Title	Existence and uniqueness of solutions for three-point boundary value
	problems for second order difference equations
Author(s)	Patricia J. Y. Wong and Ravi P. Agarwal
Source	Proceedings of Dynamic Systems and Applications (pp 553-560). Atlanta,
	USA: Dynamic Publishers
Publisher	Dynamic Publishers

Copyright © 1995 Dynamic Publishers
This document may be used for private study or research purpose only. This document or any part of it may not be duplicated and/or distributed without permission of the copyright owner.

The Singapore Copyright Act applies to the use of this document.
Citation: Wong, P. J. Y., \& Agarwal, R. P. (1995). Existence and uniqueness of solutions for three-point boundary value problems for second order difference equations. In G. S. Ladde (Ed.), Proceedings of Dynamic Systems and Applications (pp 553-560). Atlanta, USA: Dynamic Publishers.

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THREE-POINT BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENCE EQUATIONS

Patricia Wong J. Y.
\&
Ravi P. Agarwal

Paper presented at the 2nd International Conference on
Dynamic Systems and Application, held in Atlanta, USA on 24-27 May 1995; \&
also at the 1st International Conference on Neural Parallel and Scientific Computations, held on 28-31 May 1995

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THREE-POINT BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENCE EQUATIONS

PATRICIA J. Y. WONG ${ }^{1}$ and RAVI P. AGARWAL ${ }^{2}$
${ }^{1}$ Division of Mathematics, Nanyang Technological University, Singapore 1025
${ }^{2}$ Department of Mathematics, National University of Singapore, Singapore 0511

ABSTRACT: In this paper we shall offer sufficient conditions for the existence and uniqueness of solutions for the three-point boundary value problem

$$
\begin{gathered}
\Delta^{2} y(n)=f(n, y(n), \Delta y(n))+e(n), n=0,1, \cdots, T-1 \\
y(0)=0, \quad y(T+1)=\alpha y(\eta)+b
\end{gathered}
$$

where $1 \leq \eta \leq T-1$ is a fixed integer and α, b are given finite constants.
AMS (MOS) subject classification. 39A10, 39A12

1. INTRODUCTION

Let T be a fixed positive integer. We shall denote $[0, T]=\{0,1, \cdots, T\}$. Also, the symbols Δ^{i} and ∇^{i} denote respectively the i th forward and backward difference operators with stepsize 1.

In this paper we shall consider the three-point boundary value problem

$$
\begin{gather*}
\Delta^{2} y(n)=f(n, y(n), \Delta y(n))+e(n), n \in[0, T-1] \\
y(0)=0, \quad y(T+1)=\alpha y(\eta)+b \tag{1.1}
\end{gather*}
$$

where $\eta \in[1, T-1]$ is a fixed integer, α, b are given finite constants and $e(n)$ is defined for $n \in[0, T+1]$. Throughout the paper the function $f:[0, T+1] \times \Re^{2} \rightarrow \Re$ is assumed to be continuous.

We remark that the continuous analog of a particular case of (1.1)

$$
\begin{gather*}
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)+e(t), 0<t<1 \\
x(0)=0, \quad x(1)=\alpha x(\eta) \tag{1.2}
\end{gather*}
$$

where $0<\eta<1$ is given, has been studied by Gupta [2,3] and Marano [6] when $\alpha=1$ as well as by Gupta et. al. $[4,5]$ for a general α.

2. EXISTENCE RESULTS

Lemma 2.1. [1, p.24] Suppose that the function $u(n)$ is defined for $n \in[a, b]$. Then, there exists a $c \in[a+1, b-1]$ such that

$$
\Delta u(c) \leq(\geq)^{u(b)} \frac{-u}{b}=\frac{u}{a}(a) \leq(\geq) \nabla u(c)
$$

Lemma 2.2. [1, p.678] For any function $u(n), n \in[0, M]$ satisfying $u(0)=0$ the following inequality hold

$$
4 \sin ^{2} 2\left(2 \frac{\pi}{M}+1\right) \sum_{n=1}^{M} u^{2}(n) \leq \sum_{n=0}^{M-1}(\Delta u(n))^{2}
$$

