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Proving a conjecture on chromatic polynomials by counting

the number of acyclic orientations

Fengming Dong∗, Jun Ge, Helin Gong

Bo Ning, Zhangdong Ouyang and Eng Guan Tay

Abstract

The chromatic polynomial P (G, x) of a graph G of order n can be expressed as
n∑

i=1

(−1)n−iaix
i, where ai is interpreted as the number of broken-cycle free spanning

subgraphs of G with exactly i components. The parameter ε(G) =
n∑

i=1

(n− i)ai/
n∑

i=1

ai

is the mean size of a broken-cycle-free spanning subgraph of G. In this article, we

confirm and strengthen a conjecture proposed by Lundow and Markström in 2006

that ε(Tn) < ε(G) < ε(Kn) holds for any connected graph G of order n which is

neither the complete graph Kn nor a tree Tn of order n. The most crucial step of our

proof is to obtain the interpretation of all ai’s by the number of acyclic orientations

of G.

Keywords: chromatic polynomial; graph; acyclic orientation; combinatorial interpreta-

tion

Mathematics Subject Classification (2010): 05C31, 05C20

1 Introduction

All graphs considered in this paper are simple graphs. For any graph G = (V,E) and

any positive integer k, a proper k-coloring f of G is a mapping f : V → {1, 2, . . . , k} such

that f(u) 6= f(v) holds whenever uv ∈ E. The chromatic polynomial of G is the function

P (G, x) such that P (G, k) counts the number of proper k-colorings of G for any positive

integer k. In this article, the variable x in P (G, x) is a real number.

The study of chromatic polynomials is one of the most active areas in graph theory.

For basic concepts and properties on chromatic polynomials, we refer the reader to the

∗Corresponding author. Email: fengming.dong@nie.edu.sg.
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monograph [5]. For the most celebrated results on this topic, we recommend surveys [4,

10,14,15].

The first interpretation of the coefficients of P (G, x) was provided by Whitney [23]:

for any simple graph G of order n and size m,

P (G, x) =
n∑
i=1

(
m∑
r=0

(−1)rN(i, r)

)
xi, (1)

where N(i, r) is the number of spanning subgraphs of G with exactly i components and

r edges. Whitney further simplified (1) by introducing the notion of broken cycles. Let

η : E → {1, 2, . . . , |E|} be a bijection. For any cycle C in G, the path C − e is called a

broken cycle of G with respect to η, where e is the edge on C with η(e) ≤ η(e′) for every

edge e′ on C. When there is no confusion, a broken cycle of G is always assumed to be

with respect to a bijection η : E → {1, 2, . . . , |E|}.

Theorem 1 ( [23]). Let G = (V,E) be a graph of order n and η : E → {1, 2, . . . , |E|} be

a bijection. Then,

P (G, x) =
n∑
i=1

(−1)n−iai(G)xi, (2)

where ai(G) is the number of spanning subgraphs of G with n− i edges and i components

which do not contain broken cycles.

Let G be a simple graph of order n. When there is no confusion, ai(G) is written

as ai for short. Clearly, by Theorem 1, P (G, x) is indeed a polynomial in x in which the

constant term is 0, the leading coefficient an is 1 and all coefficients are integers alternating

in signs. Thus, (−1)nP (G, x) > 0 holds for all x < 0.

The concept of broken cycles has the following connection with Tutte’s work of ex-

pressing the Tutte polynomial TG(x, y) of a connected graph G in terms of spanning

trees [2, 22]:

TG(x, y) =
∑
T

xiaω(T )yeaω(T ), (3)

where the sum runs over all spanning trees of G and iaω(T ) and eaω(T ) are respectively

the internal and external activities of T with respect to a bijection ω : E → {1, 2, . . . , |E|}.

If we take ω to be η, then eaη(T ) is exactly the number of edges e ∈ E(G) \ E(T ) such

that η(e) ≤ η(e′) holds for all edges e′ on the unique cycle C of T ∪ e. As G is a simple

graph, eaη(T ) equals the number of broken cycles contained in T with respect to η. In

2
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particular, eaη(T ) = 0 if and only if T does not contain broken cycles with respect to η.

By Theorem 1, a1(G) is the number of spanning trees T of G with eaη(T ) = 0. If

TG(x, y) =
∑

i≥0,j≥0
ci,jx

iyj , (4)

then a1(G) =
∑

i≥0 ci,0 = TG(1, 0).

As in [11], for i = 0, 1, 2, . . . , n − 1, we define bi(G) (or simply bi) as the probability

that a randomly chosen broken-cycle-free spanning subgraph of G has size i. Then

bi =
an−i

a1 + a2 + · · ·+ an
, ∀i = 0, 1, . . . , n− 1. (5)

Let ε(G) denote the mean size of a broken-cycle-free spanning subgraph of G. Then

ε(G) =

n−1∑
i=0

ibi =
(n− 1)a1 + (n− 2)a2 + · · ·+ an−1

a1 + a2 + · · ·+ an
. (6)

An elementary property of ε(G) is given below.

Proposition 1 ( [11]). For any graph G of order n, ε(G) = n+ P ′(G,−1)
P (G,−1) .

