OPTIMAL ORIENTATIONS

Of G VERTEX-MULTIPLICATIONS

Wong Han Wah, Willie

A thesis submitted to the
National Institute of Education, Nanyang Technological University, Singapore in partial fulfilment of the requirement for the degree of Master of Science

Acknowledgements

First and foremost, I would like to thank my family and relatives, particularly my parents, Mr Jason Wong Kok Luen and Mdm Helen Kok Chek Soon. They have always been putting in their best in me, and providing utmost understanding and support. Nothing would have been possible without them.

Also, I would like to thank my supervisor, A/Prof Tay Eng Guan, for giving me an opportunity to conduct meaningful research with him. His invaluable guidance and mathematical knowledge has motivated me through the project. I would also like to take the chance to thank all my lecturers and teachers, who had inspired and helped in one way or another. Special thanks goes to Dr Tan Ban Pin for being my Honours supervisor, and Dr Ng Kah Loon for introducing Graph Theory to me. Furthermore, I would like to thank the National Institute of Education, Nanyang Technological University of Singapore, for the generous support of scholarship.

Last but not least, I give many thanks to all my friends.

Contents

1 Literature Review 4
1.1 Introduction To Optimal Orientations 4
1.1.1 Fundamentals 4
1.1.2 Applications 6
1.2 Relevant Results 7
1.2.1 Extremal Problems 7
1.2.2 Complete Graphs And Complete n-partite Graphs 9
1.2.3 Cartesian Product Of Graphs 13
1.2.4 Join Of Graphs 16
1.3 G Vertex-multiplications 18
1.3.1 A Fundamental Classification 18
1.3.2 Tree Vertex-multiplications 19
1.3.3 Cycle Vertex-multiplications 22
2 Complete Tripartite Graphs 23
2.1 Existing Results And Motivation 23
2.2 A Conjecture On $K(2, p, q)$ 24
2.3 Sufficient Conditions For $\bar{d}(K(p, p, q))=2$ 34
3 Tree Vertex-multiplications 66
3.1 Existing Results 66
3.2 New Results On Trees With Diameter 4 66

Terminology and Notation

$\{1,2, \ldots, n\}$	\mathbb{N}_{n}
$\{(1, v),(2, v) \ldots,(n, v)\}$	$\left(\mathbb{N}_{n}, v\right), v \in V(G)$
Complement of the set A	\bar{A}
Length of a shortest cycle	girth
Subgraph of G induced by $A \subseteq V(G)$	$\langle A\rangle_{G}$
The smallest integer more than or equal to $x, x \in \mathbb{R}$	$\lceil x\rceil$
The greatest integer less than or equal to $x, x \in \mathbb{R}$	$\lfloor x\rfloor$
Complete graph of order n	K_{n}
Complete n-partite graph with partite sizes $p_{1}, p_{2}, \ldots, p_{n}$	$K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$
Null graph of order n	O_{n}
Path of order n	P_{n}
n-cube graphs	Q_{n}
$\left\{(i, v) \mid(j, u) \rightarrow(i, v), i=1,2, \ldots, s_{v}\right\}$ in a digraph D	$O_{D}^{v}((j, u))$
$\left\{(i, v) \mid(i, v) \rightarrow(j, u), i=1,2, \ldots, s_{v}\right\}$ in a digraph D	$I_{D}^{v}((j, u))$

$\left\{(i, v) \mid(j, u) \rightarrow(i, v), i=1,2, \ldots, s_{v}\right\}$ in a digraph D

Often in graphs, it is more convenient to use the congruence classes of i modulo n, denoted by $[i]_{n}, n \in \mathbb{N}$, where $i=1,2, \ldots, n$, instead of the commonly used $i=0,1, \ldots n-1$. Hence, we adopt this notion throughout this thesis.

Summary

In Chapter 1, we introduce the fundamentals and applications of optimal orientations. We then survey some results relevant to our research. An extension of complete n-partite graphs, G vertex-multiplications, will be introduced formally. Let $s_{i} \geq 2$ for all $1 \leq i \leq n$. It is known that the G vertex-multiplications, $G\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, can be classified into three classes \mathscr{C}_{j}, where

$$
\mathscr{C}_{j}=\left\{G\left(s_{1}, s_{2}, \ldots, s_{n}\right) \mid \bar{d}\left(G\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right)=d(G)+j\right\}
$$

for $j=0,1,2$.
In Chapter 2, we present our findings on a special case of G vertex-multiplications, which is commonly known as complete tripartite graphs. Particularly, we prove a conjecture by Rajasekaran and Sampathkumar in Section 2.2; for any integers $q \geq p \geq 3$, if $\bar{d}(K(2, p, q))=2$, then $q \leq\binom{ p}{\lfloor p / 2\rfloor}$. Also, Rajasekaran and Sampathkumar proved $\bar{d}(K(p, p, q))=2$ for $p \geq 4,4 \leq q \leq 2 p$. In Section 2.3, we improve the upper bound of q significantly, especially for large p.

In Chapter 3, we focus on the G vertex-multiplications of trees. Precisely, we investigate some special cases of vertex-multiplications of trees with diameter 4.

1. Literature Review

1.1. Introduction To Optimal Orientations

1.1.1. Fundamentals

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. In this thesis, we consider graphs G with no loops nor parallel edges, unless otherwise stated. For any vertices $v, x \in V(G)$, the distance from v to $x, d_{G}(v, x)$, is defined as the length of a shortest path from v to x. For $v \in V(G)$, its eccentricity $e_{G}(v)$ is defined as $e_{G}(v):=\max \left\{d_{G}(v, x) \mid x \in V(G)\right\}$. The diameter of G, denoted by $d(G)$, is defined as $d(G):=\max \left\{e_{G}(v) \mid v \in V(G)\right\}$ while the radius of G, denoted by $r(G)$, is defined as $r(G):=\min \left\{e_{G}(v) \mid v \in V(G)\right\}$.

The above notions are defined similarly for a digraph D. For any vertices $v, x \in$ $V(D)$, the distance from v to $x, d_{D}(v, x)$, is defined as the length of a shortest directed path from v to x. A vertex x is said to be reachable from another vertex v if $d_{D}(v, x)<\infty$. For $v \in V(D)$, its eccentricity $e_{D}(v)$ is defined as $e_{D}(v):=$ $\max \left\{d_{D}(v, x) \mid x \in V(D)\right\}$. The diameter of D, denoted by $d(D)$, is defined as $d(D):=\max \left\{e_{D}(v) \mid v \in V(D)\right\}$ while the radius of D, denoted by $r(D)$, is defined as $r(D):=\min \left\{e_{D}(v) \mid v \in V(D)\right\}$. The outset and inset of a vertex $v \in V(D)$ are defined to be $O_{D}(v):=\{x \in V(D) \mid v \rightarrow x\}$ and $I_{D}(v):=\{y \in V(D) \mid y \rightarrow v\}$ respectively. If there is no danger of confusion, we shall omit the subscript for the above notations.

An orientation D of a graph G is a digraph obtained from G by assigning a direction to every edge $e \in E(G)$. An orientation D of G is said to be strong if
every two vertices in $V(D)$ are mutually reachable. An edge $e \in E(G)$ is a bridge if $G-e$ is disconnected. Robbins' well-known One-way Street Theorem [10] states the following.

Theorem 1.1.1 (Robbins [44])
Let G be a connected graph. Then, G has a strong orientation if and only if G is bridgeless.

Roberts [45], Boesch and Tindell [3] and Chung et al [8] constructed efficient algorithms for finding a strong orientation of a bridgeless connected graph. Furthermore, Boesch and Tindell [3] generalised Robbins' One-way Street Theorem for mixed multigraphs (which allow edges to be directed or undirected). In the same article, Boesch and Tindell [3] investigated another extension of Robbins' Theorem, using the notion of $\rho(G)$ given below. Independently, Chvátal and Thomassen [9], and Roberts [46] also considered the same notion $\rho(G)$. Given a connected and bridgeless graph G, let $\mathscr{D}(G)$ be the family of strong orientations of G. Define

$$
\rho(G):=\min \{d(D) \mid D \in \mathscr{D}(G)\}-d(G) .
$$

The orientation number of G is defined as

$$
\bar{d}(G):=\min \{d(D) \mid D \in \mathscr{D}(G)\} .
$$

An orientation $D \in \mathscr{D}(G)$ is an optimal orientation of G if $d(D)=\bar{d}(G)$.
Clearly, $d(G) \leq \bar{d}(G)$. Here, we are interested to find the optimal orientation(s) that minimise the increase in diameter, $\rho(G)$. The general problem of finding the orientation number of a connected and bridgeless graph is very difficult. Moreover, Chvátal and Thomassen [9] proved that it is NP-hard to determine if a graph admits an orientation of diameter 2 . Since $\rho(G)$ is easily computed with a given $\bar{d}(G)$, we will express all following results using only one of the two terms, $\bar{d}(G)$ and $\rho(G)$, whichever describes the situation better. Noting that every strong orientation of
a cycle is a directed cycle, the following easy example serves to familiarise readers with the notion of $\bar{d}(G)$.

Example 1.1.2

i) $\bar{d}\left(C_{n}\right)=n-1$ for any cycle $C_{n}, n \geq 3$.
ii) $\bar{d}(G) \geq g-1$ for any connected and bridgeless graph G with girth $g \geq 3$.

1.1.2. Applications

Diameter problems arise in network optimisation in a natural way. One real-life application of optimal orientations lies in traffic systems. Robbins [44] provided the following example. Consider the scenario of a two-way street system, which can be modeled by a graph G. Each vertex of G correspond to a street intersection and an edge joins two vertices if and only if travelling from one intersection to another without going through a third intersection is possible. Now, road repairs take place on some days, and it is required to transform the two-way street system into a one-way system. Travelling from one vertex to every other vertex is possible if and only if a strong orientation F is assigned. For obvious reasons, we seek a 'best' orientation F that minimises the additional distance. Roberts and Xu [47-50] discussed three functions as criterias of optimality for one to minimise.
(i) $D(F)=\max \{d(u, v) \mid u, v \in V(F)\}$.
(ii) $L(F)=\sum_{u \in V(F)} \max \{d(u, x) \mid x \in V(F)\}$.
(iii) $A(F)=\sum_{u, v \in V(F)} d(u, v)$.

Clearly, minimising the first function $D(F)$ is the same as evaluating $\bar{d}(G)$. In other words, minimising the diameter of the assigned orientation is a way of optimising the one-way street system.