Theorem 2.1. Suppose that there exist functions $p(n), q(n)$ and $r(n)$ defined on $[0, T+1]$ such that for $n \in[0, T+1], x_{1}, x_{2} \in \Re$,

$$
\begin{equation*}
\left|f\left(n, x_{1}, x_{2}\right)\right| \leq p(n)\left|x_{1}\right|+q(n)\left|x_{2}\right|+r(n) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(T+1-\eta)|\alpha|>(T+1)|\alpha-1| . \tag{2.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\gamma=\frac{(T+1-\eta)|\alpha|}{(T+1-\eta)|\alpha|-(T+1)|\alpha-1|} \tag{2.3}
\end{equation*}
$$

If

$$
\begin{equation*}
\left[(T+1)\|p\|_{1}+\|q\|_{1}\right] \gamma<1 \tag{2.4}
\end{equation*}
$$

then (1.1) has at least one solution $y(n)$ defined on $[0, T+1]$.
Proof. Let $S=\{y(n): y(n)$ is defined for $n \in[0, T+1]\}$ and $S_{1}=\{y(n) \in S$: $y(0)=0, y(T+1)=\alpha y(\eta)+b\}$. We define the mappings $L: S_{1} \rightarrow S, N: S \rightarrow S$ and $K: S \rightarrow S$ respectively by

$$
L y(n)=\Delta^{2} y(n), \quad N y(n)=f(n, y(n), \Delta y(n))
$$

and

$$
K y(n)=\sum_{s=0}^{n-1}(n-1-s) y(s)+\frac{\alpha n}{\theta} \sum_{s=0}^{n-1}(\eta-1-s) y(s)-\frac{n}{\theta} \sum_{s=0}^{T}(T-s) y(s)+\frac{b n}{\theta}
$$

where $\theta=T+1-\alpha \eta$. It is clear that $\theta \neq 0$ because if $\theta=0$, i.e., $\alpha=(T+1) / \eta$, then (2.2) is violated.

We note that N is a bounded mapping and L is one-to-one. Moreover, it follows from Arzela-Ascoli theorem that $K N$ maps a bounded subset of S into a relatively compact subset of S. Thus, $K N: S \rightarrow S$ is a compact mapping. Further, it can be easily verified that for $y \in S, K y \in S_{1}$ and $L K y=y$; and for $y \in S_{1}, K L y=y$.

Now, equation (1.1) can be written in opertor form as $L y=N y+e$ which is equivalent to

$$
\begin{equation*}
y=K N y+K e . \tag{2.5}
\end{equation*}
$$

Hence, to prove existence of solutions for (1.1) is the same as showing existence of solutions for (2.5). For this, we apply the Leray-Schauder continuation theorem [7] and it suffices to show that the set of solutions of the family of boundary value problems

$$
\begin{gather*}
\Delta^{2} y(n)=\lambda f(n, y(n), \Delta y(n))+\lambda e(n), n \in[0, T-1], 0 \leq \lambda \leq 1 \\
y(0)=0, \quad y(T+1)=\alpha y(\eta)+b \tag{2.6}
\end{gather*}
$$

is a priori bounded by a constant independent of λ.
Let y be a solution of (2.6) for some λ. We have

$$
\begin{equation*}
|y(n)| \leq \sum_{s=0}^{n-1}|\Delta y(s)| \leq n\|\Delta y\|_{\infty} \leq(T+1)\|\Delta y\|_{\infty} \tag{2.7}
\end{equation*}
$$

Next, using Lemma 2.1 we find that there exists a $c \in[\eta+1, T]$ such that

$$
\begin{equation*}
\Delta y(c) \leq(\geq) \frac{y(T+1)-y(\eta)}{T+1-\eta}=\frac{(\alpha-1) y(T+1)+b}{\alpha(T+1-\eta)} \leq(\geq) \nabla y(c) \tag{2.8}
\end{equation*}
$$

Applying (2.8) we get

$$
\begin{equation*}
\Delta y(n)=\sum_{s=c}^{n-1} \Delta^{2} y(s)+\Delta y(c) \leq(\geq) \sum_{s=c}^{n-1} \Delta^{2} y(s)+\frac{(\alpha-1) y(T+1)+b}{\alpha(T+1-\eta)} \equiv A \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\Delta y(n)=\sum_{s=c-1}^{n-1} \Delta^{2} y(s)+\nabla y(c) \geq(\leq) \sum_{s=c-1}^{n-1} \Delta^{2} y(s)+\frac{(\alpha-1) y(T+1)+b}{\alpha(T+1} \frac{1}{\eta}\right) \equiv B \tag{2.10}
\end{equation*}
$$