Let Tn denote a tree of order n and Kn denote the complete graph of order n. By

Proposition 1, ε(Tn) = n−1
2 , while

ε(Kn) = n−
(

1 +
1

2
+ · · ·+ 1

n

)
∼ n− log n− γ (7)

as n→∞, where γ ≈ 0.577216 is the Euler-Mascheroni constant.

Lundow and Markström [11] proposed the following conjecture on ε(G).

Conjecture 1 ( [11]). For any connected graph G of order n, where n ≥ 4, if G is neither

Kn nor a Tn, then ε(Tn) < ε(G) < ε(Kn).

In this paper, we aim to prove and strengthen Conjecture 1. For any graph G, define

the function ε(G, x) as follows:

ε(G, x) =
P ′(G, x)

P (G, x)
. (8)

By Proposition 1, ε(G) = n + ε(G,−1) holds for every graph G of order n. Thus, for

any graphs G and H of the same order, ε(G) < ε(H) if and only if ε(G,−1) < ε(H,−1).

Conjecture 1 is equivalent to the statement that ε(Tn,−1) < ε(G,−1) < ε(Kn,−1) holds

for any connected graph G of order n which is neither Kn nor a Tn.

A graph Q is said to be chordal if Q[V (C)] 6∼= C for every cycle C of Q with |V (C)| ≥ 4,

where Q[V ′] is the subgraph of Q induced by V ′ for V ′ ⊆ V (G). In Section 2, we will

establish the following result.

3
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Theorem 2. For any graph G, if Q is a chordal and proper spanning subgraph of G, then

ε(G, x) > ε(Q, x) holds for all x < 0.

Note that any tree is a chordal graph and any connected graph contains a spanning

tree. Thus, we have the following corollary which obviously implies the first part of

Conjecture 1.

Corollary 1. For any connected graph G of order n which is not a tree, ε(G, x) > ε(Tn, x)

holds for all x < 0.

The second part of Conjecture 1 is extended to the inequality ε(Kn, x) > ε(G, x) for

any non-complete graph G of order n and all x < 0. In order to prove this inequality, we

will show in Section 3 that it suffices to establish the following result.

Theorem 3. For any non-complete graph G = (V,E) of order n,

(−1)n(x− n+ 1)
∑
u∈V

P (G− u, x) + (−1)n+1nP (G, x) > 0 (9)

holds for all x < 0.

Note that the left-hand side of (9) vanishes when G ∼= Kn. Theorem 3 will be proved

in Section 5, based on Greene & Zaslavsky’s interpretation in [8] for coefficients ai(G)’s of

P (G, x) by acyclic orientations introduced in Section 4. By applying Theorem 3 and two

lemmas in Section 3, we will finally prove the second main result in this article.

Theorem 4. For any non-complete graph G of order n, ε(G, x) < ε(Kn, x) holds for all

x < 0.

2 Proof of Theorem 2

A vertex u in a graph G is called a simplicial vertex if {u}∪NG(u) is a clique of G, where

NG(u) is the set of vertices in G which are adjacent to u. For a simplicial vertex u of G,

P (G, x) has the following property (see [5, 13,14]):

P (G, x) = (x− d(u))P (G− u, x), (10)

where G − u is the subgraph of G induced by V − {u} and d(u) is the degree of u in G.

By (10), it is not difficult to show the following.

Proposition 2. If u is a simplicial vertex of a graph G, then

ε(G, x) =
1

x− d(u)
+ ε(G− u, x). (11)

4
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It has been shown that a graph Q of order n is chordal if and only if Q has an ordering

u1, u2, . . . , un of its vertices such that ui is a simplicial vertex in Q[{u1, u2, . . . , ui}] for all

i = 1, 2, . . . , n (see [3, 6]). Such an ordering of vertices in Q is called a perfect elimination

ordering of Q. For any perfect elimination ordering u1, u2, . . . , un of a chordal graph Q,

by Proposition 2,

ε(Q, x) =
n∑
i=1

1

x− dQi(ui)
, (12)

where Qi is the subgraph Q[{u1, u2, . . . , ui}].

Now we are ready to prove Theorem 2.

Proof of Theorem 2: Let G be any graph of order n and Q be any chordal and proper

spanning subgraph of G. When n ≤ 3, it is not difficult to verify that ε(G, x) > ε(Q, x)

holds for all x < 0.

Suppose that Theorem 2 fails and G = (V,E) is a counter-example to this result

such that |V |+ |E| has the minimum value among all counter-examples. Thus the result

holds for any graph H with |V (H)| + |E(H)| < |V | + |E| and any chordal and proper

spanning subgraph Q′ of H, but G has a chordal and proper spanning subgraph Q such

that ε(G, x) ≤ ε(Q, x) holds for some x < 0.

We will establish the following claims. Let u1, u2, . . . , un be a perfect elimination

ordering of Q and Qi = Q[{u1, . . . , ui}] for all i = 1, 2, . . . , n. So ui is a simplicial vertex

of Qi for all i = 1, 2, . . . , n.

Claim 1: un is not a simplicial vertex of G.

Note that Q − un is chordal and a spanning subgraph of G − un. By the assumption

on the minimality of |V |+ |E|, ε(G− un, x) ≥ ε(Q− un, x) holds for all x < 0, where the

inequality is strict whenever Q− un 6∼= G− un.