Another application of optimal orientations concerns an adaptation of the Gossip Problem on a graph G. Due to Boyd, the Gossip Problem is stated by Hajnal et al. [14] as follows.
"There are n ladies, and each one of them knows an item of scandal which is not known to any of the others. They communicate by telephone, and whenever
two ladies make a call, they pass on to each other, as much scandal as they know at that time. How many calls are needed before all ladies know all the scandal?"

The problem inspired the study of information broadcast by conference calls, telephone calls, letters and computer networks. The adaptation of the problem that relates to our topic of interest is the half-duplex model, where all points simultaneously relay information to all other points. Furthermore, information are consolidated at no cost and all links are concurrently used in only one direction at a time. In this problem, Fraigniaud and Lazard [10] showed that the time taken for the gossip to be completed is bounded below by $d(G)$ and above by $\min \{2 d(G), \bar{d}(G)\}$. Some classes of graphs discussed in [10] include complete graphs, cycles, cartesian product of cycles and cartesian product of paths. In addition, hypercube graphs and de Brujin graphs, which are of interest in the area of communication networks, were also considered.

1.2. Relevant Results

1.2.1. Extremal Problems

In 1966, Goldberg [11] investigated an extremal problem concerning the diameter of a strong digraph with n vertices and $n+q$ arcs. As mentioned in Example 1.1.2, $\bar{d}\left(C_{n}\right)=n-1$ for $n \geq 3$. Hence, excluding C_{n}, Goldberg proved the following theorem.

Theorem 1.2.1 (Goldberg [11])

Suppose G is a bridgeless connected graph with order n and size $n+q$, where $n \geq 4$ and $q \geq 1$. Then, $\bar{d}(G) \geq\left\lceil\frac{2(n-1)}{q+1}\right\rceil$.

The bound in Theorem 1.2.1 is sharp for digraphs. However, it is not necessary that the sharpness follows for orientations of graphs. If $q=1$, then cycles with one chord are examples that hit the bound. Let $G(n, q)$, where $q \geq 2$ and $n \geq 3(q+1)$, be the identification of $C_{x_{1}}, C_{x_{2}} \ldots, C_{x_{q+1}}$ at one vertex, such that $n=\sum_{i=1}^{q+1} x_{i}-q$
and the x_{i} 's differ by at most 1 . Then, the orientation numbers of $G(n, q)$ are close to Goldberg's bound. If $n \equiv k(\bmod (q+1))$, then it can be shown that

$$
\bar{d}(G(n, q))= \begin{cases}\left\lceil\frac{2(n-1)}{q+1}\right\rceil+1, & \text { if } 3 \leq k \leq \frac{q+3}{2} \\ \left\lceil\frac{2(n-1)}{q+1}\right\rceil, & \text { otherwise. }\end{cases}
$$

Henceforth, the following were conjectured and posed.

Conjecture 1.2.2 Let G be a bridgeless connected graph with order n and size $n+q$, where $q \geq 2$ and $n \geq 3(q+1)$. If $n \equiv k(\bmod (q+1))$, where $3 \leq k \leq \frac{q+3}{2}$, then $\bar{d}(G) \geq\left\lceil\frac{2(n-1)}{q+1}\right\rceil+1$.

Problem 1.2.3 If G has higher connectivity, can Goldberg's bound be improved? What if G is hamiltonian?

On a related note, $\mathrm{Ng}[40]$ examined the orientation numbers of graphs obtained by adding exactly n edges between K_{n} and C_{n}, adding 2 edges between 2 arbitrary graphs G_{1} and G_{2} with orientation numbers d_{1} and d_{2} respectively, adding n edges between n cycles, adding edges between K_{p} and K_{q}, adding edges among K_{p}, K_{q} and K_{r}, and adding edges between K_{p} and O_{q}.

Bondy and Murty (see [9]) suggested to investigate quantitative variations of Robbins' theorem. Specifically, they conjectured the existence of a function f, for which every bridgeless graph G of diameter d admits an orientation of diameter at most $f(d)$. In 1978, Chvátal and Thomassen [9] obtained bounds on $f(d)$, as stated below.

$$
\frac{1}{2} d^{2} \leq f(d) \leq 2 d^{2}+d, \text { for } d \geq 2
$$

It follows that $\bar{d}(G) \leq 2 d^{2}+d$. We will see later (from Theorem 1.2.4) that $f(1)=3$, as every graph with diameter 1 is a complete graph. In addition, they showed that $f(2)=6$, with the Petersen graph as an extremal graph. In 2007, Kwok, Liu and West [32] proved $9 \leq f(3) \leq 11$.

1.2.2. Complete Graphs And Complete n-partite Graphs

In the subsequent subsections, we shall share existing results on some special classes of graphs. Plesnik [41], Boesch and Tindell [3], and Maurer [36] independently evaluated the orientation number of complete graphs $K_{n}, n \geq 3$. The orientaton number of complete bipartite graphs $K(p, q)$ was obtained by Šoltés [52] and Gutin [12] independently.

Theorem 1.2.4 (Plesnik [41], Boesch and Tindell [3], Maurer [36]) For $n \geq 3$,

$$
\bar{d}(K(n))= \begin{cases}2, & \text { if } n \neq 4 \\ 3, & \text { if } n=4\end{cases}
$$

Theorem 1.2.5 (Šoltés [52], Gutin [12])
For $q \geq p \geq 2$,

$$
\bar{d}(K(p, q))= \begin{cases}3, & \text { if } q \leq\binom{ p}{\lfloor p / 2]}, \\
4, & \text { if } q>\left(\begin{array}{c}
p / 2 / 2\rfloor
\end{array}\right) .\end{cases}
$$

In his proof, Gutin made use of Sperner's Lemma, a celebrated result in combinatorics. Let $T, S \subseteq \mathbb{N}_{n}:=\{1,2, \ldots, n\}$, where $n \in \mathbb{Z}^{+} . T$ and S are said to be independent if $T \nsubseteq S$ and $S \nsubseteq T$. If S and T are independent, we may say that S is independent of T or T is independent of S. An antichain \mathscr{A} of \mathbb{N}_{n} is a collection of pairwise independent subsets of \mathbb{N}_{n}, i.e. for all $S, T \in \mathscr{A}, S$ and T are independent. If $X_{i} \subseteq \mathbb{N}_{n}$ for $i=1,2, \ldots, k$, and $X_{1} \subset X_{2} \subset \ldots \subset X_{k}$, we say that $X_{1}, X_{2}, \ldots, X_{k}$ forms a chain. Sperner's Lemma essentially says that the maximum size of any antichain of \mathbb{N}_{n} is $\binom{n}{\lfloor n / 2\rfloor}$. There are several ways to prove Sperner's Lemma, each with its unique elegance. We state the lemma formally, with a proof by Lubell [35] using maximal chains.

Lemma 1.2.6 (Sperner [51]) (Proof adapted from [1], [2])
Let $n \in \mathbb{Z}^{+}$and \mathscr{A} be an antichain of \mathbb{N}_{n}. Then,

$$
|\mathscr{A}| \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}
$$

with equality holding if and only if all members in \mathscr{A} have the same size, $\left\lfloor\frac{n}{2}\right\rfloor$ or $\left\lceil\frac{n}{2}\right\rceil$. (The two sizes coincide if n is even.)

Proof: Firstly, consider the maximal chains $\emptyset=X_{0} \subset X_{1} \subset \ldots \subset X_{n}=\mathbb{N}_{n}$, where $X_{i} \subseteq \mathbb{N}_{n}$ and $\left|X_{i}\right|=i$ for $i=0,1, \ldots, n$. There are $n!$ such chains as each chain is obtained by adding one by one the elements of \mathbb{N}_{n}. Secondly, for each set $S \in \mathscr{A}$ where $|S|=s$, there are exactly $s!(n-s)$! such chains that contain S, i.e. $S=X_{i}$ for some $1 \leq i \leq n$. Thirdly, each chain contains at most one element of \mathscr{A}.

Now, let m_{k} be the number of k-sets in \mathscr{A}. Then, $|\mathscr{A}|=\sum_{k=0}^{n} m_{k}$. It follows that the number of chains passing through some member of \mathscr{A} is $\sum_{S \in \mathscr{A}} s!(n-s)!=$ $\sum_{k=0}^{n} m_{k} k!(n-k)!$, which cannot exceed the total number of chains $n!$. In other words,

$$
\begin{align*}
& \sum_{k=0}^{n} m_{k} k!(n-k)! \leq n! \\
& \sum_{k=0}^{n} \frac{m_{k}}{\binom{n}{k}} \leq 1 \tag{1.1}\\
& \frac{1}{\binom{n}{\lfloor n / 2\rfloor}} \sum_{k=0}^{n} m_{k} \leq 1 \\
& \frac{|\mathscr{A}|}{\binom{n}{\lfloor n / 2\rfloor}} \leq 1
\end{align*}
$$

For even n, it is clear from (1.1) that equality holds if and only if $m_{n / 2}=\binom{n}{n / 2}$, i.e. $\mathscr{A}=\binom{\mathbb{N}_{n}}{n / 2}$, where $\binom{\mathbb{N}_{n}}{k}$ denotes the collection of all k-subsets of \mathbb{N}_{n}. Also, if n is odd and $\mathscr{A}=\binom{\mathbb{N}_{n}}{\lfloor n / 2\rfloor}$ or $\mathscr{A}=\binom{\mathbb{N}_{n}}{[n / 2\rceil}$, then it is clear that $|\mathscr{A}|=\binom{n}{\lfloor n / 2\rfloor}$. Now, let n be odd and $|\mathscr{A}|=\binom{n}{\lfloor n / 2\rfloor}$. Then, equality must hold at all stages, particularly, each chain contains exactly one element of \mathscr{A}. And, from (1.1), \mathscr{A} contains only
sets of size $\left\lfloor\frac{n}{2}\right\rfloor$ and $\left\lceil\frac{n}{2}\right\rceil$. We want to prove that either $\mathscr{A}=\binom{\mathbb{N}_{n}}{\lfloor n / 2\rfloor}$ or $\mathscr{A}=\binom{\mathbb{N}_{n}}{\lceil n / 2\rceil}$. Suppose \mathscr{A} contains some but not all $\left\lceil\frac{n}{2}\right\rceil$-sets. So, there exist some $X \in \mathscr{A}$ and $Y \notin \mathscr{A}$ and $|X|=|Y|=\left\lceil\frac{n}{2}\right\rceil$. By a suitable relabelling, if necessary, we may assume that $X=\left\{a_{1}, a_{2}, \ldots, a_{\lceil n / 2\rceil}\right\}$ and $Y=\left\{a_{i}, a_{i+1}, \ldots, a_{i+\lceil n / 2\rceil}\right\}$. Then, there must exist a largest integer $j<i$ such that $X^{*}=\left\{a_{j}, a_{j+1}, \ldots, a_{j+\lceil n / 2\rceil}\right\} \in \mathscr{A}$ and $Y^{*}=\left\{a_{j+1}, a_{j+2}, \ldots, a_{j+1+\lceil n / 2\rceil}\right\} \notin \mathscr{A}$. Now, $X^{*} \cap Y^{*} \subset X^{*} \in \mathscr{A}$ implies $X^{*} \cap Y^{*} \notin \mathscr{A}$. Furthermore, note that $\left|X^{*} \cap Y^{*}\right|=\left\lfloor\frac{n}{2}\right\rfloor$ and $\left|Y^{*}\right|=\left\lceil\frac{n}{2}\right\rceil$. So, the chain containing $X^{*} \cap Y^{*} \subset Y^{*}$ does not have any elements of \mathscr{A}, a contradiction.