Coupling (2.9) and (2.10) provides

$$
\begin{equation*}
B \leq(>) \Delta y(n) \leq(>) A \tag{2.11}
\end{equation*}
$$

which implies

$$
\begin{align*}
|\Delta y(n)| & \leq \max \{|A|,|B|\} \\
& \leq\left\|\Delta^{2} y\right\|_{1}+\frac{|\alpha-1|}{|\alpha|(T+1-\eta)}\|y\|_{\infty}+\frac{|b|}{|\alpha|(T+1-\eta)} \tag{2.12}\\
& \leq\left\|\Delta^{2} y\right\|_{1}+\frac{(T+1)|\alpha-1|}{|\alpha|(T+1-\eta)}\|\Delta y\|_{\infty}+\frac{|b|}{|\alpha|(T+1-\eta)} \tag{2.13}
\end{align*}
$$

where we have also used (2.7) in the last inequality. In view of (2.2), it follows from (2.13) that

$$
\begin{equation*}
\|\Delta y\|_{\infty} \leq \gamma\left\|\Delta^{2} y\right\|_{1}+Q \tag{2.14}
\end{equation*}
$$

where γ is defined in (2.3) and

$$
\begin{equation*}
Q=\frac{|b|}{(T+1-\eta)|\alpha|-(T+1)|\alpha-1|} \tag{2.15}
\end{equation*}
$$

Now, from (2.6) and (2.1) we get

$$
\begin{align*}
\left\|\Delta^{2} y\right\|_{1} & \leq\|p y\|_{1}+\|q \Delta y\|_{1}+\|r\|_{1}+\|e\|_{1} \\
& \leq\|p\|_{1}\|y\|_{\infty}+\|q\|_{1}\|\Delta y\|_{\infty}+\|r\|_{1}+\|e\|_{1} \\
& \leq\left[(T+1)\|p\|_{1}+\|q\|_{1}\right]\left[\gamma\left\|\Delta^{2} y\right\|_{1}+Q\right]+\|r\|_{1}+\|e\|_{1} \tag{2.16}
\end{align*}
$$

where we have used (2.7) and (2.14). Since (2.4) holds, it follows from (2.16) that

$$
\left\|\Delta^{2} y\right\|_{1} \leq \frac{\left[(T+1)\|p\|_{1}+\|q\|_{1}\right] Q+\|r\|_{1}+\|e\|_{1}}{1-\left[(T+1)\|p\|_{1}+\|q\|_{1}\right] \gamma} \equiv C .
$$

Therefore, from (2.7) and (2.14) we find

$$
\begin{equation*}
\|y\|_{\infty} \leq(T+1)(\gamma C+Q) \equiv D \tag{2.17}
\end{equation*}
$$

where D is independent of λ. The proof is therefore complete.
Theorem 2.2. Suppose that (2.1) and (2.2) hold. Let

$$
\begin{equation*}
\beta^{-1}=2\left|\sin \frac{\pi}{2[2(T+1)+1]}\right| . \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
\left[\beta \sqrt{T+1}\|p\|_{2}+\|q\|_{1}\right] \gamma<1 \tag{2.19}
\end{equation*}
$$

then (1.1) has at least one solution $y(n)$ defined on $[0, T+1]$.
Proof. Let y be a solution of (2.6) for some λ. As in Theorem 2.1, it suffices to show that y is a priori bounded by a constant independent of λ. Since $y(0)=0$, from Lemma 2.2 we have

$$
\begin{equation*}
\|y\|_{2} \leq \beta\|\Delta y\|_{2} \leq \beta \sqrt{T+1}\|\Delta y\|_{\infty} \tag{2.20}
\end{equation*}
$$

where β is defined in (2.18).
It follows from (2.6), (2.1), Swartz's inequality, (2.20) and (2.14) that

$$
\begin{aligned}
\left\|\Delta^{2} y\right\|_{1} & \leq\|p\|_{2}\|y\|_{2}+\|q\|_{1}\|\Delta y\|_{\infty}+\|r\|_{1}+\|e\|_{1} \\
& \leq\left[\beta \sqrt{T+1}\|p\|_{2}+\|q\|_{1}\right]\|\Delta y\|_{\infty}+\|r\|_{1}+\|e\|_{1} \\
& \leq\left[\beta \sqrt{T+1}\|p\|_{2}+\|q\|_{1}\right]\left[\gamma\left\|\Delta^{2} y\right\|_{1}+Q\right]+\|r\|_{1}+\|e\|_{1}
\end{aligned}
$$

which in view of (2.19) leads to

$$
\left\|\Delta^{2} y\right\|_{1} \leq \frac{\left[\beta \sqrt{T+1}\|p\|_{2}+\|q\|_{1}\right] Q+\|r\|_{1}+\|e\|_{1}}{1-\left[\beta \sqrt{T+1}\|p\|_{2}+\|q\|_{1}\right] \gamma} \equiv C .
$$