Clearly dG(un) ≥ dQ(un). As Q is a proper subgraph of G, dG(un) > dQ(un) in the

case that G− un ∼= Q− un. If un is also a simplicial vertex of G, then by Proposition 2,

ε(G, x) =
1

x− dG(un)
+ ε(G− un, x), ε(Q, x) =

1

x− dQ(un)
+ ε(Q− un, x), (13)

implying that ε(G, x) > ε(Q, x) holds for all x < 0, a contradiction. Hence Claim 1 holds.

Claim 2: dG(un) > dQ(un).

Clearly dG(un) ≥ dQ(un). Since un is a simplicial vertex of Q and Q is a subgraph

of G, dG(un) = dQ(un) implies that un is a simplicial vertex of G, contradicting Claim 1.

Thus Claim 2 holds.

5
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For any edge e in G, let G − e be the graph obtained from G by deleting e. Let G/e

be the graph obtained from G by contracting e and replacing multiple edges, if any arise,

by single edges.

Claim 3: For any e = unv ∈ E − E(Q), both ε(G − e, x) ≥ ε(Q, x) and ε(G/e, x) ≥

ε(Q− un, x) hold for all x < 0.

As e = unv ∈ E −E(Q), Q is a spanning subgraph of G− e and Q− un is a spanning

subgraph of G/e. As both Q and Q−un are chordal, by the assumption on the minimality

of |V |+ |E|, the theorem holds for both G− e and G/e. Thus this claim holds.

Claim 4: ε(G, x) > ε(Q, x) holds for all x < 0.

By Claim 2, there exists e = unv ∈ E − E(Q). By Claim 3, ε(G− e, x) ≥ ε(Q, x) and

ε(G/e, x) ≥ ε(Q− un, x) hold for all x < 0. By (8) and (12),

(ε(G− e, x)− ε(Q, x))× (−1)nP (G− e, x)

= (−1)nP ′(G− e, x) + (−1)n+1P (G− e, x)

n∑
i=1

1

x− dQi(ui)
. (14)

As (−1)nP (G− e, x) > 0 and ε(G− e, x) ≥ ε(Q, x) for all x < 0, the left-hand side of (14)

is non-negative for x < 0, implying that the right-hand side of (14) is also non-negative

for x < 0, i.e.,

(−1)nP ′(G− e, x) + (−1)n+1P (G− e, x)
n∑
i=1

1

x− dQi(ui)
≥ 0, ∀x < 0. (15)

As u1, . . . , un−1 is a perfect elimination ordering of Q − un and ε(G/e, x) ≥ ε(Q − un, x)

holds for all x < 0, similarly we have:

(−1)n−1P ′(G/e, x) + (−1)nP (G/e, x)
n−1∑
i=1

1

x− dQi(ui)
≥ 0, ∀x < 0. (16)

As (−1)n−1P (G/e, x) > 0 holds for all x < 0, (16) implies that

(−1)n−1P ′(G/e, x) + (−1)nP (G/e, x)
n∑
i=1

1

x− dQi(ui)

≥ (−1)nP (G/e, x)

x− dQn(un)
> 0, ∀x < 0. (17)

By the deletion-contraction formula for chromatic polynomials,

P (G, x) = P (G− e, x)− P (G/e, x), P ′(G, x) = P ′(G− e, x)− P ′(G/e, x). (18)

Then (15), (17) and (18) imply that

(−1)nP ′(G, x) + (−1)n+1P (G, x)
n∑
i=1

1

x− dQi(ui)
> 0, ∀x < 0. (19)

6
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By (8) and (12), inequality (19) implies that

(ε(G, x)− ε(Q, x)) (−1)nP (G, x) > 0, ∀x < 0. (20)

Since (−1)nP (G, x) > 0 holds for all x < 0, inequality (20) implies Claim 4.

As Claim 4 contradicts the assumption of G, there are no counter-examples to this

result and the theorem is proved.

3 An approach for proving Theorem 4

In this section, we will mainly show that, in order to prove Theorem 4, it suffices to prove

Theorem 3. By (12), we have

ε(Kn, x) =

n−1∑
i=0

1

x− i
. (21)

Thus,

ε(Kn, x)− ε(G, x) =
(−1)n

P (G, x)

(
(−1)nP (G, x)

n−1∑
i=0

1

x− i
+ (−1)n+1P ′(G, x)

)
. (22)

For any graph G of order n, define

ξ(G, x) = (−1)nP (G, x)
n−1∑
i=0

1

x− i
+ (−1)n+1P ′(G, x). (23)

Note that ξ(G, x) ≡ 0 if G is a complete graph. For any non-complete graph G and any

x < 0, we have (−1)nP (G, x) > 0 and so (22) implies that ε(Kn, x) − ε(G, x) > 0 if and

only if ξ(G, x) > 0.

Proposition 3. Theorem 4 holds if and only if ξ(G, x) > 0 holds for every non-complete

graph G and all x < 0.

It can be easily verified that ξ(G, x) > 0 holds for all non-complete graphs G of order

at most 3 and all x < 0. For the general case, we will prove it by induction. In the rest

of this section, we will find a relation between ξ(G, x) and ξ(G− u, x) for a vertex u in G

in two cases. Lemma 1 is for the case when u is a simplicial vertex and Lemma 3 when

d(u) ≥ 1. We then explain why Theorem 3 implies ξ(G, x) > 0 for all non-complete graphs

G and all x < 0.