Remark 1.2.7

a) A strength of Lubell's proof is the inequality (1.1), also known as the Lubell-Yamamoto-Meshalkin(LYM) Inequality. In fact, this inequality is stronger than Sperner's Lemma itself as it tells us that if we aim to construct a large antichain, then we should choose sets of size about $\frac{n}{2}$. It was discovered independently by Lubell [35], Yamamoto [54] and Meshalkin [38].
b) Sperner's Lemma launched the remarkable rise of a distinctive and important area in discrete mathematics and combinatorial optimization, known as Sperner's Theory. A number of generalisations of Sperner's Lemma and LYM Inequality has been explored. They consist of many natural and fundamental questions about families of subsets, with emphasis on size, intersection and containment. Though many of such problems remain unsolved, elegant techniques have since emerged to be found useful.

For complete n-partite graphs, where $n \geq 3$, Plesnik [42] and Gutin [13] proved independently that the orientation number is either 2 or 3 . This result was also obtained separately by Koh and Tan [18].

Theorem 1.2.8 (Plesnik [42], Gutin [13], Koh and Tan [18])
For all positive integers $n \geq 3$ and $p_{1}, p_{2}, \ldots, p_{n}, 2 \leq \bar{d}\left(K\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right) \leq 3$.

In the same paper, Koh and Tan [18] established the following sufficient condition for $\bar{d}\left(K\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right)=3$. Furthermore, they raised the example that $\bar{d}(K(2,1,1))=3$, highlighing that the condition (1.2) in Theorem 1.2.9 is sufficient but not necessary.

Theorem 1.2.9 (Koh and Tan [18])
Let $n \geq 3$ and $p_{1}, p_{2}, \ldots, p_{n}$ be positive integers. Denote $h=\sum_{k=1}^{n} p_{i}$. If

$$
\begin{equation*}
p_{i}>\binom{h-p_{i}}{\left\lfloor\left(h-p_{i}\right) / 2\right\rfloor} \tag{1.2}
\end{equation*}
$$

for some $i=1,2, \ldots, n$, then $\bar{d}\left(K\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right)=3$.

In another paper, Koh and Tan [19] constructed large families of complete n partite graphs, which can be optimally oriented. An idea primarily employed by them was that of a co-pair. A pair $\{p, q\}$ of integers is called a co-pair if $1 \leq p \leq$ $q \leq\binom{ p}{\lfloor p / 2\rfloor}$ or $1 \leq q \leq p \leq\binom{ q}{\lfloor q / 2\rfloor}$. Specifically, if $\{p, q\}$ is a co-pair, then $p=1$ if and only if $q=1$.

Theorem 1.2.10 (Koh and Tan [19])
Let $G=K\left(p_{1}, q_{1}, p_{2}, q_{2}, \ldots, p_{k}, q_{k}\right)$, where $k \geq 2$ and $\left\{p_{i}, q_{i}\right\}$ is a co-pair for each $i=1,2, \ldots, k$. Then $\bar{d}(G)=2$ if $\left(k, p_{1}, p_{2}\right) \neq(2,1,1)$.

Theorem 1.2.11 (Koh and Tan [19])

Let $G=K\left(p_{1}, q_{1}, p_{2}, q_{2}, \ldots, p_{k}, q_{k}, r\right)$ where $k \geq 2$ and $\left\{p_{i}, q_{i}\right\}$ is a co-pair for each $i=1,2, \ldots, k$. Suppose $\left\{r, p_{j}\right\}$ is a co-pair for each $j=1,2, \ldots, k$. Then, $\bar{d}(G)=2$.

Though there have been significant results achieved for complete n-partite graphs, a characterisation of $K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ with $\bar{d}\left(K\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right)=2$ remains elusive. Koh and Tan further asserted that it is very difficult to determine whether the orientation number of a given $K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is 2 or 3 .

Problem 1.2.12 Characterise the complete multipartite graphs $G=K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $n \geq 3$, according to whether $\bar{d}(G)=2$ or 3 .

1.2.3. Cartesian Product Of Graphs

Optimal orientations of cartesian product of graphs have received substantial attention in recent decades. Research on cartesian products was motivated by the fact that the rectangular grid structure of many city traffic systems could be modeled by the graph $P_{m} \times P_{n}$. Independently, Roberts and Xu [47-50], and Koh and Tan [17] examined $\rho\left(P_{m} \times P_{n}\right)$. We summarise their results below.

Theorem 1.2.13

$$
\rho\left(P_{m} \times P_{n}\right)= \begin{cases}0, & \text { if } m \geq 3, n \geq 6,(m, n) \neq(3,6) \\ 1, & \text { if } m=2, n \neq 3,5 \text { or }(m, n)=(3,3),(4,4) \\ 2, & \text { if }(m, n)=(2,3),(2,5)\end{cases}
$$

A generalisation of the above result is the cartesian product of two trees. Koh and Tay [28] derived the following result, concerning trees with diameter at least 4. Koh and Lee [16] further investigated the case, where one of the trees has diameter 2 or 3.

Theorem 1.2.14 (Koh and Tay [28])
Let T_{i} be a tree, where $d\left(T_{i}\right) \geq 4$, for $i=1,2$. Then, $\rho\left(T_{1} \times T_{2}\right)=0$.

Koh and Tay $[24,26]$ also worked out $\rho\left(C_{m} \times C_{n}\right)$ for some special cases of m and n. Separately, Konig et. al. [31] and Chew [7] investigated the same problem. Their results are summarised as follows.

Theorem 1.2.15 For $m \geq 3$ and $n \geq 3$, the values of $\rho\left(C_{m} \times C_{n}\right)$, where (?) indicates a conjecture, are summarised in the table below.

$\quad n$	3	4	5	$0(\bmod 4)$	$1(\bmod 4)$	$2(\bmod 4)$	$3(\bmod 4)$

$\mathbf{3}$	1	1	2	1	2	1	2
$\mathbf{4}$	-	0	1	0	1	0	1
$\mathbf{5}$	-	-	$2(?)$	1	$2(?)$	0	1
$\mathbf{0}(\bmod 4)$	-	-	-	0	0	0	0
$\mathbf{1}(\bmod 4)$	-	-	-	-	1	0	1
$\mathbf{2}(\bmod 4)$	-	-	-	-	-	0	0
$\mathbf{3}(\bmod 4)$	-	-	-	-	-	-	1

Table 1.1: Summary of $\rho\left(C_{m} \times C_{n}\right)$.
$\rho(G \times H)$ was determined by Cai and Xu [5], Koh and Tay [20-23], and Koh and Lee [15] for the Cartesian products of some other pairs of graphs G and H. These included $C_{2 n} \times P_{k}, C_{2 n+1} \times P_{k}, K_{m} \times P_{n}, K_{m} \times K_{n}, K_{m} \times C_{2 n+1}$ and $K_{m} \times C_{2 n}$

The n-cubes $Q_{n}:=\overbrace{K_{2} \times K_{2} \times \ldots \times K_{2}}^{n \text { terms }}, n \geq 2$, were the first cartesian products involving more than two graphs to be studied. Soltés [52] proved that $\rho\left(Q_{n}\right) \leq 1$ for $n \geq 4$ and McCanna [37] settled the problem completely in 1988.

Theorem 1.2.16 (McCanna [37])

$$
\rho\left(Q_{n}\right)= \begin{cases}1, & \text { if } n=2 \\ 2, & \text { if } n=3 \\ 0, & \text { if } n \geq 4\end{cases}
$$

McCanna invoked the use of the following lemma, due to Thomassen, in his proof.

Lemma 1.2.17 Suppose G is a bipartite graph which admits an orientation of diameter at most k, where $k \geq 3$, and every vertex is in a cycle of length at most k.

Then, the graph $G \times P_{2}$ admits an orientation of diameter at most $k+1$ such that every vertex is in a cycle of length at most k.

This lemma was extended by Koh and Tay [28] and applied to prove results on cartesian products involving at least three graphs. They derived that $\rho\left(G_{1} \times G_{2} \times\right.$ $\left.\ldots \times G_{s}\right)=0$, where G_{1} is a bipartite graph with some weak conditions imposed, and $\left\{G_{i} \mid 2 \leq i \leq s\right\}$ is some combination of cycles, paths, complete graphs, complete bipartite graphs, trees, and graphs of diameter 2. We describe their results as follows.

In [25], four families of graphs were defined. Let \mathscr{G} be the set of all bipartite graphs G with $d(G) \geq 4$, and which admit orientations of diameter $d(G)$ where every vertex is contained in a cycle of length at most $d(G)$.

Let \mathscr{G}^{*} be the set of all bipartite graphs G which admit orientations F of diameter $d(G)$, where $d(G) \geq 4$, and in F,
(i) every vertex is contained in a cycle of length at most $d(G)$, and
(ii) if v is adjacent to w, then there exists a $v-w$ walk of length at least 3 and at most $d(G)$.

Let \mathscr{J} be the set of all graphs G which admit an orientation H such that for all vertices $v, w \in V(H)$, one of the following holds:
(i) $d_{H}(v, w) \leq d(G)$, or
(ii) $d_{H}(w, v) \leq d(G)$, or
(iii) there exist vertices $x_{v w}$ and $y_{v w}$ such that $d_{H}\left(v, x_{v w}\right)+d_{H}\left(w, x_{v w}\right) \leq d(G)$ and $d_{H}\left(y_{v w}, v\right)+d_{H}\left(y_{v w}, w\right) \leq d(G)$.