Hence, from (2.7) and (2.14) we get (2.17) and this completes the proof.
Theorem 2.3. Suppose that (2.1) and (2.2) hold. If

$$
\begin{equation*}
\left[(T+1)\|p\|_{1}+\sqrt{T+1}\|q\|_{2}\right] \gamma<1 \tag{2.21}
\end{equation*}
$$

then (1.1) has at least one solution $y(n)$ defined on $[0, T+1]$.
Proof. Let y be a solution of (2.6) for some λ. It follows from (2.6), (2.1), Swartz's inequality, (2.7) and (2.14) that

$$
\begin{aligned}
\left\|\Delta^{2} y\right\|_{1} & \leq\|p\|_{1}\|y\|_{\infty}+\|q\|_{2}\|\Delta y\|_{2}+\|r\|_{1}+\|e\|_{1} \\
& \leq\left[(T+1)\|p\|_{1}+\sqrt{T+1}\|q\|_{2}\right]\|\Delta y\|_{\infty}+\|r\|_{1}+\|e\|_{1} \\
& \leq\left[(T+1)\|p\|_{1}+\sqrt{T+1}\|q\|_{2}\right]\left[\gamma\left\|\Delta^{2} y\right\|_{1}+Q\right]+\|r\|_{1}+\|e\|_{1}
\end{aligned}
$$

which in view of (2.21) provides

$$
\left\|\Delta^{2} y\right\|_{1} \leq \frac{\left[(T+1)\|p\|_{1}+\sqrt{T+1}\|q\|_{2}\right] Q+\|r\|_{1}+\|e\|_{1}}{1-\left[(T+1)\|p\|_{1}+\sqrt{T+1}\|q\|_{2}\right] \gamma} \equiv C .
$$

Again, from (2.7) and (2.14) we obtain (2.17) and the proof is complete.
Theorem 2.4. Suppose that (2.1) and (2.2) hold. If

$$
\begin{equation*}
\gamma \sqrt{T+1}\left[\beta\|p\|_{2}+\|q\|_{2}\right]<1 \tag{2.22}
\end{equation*}
$$

then (1.1) has at least one solution $y(n)$ defined on $[0, T+1]$.

Proof. Let y be a solution of (2.6) for some λ. Using Swartz's inequality, (2.20) and (2.14), from (2.6) we find

$$
\begin{aligned}
\left\|\Delta^{2} y\right\|_{1} & \leq\|p\|_{2}\|y\|_{2}+\|q\|_{2}\|\Delta y\|_{2}+\|r\|_{1}+\|e\|_{1} \\
& \leq\left[\beta\|p\|_{2}+\|q\|_{2}\right]\|\Delta y\|_{2}+\|r\|_{1}+\|e\|_{1} \\
& \leq\left[\beta\|p\|_{2}+\|q\|_{2}\right] \sqrt{T+1}\left[\gamma\left\|\Delta^{2} y\right\|_{1}+Q\right]+\|r\|_{1}+\|e\|_{1} .
\end{aligned}
$$

Since (2.22) holds, it follows that

$$
\left\|\Delta^{2} y\right\|_{1} \leq \frac{\left[\beta\|p\|_{2}+\|q\|_{2}\right] Q \sqrt{T+1}+\|r\|_{1}+\|e\|_{1}}{1-\gamma \sqrt{T+1}\left[\beta\|p\|_{2}+\|q\|_{2}\right]} \equiv C .
$$

As before we obtain (2.17) from (2.7) and (2.14) and this completes the proof.
Theorem 2.5. Suppose that (2.1) and (2.2) hold. If

$$
\begin{equation*}
\frac{\gamma(T+1)}{\sqrt{2}}\left[\beta\|p\|_{\infty}+\|q\|_{\infty}\right]<1 \tag{2.23}
\end{equation*}
$$

then (1.1) has at least one solution $y(n)$ defined on $[0, T+1]$.
Proof. Let y be a solution of (2.6) for some λ. As in the proof of Theorem 2.1, we have (2.11) which provides

$$
\begin{equation*}
\|\Delta y\|_{2} \leq \max \left\{\|A\|_{2},\|B\|_{2}\right\} \tag{2.24}
\end{equation*}
$$