Lemma 1. Let G be a graph of order n. If u is a simplicial vertex of G with d(u) = d,

then

ξ(G, x) = (d− x)ξ(G− u, x) +
(−1)n−1(n− 1− d)P (G− u, x)

n− 1− x
. (24)

7
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Proof. As u is a simplicial vertex of G with d(u) = d, P (G, x) = (x − d)P (G − u, x) by

(10). Thus P ′(G, x) = P (G− u, x) + (x− d)P ′(G− u, x). By (23),

ξ(G, x) = (−1)n(x− d)P (G− u, x)
n−1∑
i=0

1

x− i
+ (−1)n+1(P (G− u, x) + (x− d)P ′(G− u, x))

= (d− x)ξ(G− u, x) +
(−1)n(x− d)P (G− u, x)

x− n+ 1
+ (−1)n+1P (G− u, x)

= (d− x)ξ(G− u, x) +
(−1)n−1(n− 1− d)P (G− u, x)

n− 1− x
. (25)

Note that d ≤ n − 1 and (−1)n−1P (G − u, x) > 0 holds for all x < 0, implying that

the second term in the right-hand side of (24) is non-negative. Thus, if u is a simplicial

vertex of G and x < 0, by Lemma 1, ξ(G− u, x) > 0 implies that ξ(G, x) > 0.

Now consider the case that u is a vertex in G with d(u) = d ≥ 1. Assume that

N(u) = {u1, u2, . . . , ud}. For any i = 1, 2, . . . , d−1, let Gi denote the graph obtained from

G− u by adding edges joining ui to uj whenever uiuj /∈ E(G) for all j with i+ 1 ≤ j ≤ d.

Thus, ui is adjacent to uj in Gi for all j with i + 1 ≤ j ≤ d. In the case that u is a

simplicial vertex of G, Gi ∼= G − u for all i = 1, 2, · · · , d − 1. By applying the deletion-

contraction formula for chromatic polynomials (see [5, 13]), P (G, x) can be expressed in

terms of P (G− u, x) and P (Gi, x) for i = 1, 2, · · · , d− 1.

Lemma 2. Let u be a vertex in G with d(x) = d ≥ 1 and for i = 1, 2, · · · , d− 1, let Gi be

the graph defined above. Then,

P (G, x) = (x− 1)P (G− u, x)−
d−1∑
i=1

P (Gi, x). (26)

Proof. For 1 ≤ i ≤ d, let Ei denote the set of edges uuj in G for j = 1, 2, · · · , i − 1. So

|Ei| = i− 1 and E1 = ∅. For any i with 1 ≤ i ≤ d− 1, applying the deletion-contraction

formula for chromatic polynomials to edge uui in G− Ei, the graph obtained from G by

removing all edges in Ei, we have

P (G− Ei, x) = P (G− Ei+1, x)− P ((G− Ei)/uui, x) = P (G− Ei+1, x)− P (Gi, x),

(27)

where the last equality follows from the fact that (G − Ei)/uui ∼= Gi by the assumption

of Gi. Thus, by (27),

P (G, x) = P (G− E1, x) = P (G− Ed, x)−
d−1∑
i=1

P (Gi, x). (28)

As u is of degree 1 in G−Ed, P (G−Ed, x) = (x−1)P (G−u, x). Hence (26) follows.

8
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Lemma 3. Let G be a graph of order n and let u be a vertex of G with d(u) = d ≥ 1.

Then

ξ(G, x) = (1− x)ξ(G− u, x) +
d−1∑
i=1

ξ(Gi, x) +
(−1)n [(x− n+ 1)P (G− u, x)− P (G, x)]

n− x− 1
,

(29)

where G1, . . . , Gd−1 are graphs defined above.

Proof. By (26), we have

P ′(G, x) = P (G− u, x) + (x− 1)P ′(G− u, x)−
d−1∑
i=1

P ′(Gi, x). (30)

Thus

ξ(G, x) = (−1)nP (G, x)
n−1∑
j=0

1

x− j
+ (−1)n+1P ′(G, x)

= (−1)n

[
(x− 1)P (G− u, x)−

d−1∑
i=1

P (Gi, x)

]
n−1∑
j=0

1

x− j

+(−1)n+1

[
P (G− u, x) + (x− 1)P ′(G− u, x)−

d−1∑
i=1

P ′(Gi, x)

]

= (1− x)

(−1)n−1P (G− u, x)
n−2∑
j=0

1

x− j
+ (−1)nP ′(G− u, x)


+
d−1∑
i=1

(−1)n−1P (Gi, x)
n−2∑
j=0

1

x− j
+ (−1)nP ′(Gi, x)

+ (−1)n+1P (G− u, x)

+(−1)n

[
(x− 1)P (G− u, x)

x− (n− 1)
− 1

x− (n− 1)

d−1∑
i=1

P (Gi, x)

]

= (1− x)ξ(G− u, x) +

d−1∑
i=1

ξ(Gi, x)

+
(−1)n [(x− n+ 1)P (G− u, x)− P (G, x)]

n− x− 1
, (31)

where the last expression follows from (26) and the definitions of ξ(G−u, x) and ξ(Gi, x).

The result then follows.