Let \mathscr{J}^{*} be the set of all graphs G which admit an orientation H such that for all vertices $v, w \in V(H)$, one of the following holds:
(i) $d_{H}(v, w) \leq d(G)$, or
(ii) $d_{H}(w, v) \leq d(G)$, or
(iii) there exists a vertex $x_{v w}$ such that $d_{H}\left(v, x_{v w}\right)+d_{H}\left(w, x_{v w}\right) \leq d(G)$, or
(iv) there exists a vertex $y_{v w}$ such that $d_{H}\left(y_{v w}, v\right)+d_{H}\left(y_{v w}, w\right) \leq d(G)$.

It is clear from their definitions that $\mathscr{G}^{*} \subseteq \mathscr{G}$ and $\mathscr{J} \subseteq \mathscr{J}^{*}$. Koh and Tay [25]
proved that many graphs belong to at least one of $\mathscr{G}, \mathscr{G}^{*}, \mathscr{J}$ and \mathscr{J}^{*}. With their extension of Lemma 1.2.17, they derived the following results.

Theorem 1.2.18 (Koh and Tay [25])
If $G \in \mathscr{G}$ and $H_{i} \in \mathscr{J}, 1 \leq i \leq n$, then $\rho\left(G \times \prod_{i=1}^{n} H_{i}\right)=0$.
Theorem 1.2.19 (Koh and Tay [25])
If $G \in \mathscr{G}^{*}$ and $H_{i} \in \mathscr{J}^{*}, 1 \leq i \leq n$, then $\rho\left(G \times \prod_{i=1}^{n} H_{i}\right)=0$.
Parallel to the study of cartesian products of more than two graphs, Konig [31] obtained the following result concerning cycles.

Theorem 1.2.20 (Konig [31])
Let $r \geq 3$. If there exist p and q such that $1 \leq p<q \leq r, i_{p} \geq 6, i_{q} \geq 6$ and $\rho\left(C_{i_{p}} \times C_{i_{q}}\right)=0$, then $\rho\left(C_{i_{1}} \times C_{i_{2}} \times \ldots \times C_{i_{r}}\right)=0$.

1.2.4. Join Of Graphs

The join of two graphs G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is defined to be the graph obtained by adding the set of edges $\left\{u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$ between G_{1} and G_{2}. In other words, $V\left(G_{1}+G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1}+G_{2}\right)=$ $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. Note that a wheel of order n is isomorphic to $C_{n-1}+O_{1}$, while a fan of order n is isomorphic to $P_{n-1}+O_{1} . \operatorname{Ng}[39]$ proved the following results on wheels and fans.

Theorem 1.2.21 (Ng [39])
Let W_{n} be the wheel of order $n \geq 4$. Then,

$$
\bar{d}\left(W_{n}\right)= \begin{cases}3, & \text { if } n=4,5 \\ 4, & \text { if } n \geq 6\end{cases}
$$

Theorem 1.2.22 (Ng [39])
Let F_{n} be the fan of order $n \geq 4$. Then,

$$
\bar{d}\left(F_{n}\right)= \begin{cases}3, & \text { if } n=4,5, \\ 4, & \text { if } n \geq 6\end{cases}
$$

These results were extended by $\operatorname{Ng}[39]$ and Lee [33].

Theorem 1.2.23 (Ng [39])
For $k \geq 2$ and $n \geq 3$,

$$
\bar{d}\left(C_{n}+O_{k}\right)= \begin{cases}2, & \text { if }(n, k)=(4,2) \\ 3, & \text { otherwise }\end{cases}
$$

Theorem 1.2.24 (Lee [33])
For $k \geq 2$ and $n \geq 3, \bar{d}\left(P_{n}+O_{k}\right)=3$.

Lee [33] further generalised Theorem 1.2.24 to evaluate the orientation number of the join of any tree with an empty graph.

Theorem 1.2.25 (Lee [33])
If T_{n} is a tree of order n, then $\bar{d}\left(T_{n}+O_{k}\right)=3$ for each $n \geq 3$ and $k \geq 2$.

1.3. G Vertex-multiplications

1.3.1. A Fundamental Classification

In 2000, Koh and Tay [27] introduced a new family of graphs, G vertex-multiplications, and extended the results on complete n-partite graphs. Let G be a given connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. For any sequence of n positive integers $\left(s_{i}\right)$, a G vertex-multiplication, denoted by $G\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, is the graph with vertex set $V^{*}=\bigcup_{i=1}^{n} V_{i}$ and edge set E^{*}, where V_{i} 's are pairwise disjoint sets with $\left|V_{i}\right|=s_{i}$, for $i=1,2, \ldots, n$ and for any $u, v \in V^{*}, u v \in E^{*}$ if and only if $u \in V_{i}$ and $v \in V_{j}$ for some $i, j \in\{1,2, \ldots, n\}$ with $i \neq j$ such that $v_{i} v_{j} \in E(G)$. For instance, if $G \cong K_{n}$, then the graph $G\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is a complete n-partite graph with partite sizes $s_{1}, s_{2}, \ldots, s_{n}$. Also, we say G is a parent graph of graph $G\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.

For $i=1,2, \ldots, n$, we denote the x th vertex in V_{i} by $\left(x, v_{i}\right)$, or simply (x, i). i.e. $V_{i}=\left\{(x, i) \mid x=1,2, \ldots, s_{i}\right\}$. Hence, two vertices (x, i) and (y, j) in V^{*} are adjacent in $G\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ if and only if $i \neq j$ and $v_{i} v_{j} \in E(G)$. For convenience, we write $G^{(s)}$ in place of $G(s, s, \ldots, s)$ for any positive integer s, and it is understood that the number of s 's is equal to the order of G, n. Thus, $G^{(1)}$ is simply the graph G itself.

Koh and Tay [27] derived the following fundamental classification on G vertexmultiplication.

Theorem 1.3.1 (Koh and Tay [27])
Let G be a connected graph of order $n \geq 3$. If $s_{i} \geq 2$ for $i=1,2, \ldots, n$, then $d(G) \leq \bar{d}\left(G\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right) \leq d(G)+2$.

In view of Theorem 1.3.1, all graphs of the form $G\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, with $s_{i} \geq 2$
for all $1 \leq i \leq n$, can be classified into three classes \mathscr{C}_{j}, where

$$
\mathscr{C}_{j}=\left\{G\left(s_{1}, s_{2}, \ldots, s_{n}\right) \mid \bar{d}\left(G\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right)=d(G)+j\right\}
$$

for $j=0,1,2$. Hence, in this thesis, we shall assume $s_{i} \geq 2$ for $i=1,2, \ldots, n$, unless otherwise stated. The following results were also proven in the same paper.

Lemma 1.3.2 (Koh and Tay [27])
Let μ_{i}, λ_{i} be integers such that $\mu_{i} \leq \lambda_{i}$ for $i=1,2, \ldots, n$. If the graph $G\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ admits an orientation F in which every vertex v lies on a cycle of length not exceeding m, then $\bar{d}\left(G\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)\right) \leq \max \{m, d(F)\}$.

Theorem 1.3.3 (Koh and Tay [27])
If $d(G) \geq 4$ and $s_{i} \geq 4$ for $i=1,2, \ldots, n$, then $G\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0}$.

Corollary 1.3.4 (Koh and Tay [27])
If $d(G)=3$ and $s_{i} \geq 4$ for $i=1,2, \ldots, n$, then $G\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0} \cup \mathscr{C}_{1}$.

By virtue of Theorem 1.3.3 and Corollary 1.3.4, any search for graphs of the form $G\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{2}$ should be confined to graphs G with $d(G) \leq 2$ or on the sequence $\left(s_{i}\right)$, where $s_{j} \leq 3$ for some j. Using graphs G with $d(G)=2$, Koh and Tay [27] constructed G vertex-multiplications, $G\left(s_{1}, s_{2}, \ldots, s_{n}\right)$, that belong to \mathscr{C}_{2}. However, parent graphs of diameter at least 3 whose vertex-multiplications belong to \mathscr{C}_{2} have not been found. Hence, Koh and Tay conjectured the following.

Conjecture 1.3.5 (Koh and Tay [27])
If G is a graph such that $d(G) \geq 3$ and $s_{i} \geq 2$ for $i=1,2, \ldots, n$, then $G\left(s_{1}, s_{2}, \ldots, s_{n}\right) \notin$ \mathscr{C}_{2}.

1.3.2. Tree Vertex-multiplications

Koh and Tay [30] further investigated tree vertex multiplications. Since trees with diameter at most 2 are parent graphs of complete bipartite graphs and are
completely solved, they considered trees of diameter at least 3. It was shown that any tree, with diameter 3 or 4 , does not belong to the class \mathscr{C}_{2}.

Theorem 1.3.6 (Koh and Tay [30])
If T is a tree of order n and $d(T)=3$ or 4 , then $T\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0} \cup \mathscr{C}_{1}$.

Theorem 1.3.7 (Koh and Tay [30])
Let T be a tree with diameter 4 and its only central vertex be u.
(a) If $\operatorname{deg}_{T}(u)=2$, then $T\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0}$.
(b) If $\operatorname{deg}_{T}(u) \geq 3$, then $T^{(2)} \in \mathscr{C}_{1}$.

Furthermore, a vertex-multiplication of a tree with diameter at least 6 belongs to the class \mathscr{C}_{0}.

Theorem 1.3.8 (Koh and Tay [30])
If T is a tree of order n and $d(T) \geq 6$, then $T\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0}$.

On a related note, Buckley and Lewinter [4] proved the characterisation of graphs with a diameter-preserving spanning tree (d.p.s.t.) in 1988.

Theorem 1.3.9 (Buckley and Lewinter [4])
A connected graph G has a d.p.s.t. if and only if either
(1) $d(G)=2 r(G)$, or
(2) $d(G)=2 r(G)-1$ and G contains a pair of adjacent central vertices u and v that have no common eccentric vertex.

Together with Theorem 1.3.8, the next proposition follows easily.

Proposition 1.3.10 Let G be a graph, where $d(G) \geq 6$. If
(1) $d(G)=2 r(G)$, or
(2) $d(G)=2 r(G)-1$ and G contains a pair of adjacent central vertices u and v that have no common eccentric vertex, then $G\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0}$.

