
notation � � 311 ��� n : as a process of adding three to the 
preceding term to obtain the next, and as a mathematical object 
representing this process. It is hoped that the notation will then 
make sense and be endowed with meaning to students.  

Finally, since different expressions for the same functional rule 
can be devised in this generalising task (e.g. � � 311 ��� n , 
� � 35 ���n 13, 23 �� n ), teachers can nurture fl exibility 
in thinking by getting students to look for different ways of 
seeing the same pattern or, alternatively, to see “through” 
someone else’s expression and say how it has come about.  To 
foster algebraic reasoning, students can also be encouraged to 
explain the structural equivalence of these different expressions.  
This provides a platform for students to discuss and reason 
why the different-looking expressions actually represent the 
same generality without having to revisit the entire sequence.  
Since the expressions represent the same rule, albeit looking 
differently, they must always produce the same answers.  So 
one simple way to illustrate equivalence is to substitute positive 
integral values of n into the expressions and verify that the 
outcomes are the same.  A more sophisticated method, without 
recourse to substitution, is to apply the rules of algebra.  This 
is where students can show the equivalence of different 
expressions through algebraic manipulation.
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The justifi cations revolve around how the students perceived 
the sequence is being extended. They spotted the rhythm of 
the sequence: add three to get the next term. Thus the idea 
of extending the sequence recursively by adding three to the 
preceding term led them to think that the rule for the nth term 
was 3�n .  So what were the students’ interpretations of the 
letter n?  In Figure 5(a), n is used to denote the “previous term” 
– presumably the � �1�n th term – whereas it is the “present 
number” – presumably the nth term – in Figure 5(b). Clearly, 
students were ignorant of the meaning associated with n.  Not 
only did students not know how the letter n is used, they also 
did not seem to realise it was the functional rule, and not the 
recursive rule, that Item (c) was asking for. This is because they 
failed to recognise that 3�n  did not produce the fi rst fi ve 
terms of the given sequence when the respective integral values 
of 1 to 5 were used in place of n.  

Implications for Teaching
When students are asked to determine a general rule defi ning 
the pattern, they ought to be able to interpret from the question 
whether the recursive rule or the functional rule is required.  
The recursive rule, allowing the next term to be computed by 
adding the constant difference between any two consecutive 
terms to the immediate term preceding it, is particularly useful 
for making a near generalisation.  This is why many students used 
it to fi nd T(10)  by listing. However, teachers should highlight 
to students that the recursive rule is limited in the sense that 
while it can easily predict the next term of any given term, it 
is not effective for determining the far generalisation and the 
nth term. Thus recognising the recursive rule does not always 
lead to the far generalisation and later the formulation of the 
functional rule (Tall, 1992).

To be able to make the correct generalisation for both the 
far generalisation question as well as the functional rule, 
recognising how the pattern grows recursively is therefore 
not suffi cient. Students also ought to be able to recognise the 
underlying structure which gives rise to the pattern.  In the case 
of this numerical linear generalising task, the structure is about 
the link between the term and the ordinal number indicating 
its position. But before any pattern exploration and recognition 
can even begin, the use of the letter n must fi rst be clearly 
explained. Teachers can point out to students that n is used to 
represent the ordinal number indicating the term’s position.  
With this explanation, students can then be instructed to look 
for a pattern between the terms and their corresponding ordinal 
numbers. By doing this, teachers are actually helping students 
to concentrate on the right variables during their search for the 
correct structure that can later be generalised to become the 
functional rule.

To develop algebraic reasoning, students ought to be able to 
explain their generalisations by representing the pattern verbally 
and symbolically (Mason, 1996).  So to provide such opportunities 
to students, it is essential for teachers to get students to describe 
what they see in the pattern. However, the description should 
focus not only on the outcome obtained from the recursive rule 
(that is, 1, 4, 7, 10, 13, …), but, more importantly, also on the 
actions performed to arrive at these outcomes. For instance, the 
second term 4 is obtained by adding a three to 1 and can be 
written as 311 �� ; the third term 7 by adding another three to 
the second term and is thus 321 �� . This mode of description 
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Neo Koon Siong

Meridian Junior College 

Fastest Fingers Graphing Calculator Competition 2007

August is hardly a good month to disrupt lectures for a junior 
college, especially for JC2 Higher-2 Mathematics. With the 
constraint of time and the need to gear students up academically 
for the impending examinations, it was indeed a rare sight 
to witness the entire cohort gathered in the school hall for a 
‘competition’! Look closely, and you would fi nd three teams, 
each of three students, operating their graphing calculators (GC) 
in a bid to solve the posted question as a team, and rushing to 
send in their answers via the Texas Instrument (TI) Navigator 
system.