To obtain an upper bound for the right side of (2.24), we note that

$$
\begin{align*}
\left|\frac{(\alpha-1) y(T+1)+b}{\alpha(T+1-\eta)}\right| & \leq\left|\frac{\alpha-1}{\alpha(T+1-\eta)}\right| \cdot\left|\sum_{s=0}^{T} \Delta y(s)\right|+\left|\frac{b}{\alpha(T+1-\eta)}\right| \\
& \leq\left|\frac{\alpha-1}{\alpha(T+1-\eta)}\right|\|\Delta y\|_{1}+\left|\frac{b}{\alpha(T+1-\eta)}\right| \\
& \leq \sqrt{T+1}\left|\frac{\alpha-1}{\alpha(T+1-\eta)}\right|\|\Delta y\|_{2}+\left|\frac{b}{\alpha(T+1-\eta)}\right| \tag{2.25}
\end{align*}
$$

Next, using Swartz's inequality we get

$$
\begin{align*}
\left\|\sum_{s=c}^{n-1} \Delta^{2} y(s)\right\|_{2}^{2} & =\sum_{n=0}^{T}\left\{\sum_{s=c}^{n-1} \Delta^{2} y(s)\right\}^{2} \\
& \leq \sum_{n=0}^{T}\left\{\left[\sum_{s=c}^{n-1}\left(\Delta^{2} y(s)\right)^{2}\right]^{1 / 2}\left[\sum_{s=c}^{n-1} 1^{2}\right]^{1 / 2}\right\}^{2} \\
& =\sum_{n=0}^{T}\left\{\sum_{s=c}^{n-1}\left(\Delta^{2} y(s)\right)^{2} \cdot|n-c|\right\} \\
& \leq\left\|\Delta^{2} y\right\|_{2}^{2} \cdot \sum_{n=0}^{T}|n-c| \leq \frac{1}{2}(T+1)^{2}\left\|\Delta^{2} y\right\|_{2}^{2} \tag{2.26}
\end{align*}
$$

Similarly, it can be verified that

$$
\begin{equation*}
\left\|\sum_{s=c-1}^{n-1} \Delta^{2} y(s)\right\|_{2} \leq \frac{T+1}{\sqrt{2}}\left\|\Delta^{2} y\right\|_{2} \tag{2.27}
\end{equation*}
$$

Using (2.25), (2.26), (2.27) and Swartz's inequality, it follows from (2.24) that $\|\Delta y\|_{2} \leq \frac{T+1}{\sqrt{2}}\left\|\Delta^{2} y\right\|_{2}+\left[\sqrt{T+1}\left|\frac{\alpha-1}{\alpha(T+1-\eta)}\right|\|\Delta y\|_{2}+\left|\frac{b}{\alpha(T+1-\eta)}\right|\right] \sqrt{T+1}$ or

$$
\begin{equation*}
\|\Delta y\|_{2} \leq \frac{\gamma(T+1)}{\sqrt{2}}\left\|\Delta^{2} y\right\|_{2}+Q \sqrt{T+1} \tag{2.28}
\end{equation*}
$$

Now, using (2.20) and (2.28) from (2.6) we get

$$
\begin{aligned}
\left\|\Delta^{2} y\right\|_{2} & \leq\|p y\|_{2}+\|q \Delta y\|_{2}+\|r\|_{2}+\|e\|_{2} \\
& \leq\|p\|_{\infty}\|y\|_{2}+\|q\|_{\infty}\|\Delta y\|_{2}+\|r\|_{2}+\|e\|_{2} \\
& \leq\left[\beta\|p\|_{\infty}+\|q\|_{\infty}\right]\|\Delta y\|_{2}+\|r\|_{2}+\|e\|_{2} \\
& \leq\left[\beta\|p\|_{\infty}+\|q\|_{\infty}\right]\left[\frac{\gamma(T+1)}{\sqrt{2}}\left\|\Delta^{2} y\right\|_{2}+Q \sqrt{T+1}\right]+\|r\|_{2}+\|e\|_{2}
\end{aligned}
$$

which in view of (2.23) implies

$$
\left\|\Delta^{2} y\right\|_{2} \leq \frac{\left[\beta\|p\|_{\infty}+\|q\|_{\infty}\right] Q \sqrt{T+1}+\|r\|_{2}+\|e\|_{2}}{1-\frac{\gamma(T+1)}{\sqrt{2}}\left[\beta\|p\|_{\infty}+\|q\|_{\infty}\right]} \equiv C .
$$