Proof:
By Theorem 1.3.9, there exists a d.p.s.t. T of G, where $d(T)=d(G) \geq 6$. It follows from Theorem 1.3.8 that $\bar{d}\left(T\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right)=d(T)$. i.e. there exists an orientation D of $T\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ such that $d(D)=d(T)$. Note that $T\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is a spanning subgraph of $G\left(s_{1}, s_{2}, \ldots, s_{n}\right)$. Define an orientation F of $G\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ such that D is a subdigraph of F, and any unspecified edges may be oriented arbitrarily. So, $d(F) \leq d(D)=d(G)$. Since $d(F) \geq d(G)$, we have $\bar{d}\left(G\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right)=d(G)$.

In a similar line of thought, we can prove the following proposition using Theorem 1.3.6.

Proposition 1.3.11 Let G be a graph. If
(1) $r(G)=2$ and $d(G)=4$, or
(2) $r(G)=2$ and $d(G)=3$ and G contains a pair of adjacent central vertices u and v that have no common eccentric vertex, then $G\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0} \cup \mathscr{C}_{1}$.

1.3.3. Cycle Vertex-multiplications

In 2004, Ng [40] examined vertex-multiplications of cycles. In particular, he considered $C_{n}^{(s)}$ for $n \geq 3$. We quote a summary of the results in the table below.

\boldsymbol{n}	Cases of $\boldsymbol{C}_{\boldsymbol{n}}\left(s_{1}, s_{\mathbf{2}}, \ldots, s_{\boldsymbol{n}}\right)$	$\in \mathscr{C}_{\mathbf{0}}, \mathscr{C}_{\mathbf{1}}, \mathscr{C}_{\mathbf{2}} ?$
3	$C_{3}^{(s)}, s \geq 2$	$\mathscr{C}_{\mathbf{1}}$
4	$C_{4}\left(s_{1}, s_{2}, s_{3}, s_{4}\right), s_{i} \geq 2$	\mathscr{C}_{1} if $\left\{s_{1}+s_{3}, s_{2}+s_{4}\right\}$ is a co-pair, \mathscr{C}_{2} otherwise
5	$C_{5}^{(s)}, s=3,4$	\mathscr{C}_{1}
6	$C_{6}^{(s)}, s=3,4$	\mathscr{C}_{1} if $s=3$
	\mathscr{C}_{0} if $s=4$	
7	$C_{7}^{(s)}, s=3,4$	\mathscr{C}_{1} if $s=3$
8	$C_{8}^{(3)}$	\mathscr{C}_{0} if $s=4$
9	$C_{8}\left(s_{1}, s_{2}, \ldots, s_{8}\right), s_{i} \geq 4$	\mathscr{C}_{1}
	$C_{9}^{(3)}$	\mathscr{C}_{1}
≥ 10	$C_{n}\left(s_{1}, s_{2}, \ldots, s_{n}\right), s_{i} \geq 3$	\mathscr{C}_{0}

Table 1.2: Orientation numbers of $C_{n}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.

2. Complete Tripartite Graphs

2.1. Existing Results And Motivation

Given any positive integers, $n, p_{1}, p_{2}, \ldots, p_{n}$, let K_{n} denote the complete graph of order n and $K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ denote the complete n-partite graph having p_{i} vertices in the i th partite set for $i=1,2, \ldots, n$, where $p_{1} \leq p_{2} \leq \ldots \leq p_{n}$. The n partite sets are denoted by $V_{i}, i=1,2, \ldots, n$. i.e. $\left|V_{i}\right|=p_{i}$ for $i=1,2, \ldots, n$. Furthermore, i_{j} denotes the j th vertex in V_{i} for $i=1,2, \ldots, n$, and $j=1,2, \ldots, p_{i}$. Thus, $K_{n} \cong K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $p_{1}=p_{2}=\ldots=p_{n}=1$. Note that complete n-partite graphs are G vertex-multiplications of complete graphs with order n. In this chapter, we shall focus on complete n-partite graphs, particularly, complete tripartite graphs. We start by listing some existing results of concern.

Plesnik [42], Gutin [13], and Koh and Tan [18] independently proved that the orientation number of a complete multipartite graph is 2 or 3 . Some sufficient and necessary conditions were also established in the same papers. However, a complete characterisation remains elusive.

Theorem 2.1.1 (Plesnik [42], Gutin [13], Koh and Tan [18])
For all positive integers $n \geq 3$ and $p_{1}, p_{2}, \ldots, p_{n}, 2 \leq \bar{d}\left(K\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right) \leq 3$.

Theorem 2.1.2 (Gutin [13], Koh and Tan [18])
For all integers $n \geq 3$ and $p \geq 2, \bar{d}(K(\overbrace{p, p, \ldots, p}^{n \text { terms }}))=2$.

Theorem 2.1.3 (Koh and Tan [18])
Let $n \geq 3$ and $p_{1}, p_{2}, \ldots, p_{n}$ be positive integers. Denote $h=\sum_{k=1}^{n} p_{i}$. If

$$
p_{i}>\binom{h-p_{i}}{\left\lfloor\left(h-p_{i}\right) / 2\right\rfloor},
$$

for some $i=1,2, \ldots, n$, then $\bar{d}\left(K\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right)=3$.

Along a similar line of research, Rajasekaran and Sampathkumar investigated special cases of complete tripartite graphs.

Theorem 2.1.4 (Rajasekaran and Sampathkumar [43])
For $q \geq p \geq 2, \bar{d}(K(1, p, q))=3$.

Theorem 2.1.5 (Koh and Tan [19])
For $q \geq p \geq 2$, if $q \leq\binom{ p}{\lfloor p / 2\rfloor}$, then $\bar{d}(K(2, p, q))=2$.
Theorem 2.1.6 (Rajasekaran and Sampathkumar [43])
For $q \geq 3, \bar{d}(K(2,2, q))=3$.

Theorem 2.1.7 (Rajasekaran and Sampathkumar [43])
For $q \geq 4, \bar{d}(K(2,3, q))=3$.

2.2. A Conjecture On $K(2, p, q)$

Based on Theorems 2.1.6, 2.1.7, and and an unpublished paper "The orientation number of the complete tripartite graph $K(2,4, p)$ ", Rajasekaran and Sampathkumar conjectured that the converse of Theorem 2.1.5 holds for complete tripartite graphs $K(2, p, q), q \geq p \geq 5 . \mathrm{Ng}[40]$ showed for $q \geq p, \bar{d}(K(1,1, p, q))=2$ implies $q \leq\binom{ p}{\lfloor p / 2\rfloor}$. Since an orientation D of $K(2, p, q)$, with $d(D)=2$, is a spanning subdigraph of $K(1,1, p, q)$, the conjecture follows from Ng 's assertion. In this section, we provide an independent proof of the conjecture. The following two lemmas will be found useful in our proof.

Lemma 2.2.1 (Duality)

Let D be an orientation of a graph G. Let \tilde{D} be the orientation of G such that $u v \in E(\tilde{D})$ if and only if $v u \in E(D)$. Then, $d(\tilde{D})=d(D)$.

Proof: Suppose not. Then, there exist some vertices $u, v \in V(\tilde{D})$ such that $d_{\tilde{D}}(u, v)>d(D)$. By definition of $\tilde{D}, d_{D}(v, u)=d_{\tilde{D}}(u, v)$. It follows that $d_{D}(v, u)>$ $d(D)$, a contradiction.

Lemma 2.2.2 Let $G=K\left(p_{1}, p_{2}, \ldots, p_{n}\right), n \geq 3$, and D be an orientation of G. Suppose there exist vertices i_{s} and j_{t} for some i, j, s and t, where $i \neq j, 1 \leq i, j \leq n$, $1 \leq s \leq p_{i}$ and $1 \leq t \leq p_{j}$, such that
(i) $O\left(i_{s}\right) \cap\left(V(G)-V_{j}\right)=O\left(j_{t}\right) \cap\left(V(G)-V_{i}\right)$, or
(ii) $I\left(i_{s}\right) \cap\left(V(G)-V_{j}\right)=I\left(j_{t}\right) \cap\left(V(G)-V_{i}\right)$.

Then, $d(D) \geq 3$.

Proof: Suppose (i). W.l.o.g., we assume $j_{t} \rightarrow i_{s}$. It follows that $d_{D}\left(i_{s}, j_{t}\right)>2$ and $d(D) \geq 3$. (ii) follows now from the Duality Lemma.

Theorem 2.2.3 For any integers $q \geq p \geq 3$, if $\bar{d}(K(2, p, q))=2$, then $q \leq\binom{ p}{\lfloor p / 2\rfloor}$. Proof:

Since $\bar{d}(K(2, p, q))=2$, there exists an orientation D of $K(2, p, q)$ such that $d(D)=2$.

Case 1. $V_{1} \rightarrow V_{2}$.
It follows from $d_{D}\left(3_{i}, 1_{j}\right) \leq 2$, for every $i=1,2, \ldots, q$, and $j=1,2$, that $V_{3} \rightarrow V_{1}$. Also, since $d_{D}\left(2_{i}, 3_{j}\right) \leq 2$ for every $i=1,2, \ldots, p$, and $j=1,2, \ldots, q$, we have $V_{2} \rightarrow V_{3}$. However, $d_{D}\left(3_{i}, 3_{j}\right) \geq 3$ for any $1 \leq i, j \leq q, i \neq j$, which contradicts $d(D)=2$.

Similarly, by the Duality Lemma, we cannot have $V_{2} \rightarrow V_{1}$.

Case 2. $1_{i} \rightarrow V_{2} \rightarrow 1_{3-i}$ for exactly one of $i=1,2$.
W.l.o.g., we may assume that $1_{1} \rightarrow V_{2} \rightarrow 1_{2}$. It follows from $d_{D}\left(1_{2}, 3_{i}\right) \leq 2$ and $d_{D}\left(3_{i}, 1_{1}\right) \leq 2$ for every $i=1,2, \ldots, q$ that $1_{2} \rightarrow V_{3} \rightarrow 1_{1}$. Now, for any $i \neq j$, $1 \leq i, j \leq q, d_{D}\left(3_{i}, 3_{j}\right) \leq 2$ and thus, $O\left(3_{i}\right) \cap V_{2}$ and $O\left(3_{j}\right) \cap V_{2}$ are independent. By Sperner's Lemma, $q \leq\binom{ p}{\lfloor p / 2\rfloor}$.