The Fastest Fingers Graphing Calculator Competition was 
conceptualized to popularize the use of the GC among Meridian 
Junior College students. The winds of change brought by the 
new Advanced Level curriculum heralded fresh approaches and 
perspectives towards Mathematics and Mathematics education. 
As trailblazers who are constantly seeking out new opportunities 
to engage our students, Meridian’s Mathematics teachers 
conducted class-based selections, inter-class competitions, and 
fi nally three teams emerged. Speed and accuracy were the key 
considerations in the Finals conducted on 1 August 2007, as 
students pitted their skills against each other, hoping to out-wit 
and out-do their opponents in order to clinch the top group 
prize of $100. 

Besides the three participating teams, the audience was not 
neglected. In fact, some of the most exciting moments were seen 
off-stage, where students clamoured for a chance to provide 
their answers to specially-crafted audience round questions to 
win attractive GC pouches and decorative stickers from TI. A 
further testament to the success of this competition came in 
the form of the students’ feedback. Out of 156 JC2 students 
surveyed, 93% gave the approval that this competition provided 
a different learning platform for them, and that it should 
be institutionalized as an annual event. Generally, students 
appreciated the subtle yet effective manner to promote the use 
and usefulness of the graphing calculator.

With plans to extend this competition to all pre-university 
institutions in Term 3 of 2008, it is believed that the Fastest 
Fingers GC Competition will indeed establish a new frontier in 
engaging all junior college students in becoming experts in their 
use of this new tool in Mathematics education. 

Ida Mok Ah Chee

Reported by Agnes Lee Ser Hua

Nan Hua High School

Secondary Students’ Understanding of the Distributive Property

Algebraic Workings of a Secondary Student 

(t + 1) 2  =  t 2 + 1 2   

5(x 2 ) (2xy) = (5 × x 2 )(5 × 2xy) = 5x 2 (10xy)  

The above mistakes may seem familiar to all Secondary teachers 
teaching Algebra to a group of students in a Mathematics 
class.  

To fi nd out the underlying reasons for the above mistakes made 
by the students, more than twenty Mathematics educators 
attended the talk “Secondary Students’ Understanding of the 
Distributive Property”, at the Singapore Polytechnic on the 5 
March by Dr Ida Mok Ah Chee, an Associate Professor at the 
University of Hong Kong. 

The study fi rst began from observations of common mistakes 
made by students in the learning of Algebra. The distributive 
property was chosen as a key focus in tracing students’ 
progression of algebraic thinking for several reasons: 

(1)  The Errors on distributive rule are commonly found in  
 students’ work. 

(2)  The distributive rule is linked to multiplication and 
addition, and the application rule is found in a wide 
range of Algebraic topics. 

Although the instruments were based on a study of secondary 
students in Hong Kong (12-18), the algebraic mistakes were 
common to students from all parts of the world. The instruments 
were conceptualized based on the framework of the Structure of 
the Observed Learning Outcome (SOLO) taxonomy for diagnostic 
purpose.  It was used as a tool to help the Mathematics educators 
fi nd out how students learn Algebra.

The instrument consists of four task-based interviews.  The 
tasks share a common underpinning stem and show increasing 
complexity.  The interviews were carried out on a one-to-one 
basis. The duration of each interview, on an average, is about 
twenty minutes depending on the student’s response.   

The interviews provided opportunities for the teacher to fi nd 
out:
•  the depth of the student’s understanding in the learning 

of Algebra 
• how students’ accounted for the generalization of the 

Distribution Law; 
• the transition from Arithmetic to Algebra, the underlying 

reasons for certain mistakes.

To obtain more information about Dr Ida Ah Chee Mok’s 
research, you may contact her at the following email address: 
iacmok@hku.hk.
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