It is known that ξ(G, x) > 0 holds for all non-complete graphs G of order at most 3

and all x < 0. For any non-complete graph G of order n ≥ 4, by Lemma 1, ξ(G−u, x) > 0

implies ξ(G, x) > 0 for each simplicial vertex u in G and all x < 0; by Lemma 3, for any
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x < 0, ξ(G − u, x) > 0 implies ξ(G, x) > 0 whenever u is an non-isolated vertex in G

satisfying the following inequality:

(−1)n((x− n+ 1)P (G− u, x)− P (G, x)) > 0. (32)

Note that the left-hand side of (32) vanishes when G is Kn. Also notice that there exist

non-complete graph G and some vertex u in G such that inequality (32) does not hold for

some x < 0. For example, if G is the complete bipartite graph K2,3 and u is a vertex of

degree 3 in G, then (32) fails for all real x with −2.3 < x < 0. However, to prove that for

any x < 0, there exists some vertex u in G such that inequality (32) holds, it suffices to

prove the following inequality (i.e., Theorem 3):

(−1)n(x− n+ 1)
∑
u∈V

P (G− u, x) + (−1)n+1nP (G, x) > 0 (33)

for any non-complete graph G = (V,E) of order n and all x < 0.

By Proposition 3 and inequality (32), to prove Theorem 4, we can now just focus on

proving inequality (33) (i.e., Theorem 3). The proof of Theorem 3 will be given in Section 5

based on the interpretations for the coefficients of chromatic polynomials introduced in

Section 4.

4 Combinatorial interpretations for coefficients of P (G, x)

Let G = (V,E) be any graph. In this section, we will introduce Greene & Zaslavsky’s

combinatorial interpretation in [8] for the coefficients of P (G, x) in terms of acyclic ori-

entations. The result will be applied in the next section to prove Theorem 3.

An orientation D of G is called acyclic if D does not contain any directed cycle.

Let α(G) be the number of acyclic orientations of a graph G. In [18], Stanley gave a

nice combinatorial interpretation of (−1)nP (G,−k) for any positive integer k in terms of

acyclic orientations of G. In particular, he proved:

Theorem 5 ( [18]). For any graph G of order n, (−1)nP (G,−1) = α(G), i.e.,

n∑
i=1

ai(G) = α(G). (34)

In a digraph D, any vertex of D with in-degree (resp. out-degree) zero is called a

source (resp. sink) of D. It is well known that any acyclic digraph has at least one source

and at least one sink. If v is an isolated vertex of G, then v is a source and also a sink in

any orientation of G.

10
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For any v ∈ V , let α(G, v) be the number of acyclic orientations of G with v as its

unique source. Clearly α(G, v) = 0 if and only if G is not connected. In 1983, Greene and

Zaslavsky [8] showed that a1(G) = α(G, v).

Theorem 6 ( [8]). For any graph G = (V,E), a1(G) = α(G, v) holds for every v ∈ V .

This theorem was proved originally by using the theory of hyperplane arrangements.

See [7] for three other nice proofs.

By Whitney’s Broken-cycle Theorem (i.e., Theorem 1), ai(G) equals the number of

spanning subgraphs of G with i components and n− i edges, containing no broken cycles

of G. In particular, a1(G) is the number of spanning trees of G containing no broken

cycles of G. Now we have two different combinatorial interpretations for a1. For any

ai(G), 2 ≤ i ≤ n, its combinatorial interpretation can be obtained by applying these two

different combinatorial interpretations for a1.

Let Pi(V ) be the set of partitions {V1, V2, . . . , Vi} of V such that G[Vj ] is connected

for all j = 1, 2, . . . , i and let βi(G) be the number of ordered pairs (Pi, F ), where

(a) Pi = {V1, V2, . . . , Vi} ∈ Pi(V );

(b) F is a spanning forest of G with exactly i components T1, T2, . . . , Ti, where each Tj

is a spanning tree of G[Vj ] containing no broken cycles of G.

For any subgraph H of G, let τ̃(H) be the number of spanning trees of H containing

no broken cycles of G. By Theorem 1, τ̃(H) = a1(H) holds and the next result follows.

Theorem 7. For any graph G and any 1 ≤ i ≤ n,

ai(G) = βi(G) =
∑

{V1,...,Vi}∈Pi(V )

i∏
j=1

τ̃(G[Vj ]). (35)

Now let V = {1, 2, . . . , n}. For any i : 1 ≤ i ≤ n and any vertex v ∈ V , let OP i,v(V )

be the family of ordered partitions (V1, V2, . . . , Vi) of V such that

(a) {V1, V2, . . . , Vi} ∈ Pi(V ), where v ∈ V1;

(b) for j = 2, . . . , i, the minimum number in the set
⋃
j≤s≤i Vs is within Vj .

Clearly, for any v ∈ V and any {V1, V2, . . . , Vi} ∈ Pi(V ), there is exactly one permutation

(π1, π2, . . . , πi) of 1, 2, . . . , i such that (Vπ1 , Vπ2 , . . . , Vπi) ∈ OP i,v(V ).

By Theorem 6, τ̃(G[Vj ]) = α(G[Vj ], u) holds for any vertex u in G[Vj ] and Theorem 7

is equivalent to a result in [8] which we illustrate differently below.
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Theorem 8 ( [8], Theorem 7.4). For any v ∈ V and any 1 ≤ i ≤ n,

ai(G) =
∑

(V1,...,Vi)∈OPi,v(V )

α(G[V1], v)

i∏
j=2

α(G[Vj ],mj), (36)

where mj is the minimum number in Vj for j = 2, . . . , i.