Hence, it follows from (2.7), (2.14) and Swartz's inequality that

$$
\begin{aligned}
\|y\|_{\infty} \leq(T+1)\left(\gamma\left\|\Delta^{2} y\right\|_{1}+Q\right) & \leq(T+1)\left(\gamma \sqrt{T}\left\|\Delta^{2} y\right\|_{2}+Q\right) \\
& \leq(T+1)(\gamma \sqrt{T} C+Q) \equiv D
\end{aligned}
$$

where D is independent of λ. This completes the proof.

3. UNIQUENESS RESULTS

Theorem 3.1. Suppose that there exist nonnegative constants c, d such that for $n \in[0, T+1], x_{1}, x_{2}, y_{1}, y_{2} \in \Re$,

$$
\begin{equation*}
\left|f\left(n, y_{1}, y_{2}\right)-f\left(n, x_{1}, x_{2}\right)\right| \leq c\left|y_{1}-x_{1}\right|+d\left|y_{2}-x_{2}\right| . \tag{3.1}
\end{equation*}
$$

Further, suppose that (2.2) holds. If

$$
\begin{equation*}
\frac{\gamma(T+1)}{\sqrt{2}}(c \beta+d)<1 \tag{3.2}
\end{equation*}
$$

then (1.1) has a unique solution $y(n)$ defined on $[0, T+1]$.

Proof. The existence of a solution for (1.1) follows from Theorem 2.5. Let y_{1} and y_{2} be two solutions of (1.1). Then, we have

$$
\begin{gather*}
\Delta^{2}\left(y_{1}-y_{2}\right)(n)=f\left(n, y_{1}(n), \Delta y_{1}(n)\right)-f\left(n, y_{2}(n), \Delta y_{2}(n)\right), n \in[0, T-1] \tag{3.3}\\
\left(y_{1}-y_{2}\right)(0)=0, \quad\left(y_{1}-y_{2}\right)(T+1)=\alpha\left(y_{1}-y_{2}\right)(\eta)
\end{gather*}
$$

Using (3.1), (2.20) and (2.28) (with $b=0$), it follows from (3.3) that

$$
\begin{aligned}
\left\|\Delta^{2} y_{1}-\Delta^{2} y_{2}\right\|_{2} & \leq c\left\|y_{1}-y_{2}\right\|_{2}+d\left\|\Delta y_{1}-\Delta y_{2}\right\|_{2} \\
& \leq \frac{\gamma(T+1)}{\sqrt{2}}(c \beta+d)\left\|\Delta^{2} y_{1}-\Delta^{2} y_{2}\right\|_{2}
\end{aligned}
$$

which in view of (3.2) gives rise to

$$
\begin{equation*}
\left\|\Delta^{2} y_{1}-\Delta^{2} y_{2}\right\|_{2}=0 \tag{3.4}
\end{equation*}
$$

Now, using (2.20), (2.28) (with $b=0$) and (3.4), we have

$$
\left\|y_{1}-y_{2}\right\|_{2} \leq \beta\left\|\Delta y_{1}-\Delta y_{2}\right\|_{2} \leq \beta \frac{\gamma(T+1)}{\sqrt{2}}\left\|\Delta^{2} y_{1}-\Delta^{2} y_{2}\right\|_{2}=0
$$

which implies $\left\|y_{1}-y_{2}\right\|_{2}=0$ and hence

$$
\begin{equation*}
y_{1}(n)=y_{2}(n), 0 \leq n \leq T+1 \tag{3.5}
\end{equation*}
$$