Case 3. $1_{i} \rightarrow V_{2}$ for exactly one of $i=1,2$.
W.l.o.g., let $i=1$. Furthermore, we assume that $\emptyset \neq O\left(1_{2}\right) \cap V_{2} \subset V_{2}$ in view of Cases 1 and 2. Hence, let $\left|O\left(1_{2}\right) \cap V_{2}\right|=k$, where $0<k<p$. Since $d_{D}\left(u, 3_{j}\right) \leq 2$ for every $u \in O\left(1_{2}\right) \cap V_{2}$ and every $j=1,2, \ldots, q$, it follows that $O\left(1_{2}\right) \cap V_{2} \rightarrow V_{3}$. It also follows from $d_{D}\left(3_{j}, 1_{1}\right) \leq 2$ for every $j=1,2, \ldots, q$, that $V_{3} \rightarrow 1_{1}$.

Partition V_{3} into L_{1} and L_{2} such that $L_{1}:=\left\{v \in V_{3} \mid v \rightarrow 1_{2}\right\}$ and $L_{2}:=\{v \in$ $\left.V_{3} \mid 1_{2} \rightarrow v\right\}$. Note that $L_{1} \rightarrow V_{1}$. Since for each $v \in L_{1}, d_{D}\left(2_{j}, v\right) \leq 2$ for all $j=1,2, \ldots, p$, we have $V_{2} \rightarrow L_{1}$. Thus, $\left|L_{1}\right| \leq 1$, otherwise if $u, v \in L_{1}$, then $d_{D}(u, v) \geq 3$. Also, $\left|L_{2}\right| \leq\binom{ p-k}{\lfloor(p-k) / 2\rfloor}$. Otherwise, by Sperner's Lemma, there exist $3_{i}, 3_{j} \in L_{2}$ such that $O\left(3_{i}\right) \cap V_{2} \subseteq O\left(3_{j}\right) \cap V_{2}$ for some $i \neq j$ and $1 \leq i, j \leq q$, which implies $d_{D}\left(3_{i}, 3_{j}\right)>2$. Hence, $q=\left|V_{3}\right|=\left|L_{1}\right|+\left|L_{2}\right| \leq 1+\binom{p-k}{\lfloor(p-k) / 2\rfloor} \leq$ $1+\binom{p-1}{\lfloor(p-1) / 2\rfloor} \leq\binom{ p}{\lfloor p / 2\rfloor}$.

Similarly, the case where $V_{2} \rightarrow 1_{i}$ for exactly one of $i=1,2$, follows from the Duality Lemma.

Case 4. $\emptyset \neq O\left(1_{i}\right) \cap V_{2} \subset V_{2}$ for $i=1,2$.
Partition V_{2} into the sets $K_{A}:=\left\{v \in V_{2} \mid A \rightarrow v \rightarrow\left(V_{1}-A\right)\right\}$, where $A \subseteq V_{1}$. Similarly, partition V_{3} into the sets $L_{A}:=\left\{v \in V_{3} \mid A \rightarrow v \rightarrow\left(V_{1}-A\right)\right\}$, where $A \subseteq V_{1}$.

Since $d_{D}\left(u, 2_{j}\right) \leq 2$ for any $u \in V_{3}$ and $j=1,2, \ldots, p$, it follows that $L_{\emptyset} \rightarrow K_{\emptyset}$, $L_{\left\{1_{1}\right\}} \rightarrow K_{\left\{1_{1}\right\}} \cup K_{\emptyset}, L_{\left\{1_{2}\right\}} \rightarrow K_{\left\{1_{2}\right\}} \cup K_{\emptyset}$ and $L_{V_{1}} \rightarrow V_{2}$. Similarly, since $d_{D}\left(u, 3_{j}\right) \leq 2$ for any $u \in V_{2}$ and $j=1,2, \ldots, q$, it follows that $K_{\emptyset} \rightarrow L_{\emptyset}, K_{\left\{1_{1}\right\}} \rightarrow L_{\left\{1_{1}\right\}} \cup L_{\emptyset}$,
$K_{\left\{1_{2}\right\}} \rightarrow L_{\left\{1_{2}\right\}} \cup L_{\emptyset}$ and $K_{V_{1}} \rightarrow V_{2}$.
Invoking Sperner's Lemma on each $L_{A}, A \subseteq V_{1}$, we have $\left|L_{\emptyset}\right| \leq 1,\left|L_{\left\{1_{1}\right\}}\right| \leq$ $\left(\begin{array}{l}\left.\left|\mid K_{\left\{1_{2}\right\}}\right\} \mid / 2\right\rfloor\end{array}\right),\left|L_{\left\{1_{2}\right\}}\right| \leq\binom{\left|K_{\left\{1_{1}\right\}}\right|}{\left\lfloor\left|K_{\left.11_{1}\right\}}\right| / 2\right\}}$ and $\left|L_{V_{1}}\right| \leq 1$. Otherwise, there would exist $3_{i}, 3_{j} \in L_{A}$ such that $O\left(3_{i}\right) \cap V_{2} \subseteq O\left(3_{j}\right) \cap V_{2}$ for some $i \neq j$ and $1 \leq i, j \leq q$, implying $d_{D}\left(3_{i}, 3_{j}\right)>2$.

Subcase 4.1. $\left|K_{V_{1}}\right|=0$.
For $i=1,2, K_{\left\{1_{i}\right\}} \neq \emptyset$, since $O\left(1_{i}\right) \cap V_{2} \neq \emptyset$ by assumption. From Lemma 2.2.2, it follows that $L_{\left\{1_{1}\right\}}=L_{\left\{1_{2}\right\}}=\emptyset$. So, $q=\left|V_{3}\right|=\left|L_{\emptyset}\right|+\left|L_{V_{1}}\right| \leq 1+1<\binom{p}{\lfloor p / 2\rfloor}$.

Subcase 4.2. $\left|K_{V_{1}}\right|>0$.
Then, $L_{V_{1}}=\emptyset$ by Lemma 2.2.2. Recall that $\left|K_{\emptyset}\right|+\left|K_{\left\{1_{1}\right\}}\right|+\left|K_{\left\{1{ }_{2}\right\}}\right|+\left|K_{V_{1}}\right|=p$. By Lemma 2.2.2, for each $i=1,2$, if $K_{\left\{1_{i}\right\}} \neq \emptyset$, then $L_{\left\{1_{i}\right\}}=\emptyset$. Hence, if $K_{\left\{1_{1}\right\}} \neq \emptyset$ and $K_{\left\{1_{2}\right\}} \neq \emptyset$, then $q=\left|V_{3}\right|=\left|L_{\emptyset}\right| \leq 1$. If $K_{\left\{1_{1}\right\}}=\emptyset$ and $K_{\left\{1_{2}\right\}} \neq \emptyset$, then $q=\left|L_{\emptyset}\right|+\left|L_{\left\{1_{1}\right\}}\right| \leq 1+\binom{\left|K_{\left\{1_{2}\right\}}\right|}{\left\lfloor\left|K_{\left\{1_{2}\right\}}\right| 2\right\rfloor} \leq 1+\binom{p-1}{\lfloor(p-1) / 2\rfloor}$. By symmetry, if $K_{\left\{1_{1}\right\}} \neq \emptyset$ and $K_{\left\{1_{2}\right\}}=\emptyset$, it also follows that $q \leq 1+\binom{p-1}{\lfloor(p-1) / 2\rfloor}$. Lastly, if $K_{\left\{1_{1}\right\}}=K_{\left\{1_{2}\right\}}=\emptyset$, it follows that $q=\left|L_{\emptyset}\right|+\left|L_{\left\{1_{1}\right\}}\right|+\left|L_{\left\{1_{2}\right\}}\right| \leq 1+1+1$. Therefore, $q \leq \max \{1+$ $\left.\binom{p-1}{\lfloor(p-1) / 2\rfloor}, 3\right\} \leq\binom{ p}{\lfloor p / 2\rfloor}$.

In the proof of Theorem 2.2.3, we can be more conscientious and make deductions about the optimal orientations of $K(2, p, q)$ if $1+\binom{p-1}{\lfloor(p-1) / 2\rfloor}<q \leq\binom{ p}{\lfloor p / 2\rfloor}$.

Corollary 2.2.4 For any integers $p \geq 4$ and $1+\binom{p-1}{\lfloor(p-1) / 2\rfloor}<q \leq\binom{ p}{\lfloor p / 2\rfloor}$, let D be an optimal orientation of $K(2, p, q)$, where $d(D)=2$. Then, in D,
(i) $1_{i} \rightarrow V_{2} \rightarrow 1_{3-i} \rightarrow V_{3} \rightarrow 1_{i}$ for exactly one of $i=1,2$.
(ii) $\left\{O\left(3_{i}\right) \cap V_{2} \mid i=1,2, \ldots, q\right\}$ is a family of independent subsets of $\left\{2_{1}, 2_{2}, \ldots, 2_{p}\right\}$. In particular, there are at most two optimal orientations (up to isomorphism) in the case where $q=\binom{p}{\lfloor p / 2\rfloor}$.

Proof:
Case 1 of the proof of Theorem 2.2.3 shows that it is impossible for $V_{1} \rightarrow V_{2}$ or $V_{2} \rightarrow V_{1}$. Since $q>1+\binom{p-1}{\lfloor(p-1) / 2\rfloor}$ and $p \geq 4$, Cases 3 and 4 are also impossible. This leaves us with the result of Case 2, i.e. $1_{i} \rightarrow V_{2} \rightarrow 1_{3-i} \rightarrow V_{3} \rightarrow 1_{i}$ for exactly one of $i=1,2$.

Now, for any i, j where $i \neq j$ and $1 \leq i, j \leq q, 3_{i}, 3_{j} \in V_{3}, d\left(3_{i}, 3_{j}\right)=2$ if and only if $O\left(3_{i}\right) \cap V_{2} \nsubseteq O\left(3_{j}\right) \cap V_{2}$. Thus, (ii) follows.

Furthermore, if $q=\binom{p}{\lfloor p / 2\rfloor}$, then $\left|O\left(3_{i}\right) \cap V_{2}\right|=\left\lfloor\frac{p}{2}\right\rfloor$ or $\left\lceil\frac{p}{2}\right\rceil$ by Sperner's Lemma. Thus, there are at most two optimal orientations (up to isomorphism) D.