Note that the theorem above indicates that the right hand side of (36) is independent

of the choice of v. Thus, for any 1 ≤ i ≤ n,

nai(G) =
∑
v∈V

∑
(V1,...,Vi)∈OPi,v(V )

α(G[V1], v)
i∏

j=2

α(G[Vj ],mj). (37)

Let P (i)(G, x) be the i-th derivative of P (G, x). Very recently, Bernardi and Nadeau [1]

gave an interpretation of P (i)(G,−j) for any nonnegative integers i and j in terms of acyclic

orientations. When i = 0, their result is exactly Theorem 5 due to Stanley [18]; and when

j = 0, it is Theorem 8 due to Greene & Zaslavsky [8].

5 Proofs of Theorems 3 and 4

By the explanation in Section 3, to prove Theorem 4, it suffices to prove Theorem 3.

In this section, we will prove Theorem 3 by showing that the coefficient of xi in the

expansion of the left-hand side of (9) in Theorem 3 is of the form (−1)idi with di ≥ 0 for

all i = 1, 2, . . . , n. Furthermore, di > 0 holds for some i when G is not complete.

We first establish the following result.

Lemma 4. Let G = (V,E) be a non-complete graph of order n ≥ 3 and component number

c.

(i). If c = 1 and G is not the n-cycle Cn, then there exist non-adjacent vertices u1, u2 of

G such that G− {u1, u2} is connected.

(ii). If 2 ≤ c ≤ n − 1, then for any integer i with c ≤ i ≤ n − 1, there exists a partition

V1, V2, . . . , Vi of V such that G[Vj ] is connected for all j = 2, . . . , i and G[V1] has

exactly two components one of which is an isolated vertex.

Proof. (i). As c = 1, G is connected. As G is non-complete, the result is trivial when G

is 3-connected.

If G is not 2-connected, choose vertices u1 and u2 from distinct blocks B1 and B2 of G

such that both u1 and u2 are not cut-vertices of G. Then u1u2 /∈ E(G) and G− {u1, u2}

is connected.
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Now consider the case that G is 2-connected but not 3-connected. Since G is not Cn,

there exists a vertex w such that d(w) ≥ 3. If d(w) = n−1, then G−{u1, u2} is connected

for any two non-adjacent vertices u1 and u2 in G. If G−w is 2-connected and d(w) ≤ n−2,

then G − {w, u} is connected for any u ∈ V −NG(w). If G − w is not 2-connected, then

G − w contains two non-adjacent vertices u1, u2 such that G − {w, u1, u2} is connected,

implying that G− {u1, u2} is connected as d(w) ≥ 3.

(ii). Let G1, G2, . . . , Gc be the components of G with |V (G1)| ≥ |V (Gj)| for all

j = 1, 2, . . . , c. As c ≤ n − 1, |V (G1)| ≥ 2. Choose u ∈ V (G1) such that G1 − u is

connected. Then V (G2)∪ {u}, V (G1)− {u}, V (G3), . . . , V (Gc) is a partition of V satisfy-

ing the condition in (ii) for i = c.

Assume that (ii) holds for i = k, where c ≤ k < n− 1, and V1, V2, . . . , Vk is a partition

of V satisfying the condition in (ii). Then G[V1] has an isolated vertex u and G[V ′1 ] is

connected, where V ′1 = V1 − {u}. Since k ≤ n − 2, either |V ′1 | ≥ 2 or |Vj | ≥ 2 for some

j ≥ 2.

If |V ′1 | ≥ 2, then V ′1 has a partition V ′1,1, V
′
1,2 such that both G[V ′1,1] and G[V ′1,2] are

connected, implying that V ′1,1 ∪ {u}, V ′1,2, V2, V3, . . . , Vk is a partition of V satisfying the

condition in (ii) for i = k + 1.

Similarly, if |Vj | ≥ 2 for some j ≥ 2 (say j = 2), then V2 has a partition V2,1, V2,2

such that both G[V2,1] and G[V2,2] are connected, implying that V1, V2,1, V2,2, V3, . . . , Vk is

a partition of V satisfying the condition in (ii) for i = k + 1.

For any graph G = (V,E) of order n, write

(−1)n

(x− n+ 1)
∑

u∈V (G)

P (G− u, x)− nP (G, x)

 =
n∑
i=1

(−1)idix
i. (38)

By comparing coefficients, it can be shown that

di =
∑

u∈V (G)

[ai−1(G− u) + (n− 1)ai(G− u)]− nai(G), ∀i = 1, 2, . . . , n. (39)

It is obvious that when G is the complete graph Kn, the left-hand side of (38) vanishes

and thus di = 0 for all i = 1, 2, . . . , n. Now we consider the case that G is not complete.

Proposition 4. Let G = (V,E) be a non-complete graph of order n and component

number c. Then, for any i = 1, 2, . . . , n, di ≥ 0 and equality holds if and only if one of the

following cases happens:

(i). i = n;
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(ii). 1 ≤ i ≤ c− 2;

(iii). i = c− 1 and G does not have isolated vertices;

(iv). i = c = 1 and G is Cn.

Proof. We first show that di = 0 in any one of the four cases above.

By (39), dn =
∑

u∈V [1 + (n− 1) · 0]− n · 1 = 0.