Theorem 3.2. Suppose that (3.1) and (2.2) hold. If

$$
\begin{equation*}
[(T+1)(T+2) c+\sqrt{(T+1)(T+2)} d] \gamma<1 \tag{3.6}
\end{equation*}
$$

then (1.1) has a unique solution $y(n)$ defined on $[0, T+1]$.
Proof. The existence of a solution for (1.1) follows from Theorem 2.3. If y is a solution of (1.1), then we have

$$
\begin{equation*}
|y(n)| \leq \sum_{s=0}^{n-1}|\Delta y(s)| \leq\|\Delta y\|_{1} \tag{3.7}
\end{equation*}
$$

which also implies

$$
\begin{equation*}
\|y\|_{1} \leq(T+2)\|\Delta y\|_{1} \tag{3.8}
\end{equation*}
$$

Using (3.7), it follows from (2.12) that

$$
|\Delta y(n)| \leq\left\|\Delta^{2} y\right\|_{1}+\frac{|\alpha-1|}{|\alpha|(T+1-\eta)}\|\Delta y\|_{1}+\frac{|b|}{|\alpha|(T+1-\eta)}
$$

which on summing from 0 to T gives

$$
\begin{equation*}
\|\Delta y\|_{1} \leq \gamma(T+1)\left\|\Delta^{2} y\right\|_{1}+(T+1) Q \tag{3.9}
\end{equation*}
$$

Now, to show uniqueness once again let y_{1} and y_{2} be two solutions of (1.1). Using (3.1), (3.8) and (3.9) (with $b=0$), it follows from (3.3) that

$$
\begin{aligned}
\left\|\Delta^{2} y_{1}-\Delta^{2} y_{2}\right\|_{1} & \leq c\left\|y_{1}-y_{2}\right\|_{1}+d\left\|\Delta y_{1}-\Delta y_{2}\right\|_{1} \\
& \leq[c(T+2)+d] \gamma(T+1)\left\|\Delta^{2} y_{1}-\Delta^{2} y_{2}\right\|_{1}
\end{aligned}
$$

which in view of (3.6) provides

$$
\begin{equation*}
\left\|\Delta^{2} y_{1}-\Delta^{2} y_{2}\right\|_{1}=0 \tag{3.10}
\end{equation*}
$$

Next, using (3.8), (3.9) (with $b=0$) and (3.10), we get

$$
\left\|y_{1}-y_{2}\right\|_{1} \leq(T+2)\left\|\Delta y_{1}-\Delta y_{2}\right\|_{1} \leq \gamma(T+1)(T+2)\left\|\Delta^{2} y_{1}-\Delta^{2} y_{2}\right\|_{1}=0
$$

which implies $\left\|y_{1}-y_{2}\right\|_{1}=0$ and hence (3.5) follows. This completes the proof.
Example 3.1. Consider the boundary value problem

$$
\Delta^{2} y(n)=\frac{2}{2 n+1} \Delta y(n)+2 n+3, \quad y(0)=0, \quad y(10)=4 y(5), \quad n \in[0,8] .
$$

The general solution is given by

$$
y(n)=c_{1}+c_{2} n^{2}+\frac{1}{6} n(n-1)(4 n+1) .
$$

We see that the boundary conditions lead to some inconsistency and so this problem has no solution. In fact, (2.2) is not satisfied and this illustrates Theorems 2.1-2.5.
Example 3.2. The boundary value problem
$\Delta^{2} y(n)=\frac{y(n)}{100(n+10)}+\frac{\Delta y(n)}{10(n+200)}+e(n), \quad y(0)=0, \quad y(7)=3 y(2)+b, \quad n \in[0,5]$
where b and $e(n)$ are arbitrary but fixed, satisfies Theorems 3.1-3.2. Hence, a unique solution exists.

REFERENCES

1. R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992.
2. C. P. Gupta, Solvability of a three-point boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168(1992), 540-551.
3. C. P. Gupta, A note on a second order three-point boundary value problem, J. Math. Anal. Appl. 186(1994), 277-281.
4. C. P. Gupta, S. K. Ntouyas and P. C. Tsamatos, On an m-point boundaryvalue problem for second-order ordinary differential equations, Nonlinear Analysis 23(1994), 1427-1436.
5. C. P. Gupta, S. K. Ntouyas and P. C. Tsamatos, Solvability of an m-point boundary value problem for second order ordinary differential equations, J. Math. Anal. Appl. 189(1995), 575-584.
6. S. A. Marano, A remark on a second-order three-point boundary value problem, J. Math. Anal. Appl. 183(1994), 518-522.
7. J. Mawhin, Topological degree methods in nonlinear boundary value problems, in NSF-CBMS Regional Conference Series in Math., No. 40, American Mathematical Society, Providence, RI(1979).