Theorem 2.2.3 completes the characterisation of complete tripartite graphs $K(2, p, q)$ with $\bar{d}(K(2, p, q))=2$. Together with Theorems 2.1.5 and 2.1.6, we have the following theorem. Interestingly, this characterisation has the same bounds for q as the general bipartite graph $K(p, q)$. (See Theorem 1.2.5)

Theorem 2.2.5 For any integers $q \geq p \geq 2, \bar{d}(K(2, p, q))=2$ if and only if $q \leq\binom{ p}{\lfloor p / 2\rfloor}$.

In the remainder of this section, we describe our attempt to generalise the technique used in Theorem 2.2.3 for complete tripartite graphs $K(p, q, r), 3 \leq p \leq q \leq r$. To this end, we first investigate optimal orientations of complete multipartite graphs with at least 3 partite sets. Proposition 2.2.6 and Corollary 2.2.7 are two commonly known results.

Proposition 2.2.6 Suppose T is a multipartite tournament, with partite sets V_{i}, $i=1,2, \ldots, n$, where $n \geq 3$. Then, $d(T)=2$ if and only if the following two conditions are satisfied in T.
(i) If $u, v \in V_{i}$ for some $i=1,2, \ldots, n$, then u and v lie on a directed C_{4}.
(ii) If $u \in V_{i}, v \in V_{j}$ for some $1 \leq i<j \leq n$, then u and v lie on a directed C_{3}.

Proof:
(\Rightarrow)
(i) Since $d(T)=2$, it follows that $d(u, v)=2$ for any $u, v \in V_{i}$, for some $i=1,2, \ldots, n$. Thus, there exist a $u-v$ path and $v-u$ path, each of length 2 , which form a directed C_{4}.
(ii) Now, let $u \in V_{i}, v \in V_{j}$ for some $1 \leq i<j \leq n$. W.l.o.g., assume $v \rightarrow u$. Since $d(u, v) \leq 2$, it follows that there exists a $u-v$ path of length 2 . Hence, u and v lie on a directed C_{3}.
(\Leftarrow)
It follows from (i) and (ii) that $d(u, v) \leq 2$ for any two vertices u and v in $V(T)$.

Corollary 2.2.7 Suppose T is a multipartite tournament, with partite sets $V_{i}, i=$ $1,2, \ldots, n$, where $n \geq 3$. If $d(T)=2$, then every arc in T lies on a directed C_{3}.

The next lemma counts the number of subsets independent of a given set S.

Lemma 2.2.8 Let $\emptyset \neq S \subset \mathbb{N}_{p}$. If $I(S)=\left\{T \subset \mathbb{N}_{p} \mid T \nsubseteq S\right.$ and $\left.S \nsubseteq T\right\}$, then $|I(S)|=2^{p}-2^{|S|}-2^{p-|S|}+1$. Furthermore, the maximum is attained when $|S|=\left\lfloor\frac{p}{2}\right\rfloor$ or $|S|=\left\lceil\frac{p}{2}\right\rceil$.

Proof:
Case 1. $|S|=1$.
Let $S \neq T \subset \mathbb{N}_{p}$. If $|T|=1$, then T and S are independent. There are $\binom{p}{1}-1$ such subsets. Suppose $2 \leq|T| \leq p-1$, then T and S are independent if and only if $S \nsubseteq T$. There are $\binom{p}{|T|}-\binom{p-|S|}{|T|-|S|}$ such subsets. Therefore, $|I(S)|=$ $\binom{p}{1}-1+\sum_{i=2}^{p-1}\left[\binom{p}{i}-\binom{p-1}{i-1}\right]=\sum_{i=1}^{p-1}\binom{p}{i}-\sum_{i=1}^{p-1}\binom{p-1}{i-1}=2^{p}-\binom{p}{0}-\binom{p}{p}-\left[2^{(p-1)}-\binom{p-1}{p-1}\right]=$ $2^{p}-2-2^{(p-1)}+1$.

Case 2. $|S|=p-1$.
Let $S \neq T \subset \mathbb{N}_{p}$. If $|T|=p-1$, then T and S are independent. There are $\binom{p}{p-1}-1$ such subsets. Suppose $1 \leq|T| \leq p-2$, then T and S are independent
if and only if $T \nsubseteq S$. There are $\binom{p}{|T|}-\left(\begin{array}{c}\left.\left\lvert\, \begin{array}{l}|S| \\ |T|\end{array}\right.\right) \text { such subsets. Therefore, }|I(S)|=~\end{array}\right.$ $\binom{p}{p-1}-1+\sum_{i=1}^{p-2}\left[\binom{p}{i}-\binom{p-1}{i}\right]=\sum_{i=1}^{p-1}\binom{p}{i}-\sum_{i=1}^{p-1}\binom{p-1}{i}=2^{p}-\binom{p}{0}-\binom{p}{p}-\left[2^{(p-1)}-\binom{p-1}{0}\right]=$ $2^{p}-2^{(p-1)}-2+1$.

Case 3. $1<|S|<p-1$.
Let $S \neq T \subset \mathbb{N}_{p}$. If $|T|=|S|$, then T and S are independent. There are $\binom{p}{|S|}-1$ such subsets. If $1 \leq|T| \leq|S|-1$, then T and S are independent if and
 T and S are independent if and only if $S \nsubseteq T$. There are $\binom{p}{|T|}-\binom{p-|S|}{|T|-|S|}$ such subsets. Therefore, $|I(S)|=\binom{p}{|S|}-1+\sum_{i=1}^{|S|-1}\left[\binom{p}{i}-\binom{|S|}{i}\right]+\sum_{i=|S|+1}^{p-1}\left[\binom{p}{i}-\binom{p-|S|}{i-|S|}\right]=$ $\sum_{i=1}^{p-1}\binom{p}{i}-\sum_{i=1}^{|S|-1}\binom{|S|}{i}-\sum_{i=|S|+1}^{p-1}\binom{p-|S|}{i-|S|}-1=2^{p}-\binom{p}{0}-\binom{p}{p}-\left[2^{|S|}-\binom{|S|}{0}-\binom{|S|}{|S|}\right]-\left[2^{p-|S|}-\right.$ $\left.\binom{p-|S|}{0}-\binom{p-|S|}{p-|S|}\right]-1=2^{p}-2^{|S|}-2^{p-|S|}+1$.

Lastly, let $f(x):=2^{x}+2^{p-x}$. Since $f^{\prime}(x)=\left(2^{x}-2^{p-x}\right)(\ln 2)$, it is easy to see that $f(x)$ has only one minimum point for all $x \in \mathbb{R}$. Furthermore, $f(x)$ attains its minimum value of $2^{\frac{p}{2}}+2^{\frac{p}{2}}$, when $x=\frac{p}{2}$. Therefore, the function $g(|S|)=$ $2^{p}-2^{|S|}-2^{p-|S|}+1$ attains its maximum value when $|S|=\left\lfloor\frac{p}{2}\right\rfloor$ or $|S|=\left\lceil\frac{p}{2}\right\rceil$.

Discussion 2.2.9

Suppose p, q, r are integers where $3 \leq p \leq q \leq r$ and $\bar{d}(K(p, q, r))=2$. Our objective is an upper bound of r, in terms of p and q.

Let D be an orientation of $K(p, q, r)$, where $d(D)=2$. Partition V_{2} into the sets $K_{A}:=\left\{v \in V_{2} \mid A \rightarrow v \rightarrow\left(V_{1}-A\right)\right\}$, where $A \subseteq V_{1}$. Similarly, partition V_{3} into the sets $L_{A}:=\left\{v \in V_{3} \mid A \rightarrow v \rightarrow\left(V_{1}-A\right)\right\}$, where $A \subseteq V_{1}$.

Let $A, B \subseteq V_{1}$. Suppose there exist $u \in L_{A}$ and $v \in K_{B}$. If $B \subseteq A$, then $O(u) \cap V_{1}=V_{1}-A \subseteq V_{1}-B=O(v) \cap V_{1}$. Since $d_{D}(u, v) \leq 2$, it follows that $u \rightarrow v$. This holds for each $u \in L_{A}$ and each $v \in K_{B}$. Hence, we have $L_{A} \rightarrow K_{B}$.

In particular, $L_{V_{1}} \rightarrow K_{B}$ for every $B \subseteq V_{1}$ and $L_{A} \rightarrow K_{\emptyset}$ for every $A \subseteq V_{1}$. i.e. $L_{V_{1}} \rightarrow V_{2}$ and $V_{3} \rightarrow K_{\emptyset}$.

On the other hand, if $A \subseteq B$, then $O(v) \cap V_{1}=V_{1}-B \subseteq V_{1}-A=O(u) \cap V_{1}$. Since $d_{D}(v, u) \leq 2$, it follows that $v \rightarrow u$, thus, $K_{B} \rightarrow L_{A}$. In particular, $K_{V_{1}} \rightarrow V_{3}$ and $V_{2} \rightarrow L_{\emptyset}$. Furthermore, for any $C \subseteq V_{1}$, at least one of L_{C} and K_{C} is empty by Lemma 2.2.2.

Let $A \subseteq V_{1}$ and consider two vertices v and w in L_{A}. Then, v and w have common in-vertices and out-vertices except possibly the vertices in the sets K_{B}, where $B \subseteq V_{1}$ and, A and B are independent. Since $d_{D}(v, w) \leq 2$ and $d_{D}(w, v) \leq 2$, it follows that $O(v)$ and $O(w)$ are independent. Therefore, $\left|L_{A}\right| \leq\binom{\mathscr{L}_{A}}{\left.\mathscr{L}_{A} / 2\right\rfloor}$, where $\mathscr{L}_{A}:=\sum_{A \notin B, B \notin A}\left|K_{B}\right|$. In particular, $\left|L_{\emptyset}\right| \leq 1$ and $\left|L_{V_{1}}\right| \leq 1$.

Now, $r=\left|V_{3}\right|=\sum_{A \subseteq V_{1}}\left|L_{A}\right| \leq\left|L_{\emptyset}\right|+\left|L_{V_{1}}\right|+\sum_{\emptyset \neq A \subset V_{1}}\left|L_{A}\right| \leq 2+\sum_{\emptyset \neq A \subset V_{1}}\binom{\mathscr{L}_{A}}{\left.\mathscr{L}_{A} / 2\right\rfloor}$.