It is known that for 1 ≤ i ≤ n, ai(G) = 0 if and only if i < c (see [5,13,14]). Similarly,

ai(G− u) = 0 for all i with 1 ≤ i < c− 1 and all u ∈ V , and ac−1(G− u) = 0 if u is not

an isolated vertex of G. By (39), di = 0 for all i with 1 ≤ i ≤ c− 2, and dc−1 = 0 when G

does not have isolated vertices.

If G is Cn, then a1(G) = n − 1, a0(G − u) = 0 and a1(G − u) = 1 for each u ∈ V ,

implying that d1 = 0 by (39).

In the following, we will show that di > 0 when i does not belong to any one of the

four cases.

If G has isolated vertices, then ac−1(G− u) > 0 for any isolated vertex u of G and∑
u∈V

ac−1(G− u) =
∑
u∈V

u isolated

ac−1(G− u) > 0. (40)

As ac−1(G) = 0, by (39), we have dc−1 > 0 in this case. Now it remains to show that

di > 0 holds for all i with c ≤ i ≤ n− 1, except when i = c = 1 and G is Cn.

For any v ∈ V , let OP ′i,v(V ) be the set of ordered partitions (V1, . . . , Vi) ∈ OP i,v(V )

with V1 = {v}. As α(G[V1], v) = 1, for any i with c ≤ i ≤ n, by Theorem 8,

ai−1(G− v) =
∑

(V1,...,Vi)∈OP ′i,v(V )

α(G[V1], v)
i∏

j=2

α(G[Vj ],mj), (41)

where mj is the minimum number in Vj for all j = 2, . . . , i.

Let s and v be distinct members in V . For any V1 ⊆ V − {s} with v ∈ V1, let

α(G[V1∪{s}], v, s) be the number of those acyclic orientations of G[V1∪{s}] with v as the

unique source and s as one sink. Then α(G[V1 ∪ {s}], v, s) ≤ α(G[V1], v) holds, where the

inequality is strict if and only if G[V1] is connected but G[V1 ∪ {s}] is not. Observe that

ai(G− s) =
∑

(V1,...,Vi)∈OPi,v(V−{s})

α(G[V1], v)

i∏
j=2

α(G[Vj ],mj)

≥
∑

(V1,...,Vi)∈OPi,v(V−{s})

α(G[V1 ∪ {s}], v, s)
i∏

j=2

α(G[Vj ],mj) (42)

=
∑

(V ′1 ,...,V
′
i )∈OPi,v,s(V )

α(G[V ′1 ], v, s)

i∏
j=2

α(G[V ′j ],mj), (43)
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where OP i,v,s(V ) is the set of ordered partitions (V ′1 , . . . , V
′
i ) ∈ OP i,v(V ) with s, v ∈ V ′1 .

By the explanation above, inequality (42) is strict whenever V − {s} has a partition

V1, V2, . . . , Vi with v ∈ V1 such that each G[Vj ] is connected for all j = 1, 2, . . . , i but

G[V1 ∪ {s}] is not connected.

By (37), we have

nai(G) =
∑
v∈V

∑
(V1,...,Vi)∈OPi,v(V )

α(G[V1], v)
i∏

j=2

α(G[Vj ],mj)

=
∑
v∈V

∑
(V1,...,Vi)∈OP ′i,v(V )

α(G[V1], v)

i∏
j=2

α(G[Vj ],mj)

+
∑
v∈V

∑
(V1,...,Vi)∈OPi,v(V )−OP ′i,v(V )

α(G[V1], v)
i∏

j=2

α(G[Vj ],mj). (44)

By (41),

∑
v∈V

∑
(V1,...,Vi)∈OP ′i,v(V )

α(G[V1], v)
i∏

j=2

α(G[Vj ],mj) =
∑
v∈V

ai−1(G− v), (45)

and by (43),

∑
v∈V

∑
(V1,...,Vi)∈OPi,v(V )−OP ′i,v(V )

α(G[V1], v)
i∏

j=2

α(G[Vj ],mj)

≤
∑
v∈V

∑
s∈V−{v}

∑
(V1,...,Vi)∈OPi,v,s(V )

α(G[V1], v, s)
i∏

j=2

α(G[Vj ],mj) (46)

≤
∑
v∈V

∑
s∈V−{v}

ai(G− s) (47)

= (n− 1)
∑
v∈V

ai(G− v), (48)

where inequality (46) is strict if there exists (V1, . . . , Vi) ∈ OP i,v(V ) for some v ∈ V such

that G[Vj ] is connected for all j = 1, . . . , i and G[V1] has acyclic orientations with v as the

unique source but with at least two sinks, and by (42) and (43), inequality (47) is strict if

V can be partitioned into V1, . . . , Vi such that G[Vj ] is connected for all j = 2, . . . , i but

G[V1] has exactly two components, one of which is an isolated vertex in G[V1].

As G is not complete, by Lemma 4 and the above explanation, the inequality of (48)

is strict for all i with c ≤ i ≤ n − 1, except when i = c = 1 and G is Cn. Then, by (44),

(45) and (48), we conclude that

di =
∑
v∈V

[ai−1(G− u) + (n− 1)ai(G− u)]− nai(G) > 0, ∀c ≤ i ≤ n− 1, (49)

except that i = c = 1 and G is Cn. Hence the proof is complete.
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Now everything is ready for proving Theorems 3 and 4.

Proof of Theorem 3: Let G be a non-complete graph of order n. Recall (38) that

(−1)n

(x− n+ 1)
∑

u∈V (G)

P (G− u, x)− nP (G, x)

 =
n∑
i=1

(−1)idix
i. (50)

By Proposition 4, we know that di ≥ 0 for all i with 1 ≤ i ≤ n and dn−1 > 0. Thus∑n
i=1(−1)idix

i > 0 holds for all x < 0, which completes the proof of Theorem 3.

Proposition 5. For any non-complete graph G, ξ(G, x) > 0 holds for all x < 0.

Proof. We will prove this result by induction on the order n of G. When n = 2, the empty

graph N2 of order 2 is the only non-complete graph of order 2. As P (N2, x) = x2, by (23),

we have

ξ(N2, x) = (−1)2x2
(

1

x
+

1

x− 1

)
+ (−1)32x =

x

x− 1
> 0 (51)

for all x < 0.

Assume that this result holds for any non-complete graph G of order less than n, where

n ≥ 3. Now let G be any non-complete graph of order n.

Case 1: G contains an isolated vertex u.

By the inductive assumption, ξ(G− u, x) ≥ 0 holds for all x < 0, where equality holds

when G− u is a complete graph. By Lemma 1, ξ(G, x) > 0 holds for all x < 0.

Case 2: G has no isolated vertex.

By Theorem 3, (9) holds for all x < 0. Thus, for any x < 0, there exists some u ∈ V (G)

such that (−1)n(x− n+ 1)P (G− u, x) + (−1)n+1P (G, x) > 0 holds. Then, by Lemma 3

and by the inductive assumption, ξ(G, x) > 0 holds for any x < 0.

Hence the result holds.

Proof of Theorem 4: It follows directly from Propositions 3 and 5.

6 Remarks and problems

First we give some remarks here.

(i). Theorem 4 implies that for any non-complete graph G of order n, P (G,x)
P (Kn,x)

is strictly

decreasing when x < 0.
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(ii). Let G be a non-complete graph of order n and P (G, x) =
n∑
i=1

(−1)n−iaix
i. Then

ε(G) < ε(Kn) implies that

a1 + 2a2 + · · ·+ nan
a1 + a2 + · · ·+ an

> 1 +
1

2
+ · · ·+ 1

n
. (52)

(iii). When x = −1, Theorem 3 implies that for any graph G of order n,

(−1)n−1
∑
u∈V

P (G− u,−1) ≥ (−1)nP (G,−1), (53)

where the inequality holds if and only if G is complete. By Stanley’s interpretation

for (−1)nP (G,−1) in [18], the inequality above implies that for any graph G =

(V,E), the number of acyclic orientations of G is at most the total number of acyclic

orientations of G − u for all u ∈ V , where the equality holds if and only if G is

complete.

Now we raise some problems for further study.

It is clear that for any graph G of order n,

d

dx
(ln[(−1)nP (G, x)]) =

P ′(G, x)

P (G, x)
< 0 (54)

holds for all x < 0. We surmise that this property holds for higher derivatives of the

function ln[(−1)nP (G, x)] in the interval (−∞, 0).

Conjecture 2. Let G be a graph of order n. Then dk

dxk
(ln[(−1)nP (G, x)]) < 0 holds for

all k ≥ 2 and x ∈ (−∞, 0).

Observe that ε(G, x) = d
dx (ln[(−1)nP (G, x)]). We believe that Theorems 2 and 4 can

be extended to higher derivatives of the function ln[(−1)nP (G, x)].

Conjecture 3. Let G be any non-complete graph of order n and Q be any chordal and

proper spanning subgraph Q of G. Then

dk

dxk
(ln[(−1)nP (Q, x)]) <

dk

dxk
(ln[(−1)nP (G, x)]) <

dk

dxk
(ln[(−1)nP (Kn, x)]) (55)

holds for any integer k ≥ 2 and all x < 0.

It is not difficult to show that Conjecture 2 holds for G ∼= Kn. Thus the second

inequality of Conjecture 3 implies Conjecture 2.

It is natural to extend the second part of Conjecture 1 (i.e., ε(G) < ε(Kn) for any

non-complete graph G of order n) to the inequality ε(G) ≤ ε(G′) for any graph G′ which

contains G as a subgraph. However, this inequality is not always true. Let Gn denote
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the graph obtained from the complete bipartite graph K2,n by adding a new edge joining

the two vertices in the partite set of size 2. Lundow and Markström [11] stated that

ε(K2,n) > ε(Gn) holds for all n ≥ 3. In spite of this, we believe that for any non-complete

graph G, we can add a new edge to G to obtain a graph G′ with the property that

ε(G) < ε(G′), as stated below.

Conjecture 4. For any non-complete graph G, there exist non-adjacent vertices u and v

in G such that ε(G) < ε(G+ uv).

Obviously, Conjecture 4 implies ε(G) < ε(Kn) for any non-complete graph G of order

n (i.e., Theorem 4). Conjecture 4 is similar to but may be not equivalent to the following

conjecture due to Lundow and Markström [11].

Conjecture 5 ( [11]). For any 2-connected graph G, there exists an edge e in G such

that ε(G− e) < ε(G).
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