Case 1. Exactly one element $K_{B_{0}}$ of $\left\{K_{B} \mid B \subseteq V_{1}\right\}$ is nonempty.
Then, $\left|K_{B_{0}}\right|=q$. Let $\left|B_{0}\right|=b$. Thus,

$$
\begin{aligned}
r & \leq 2+\sum_{\substack{\emptyset \neq A \subset V_{1}}}\binom{\mathscr{L}_{A}}{\left\lfloor\mathscr{L}_{A} / 2\right\rfloor} \\
& =2+\sum_{\substack{\emptyset \neq A \subset V_{1} \\
A \subseteq B_{0} \text { or } B_{0} \subseteq A}} 1+\sum_{\substack { \emptyset \neq A \subset V_{1} \\
\begin{subarray}{c}{\square \\
B_{0}, B_{0} \nsubseteq A{ \emptyset \neq A \subset V _ { 1 } \\
\begin{subarray} { c } { \square \\
B _ { 0 } , B _ { 0 } \nsubseteq A } }\end{subarray}}\binom{\left|K_{B_{0}}\right|}{\left\lfloor\left|K_{B_{0}}\right| / 2\right\rfloor} \\
& =2+2^{p}-2-\left(2^{p}-2^{b}-2^{p-b}+1\right)+\left(2^{p}-2^{b}-2^{p-b}+1\right)\binom{q}{\lfloor q / 2\rfloor} \\
& =\left(2^{p}+1\right)\binom{q}{\lfloor q / 2\rfloor}-1+\left(2^{b}+2^{p-b}\right)\left[1-\binom{q}{\lfloor q / 2\rfloor}\right] \\
& \leq\left(2^{p}+1\right)\binom{q}{\lfloor q / 2\rfloor}-1+\left(2^{\lfloor p / 2\rfloor}+2^{p-\lfloor p / 2\rfloor}\right)\left[1-\binom{q}{\lfloor q / 2\rfloor}\right] \\
& =\left(2^{p}-2^{\lfloor p / 2\rfloor}-2^{\lceil p / 2\rceil}+1\right)\binom{q}{\lfloor q / 2\rfloor}+2^{\lfloor p / 2\rfloor}+2^{\lceil p / 2\rceil}-1 .
\end{aligned}
$$

By Lemma 2.2.8, the number of subsets of V_{1} independent of B_{0} is $2^{p}-2^{b}-$ $2^{p-b}+1$. Since the number of elements in $2^{V_{1}}-\left\{\emptyset, V_{1}\right\}$ not independent of B_{0} is $2^{p}-2-\left(2^{p}-2^{b}-2^{p-b}+1\right)$, the second equality follows. The last inequality follows
from the fact that $f(x)$ (as defined in Lemma 2.2.8) attains the minimum value of $2^{\frac{p}{2}}+2^{\frac{p}{2}}$, when $x=\frac{p}{2}$.

Case 2. At least two elements of $\left\{K_{B} \mid B \subseteq V_{1}\right\}$ are nonempty.
Suppose $\left|K_{B_{1}}\right|+\left|K_{B_{2}}\right|+\ldots+\left|K_{B_{t}}\right|=q$, where $\left|B_{i}\right|=b_{i}$ for $i=1,2, \ldots, t$, for some $t \geq 2$. For $j=0,1,2, \ldots, t$, denote the number of elements in $2^{V_{1}}-\left\{\emptyset, V_{1}\right\}$ that are independent of exactly j elements of $\left\{B_{i} \mid i=1,2, \ldots, t\right\}$ by $E(j)$. For $j=1,2, \ldots, t$, let $\omega\left(B_{i_{1}} B_{i_{2}} \ldots B_{i_{j}}\right)$ denote the number of elements in $2^{V_{1}}-\left\{\emptyset, V_{1}\right\}$ that are independent of exactly the sets $B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{j}}$. Then,

$$
\begin{align*}
r \leq & 2+\sum_{\emptyset \neq A \subset V_{1}}\binom{\mathscr{L}_{A}}{\left\lfloor\mathscr{L}_{A} / 2\right\rfloor} \\
\leq & 2+E(0)+\sum_{i=1}^{t} \omega\left(B_{i}\right)\binom{\left|K_{B_{i}}\right|}{\left\lfloor\left|K_{B_{i}}\right| / 2\right\rfloor}+\sum_{i_{1}<i_{2}} \omega\left(B_{i_{1}} B_{i_{2}}\right)\binom{\left|K_{B_{i_{1}}}\right|+\left|K_{B_{i_{2}}}\right|}{\left\lfloor\left(\left|K_{B_{i_{1}}}\right|+\left|K_{B_{i_{2}}}\right|\right) / 2\right\rfloor} \\
& +\ldots+\sum_{i_{1}<i_{2}<\ldots<i_{t}} \omega\left(B_{i_{1}} B_{i_{2}} \ldots B_{i_{t}}\right)\binom{\left|K_{B_{i_{1}}}\right|+\left|K_{B_{i_{2}}}\right|+\ldots+\left|K_{B_{i_{i}}}\right|}{\left\lfloor\left(\left|K_{B_{i_{1}}}\right|+\left|K_{B_{i_{2}}}\right|+\ldots+\left|K_{B_{i_{i}}}\right|\right) / 2\right\rfloor} . \tag{2.1}
\end{align*}
$$

It will be ideal if we can simplify (2.1) and derive an upper bound in terms of p and q, as in Case 1. The difficulty here can be broken down into two issues.

1. Does there exist a general expression (or good upper bound) for $\omega\left(B_{i_{1}} B_{i_{2}} \ldots B_{i_{j}}\right)$ for $j \geq 2$? From Lemma 2.2.8, we have $\omega\left(B_{i}\right)=2^{p}-2^{b_{i}}-2^{p-b_{i}}+1$. Since the number of elements in $2^{V_{1}}-\left\{\emptyset, V_{1}\right\}$ that are independent of $B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{j}}$ is at most the number of elements that are independent of any one of them, it follows that $\omega\left(B_{i_{1}} B_{i_{2}} \ldots B_{i_{j}}\right) \leq \omega\left(B_{i^{*}}\right)$, where i^{*} be such that $b_{i^{*}}=\min _{1 \leq i \leq t}\left\{\left|b_{i}-\frac{p}{2}\right|\right\}$. However, to evaluate $\omega\left(B_{i_{1}} B_{i_{2}} \ldots B_{i_{j}}\right)$ accurately, we need an analogue of Lemma 2.2.8. This is formally phrased as follows.

Problem 2.2.10 If $\emptyset \neq B_{i} \subset \mathbb{N}_{p}$ for $i=1,2, \ldots, j$, where $j \geq 2$, determine the number of elements in $2^{V_{1}}-\left\{\emptyset, V_{1}\right\}$ that are independent of each $B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{j}}$. It is important to note that for $1 \leq x<y \leq j, B_{i_{x}}$ and $B_{i_{y}}$ may or may not be independent. Though there is extensive literature available on generalisation of

Sperner families, we did not find any paper which tackles Problem 2.2.10 directly.
2. The other significant group of terms in (2.1) are the terms $\binom{\left|K_{B_{i_{2}}}\right|+\left|K_{B_{i_{2}}}\right|+\ldots+\left|K_{B_{i_{j}}}\right|}{\left.\left(\left|K_{B_{i_{1}}}\right|+\left|K_{B_{i}}\right|+\ldots+\left|K_{B_{i_{j}}}\right|\right) / 2\right\rfloor}$, where $j \geq 2$. Since $\left|K_{B_{1}}\right|+\left|K_{B_{2}}\right|+\ldots+\left|K_{B_{t}}\right|=q$, where each $K_{B_{i}} \neq \emptyset$, it follows easily that $\binom{\left|K_{B_{i_{1}}}\right|+\left|K_{B_{i_{2}}}\right|+\ldots+\left|K_{B_{i_{i}}}\right|}{\left\lfloor\left(\left|K_{B_{i_{1}}}\right|+\left|K_{B_{i_{2}}}\right|+\ldots+\left|K_{B_{i_{j}}}\right|\right) / 2\right\rfloor} \leq\binom{ q-(t-j)}{\lfloor q-(t-j) \mid / 2\rfloor}$ for $j=1,2, \ldots, t$. However, this is not a good bound for large q. Hence, for fixed $B_{1}, B_{2}, \ldots, B_{t}$, we need to optimally allocate q vertices to $K_{B_{i}}, i=1,2, \ldots, t$ such that the maximum value of (2.1) is attained. This required optimal allocation is the second difficult issue.

2.3. \quad Sufficient Conditions For $\bar{d}(K(p, p, q))=2$

Apart from $K(2, p, q)$, Rajasekaran and Sampathkumar also studied complete tripartite graphs of the form $K(p, p, q)$.

Theorem 2.3.1 (Rajasekaran and Sampathkumar [43])

For $p \geq 4,4 \leq q \leq 2 p, \bar{d}(K(p, p, q))=2$.

In this section, we provide some sufficient conditions on p and q so that $\bar{d}(K(p, p, q))=$ 2. Our result (see Theorem 2.3.17) improves significantly the upper bound $2 p$ of q given in Theorem 2.3.1, especially when p increases. We begin by solving a combinatorics problem, which will be of assistance later.

Suppose $p \geq 4$ is a composite integer, say $p=k d$ for some $k, d \in \mathbb{Z}^{+}, 1<k, d<$ p, i.e. k and d are non-trivial divisors of p. Let there be $2 d$ groups of k distinct elements each. Now, what is the number of ways to select p elements, such that some but not all are chosen from each group?

Definition 2.3.2 Suppose $p \geq 4$ is an integer such that $p=k d$ for some non-trivial divisors $k, d \in \mathbb{Z}^{+}$. Denote a solution $\left(x_{1}, x_{2}, \ldots, x_{2 d}\right)^{*}$ if $x_{1}, x_{2}, \ldots, x_{2 d}$ satisfies

$$
\begin{align*}
& x_{1}+x_{2}+\ldots+x_{2 d}=p, \text { and } \tag{2.2}\\
& 1 \leq x_{i} \leq k-1, \text { for } i=1,2, \ldots, 2 d .
\end{align*}
$$

$$
\text { Define } \Phi^{*}(p, d):=\sum_{\left(x_{1}, x_{2}, \ldots, x_{2 d}\right)^{*}}\binom{k}{x_{1}}\binom{k}{x_{2}} \ldots\binom{k}{x_{2 d}} \text {. }
$$

Definition 2.3.3 Suppose $p \geq 4$ is an integer such that $p=k d$ for some non-trivial divisors $k, d \in \mathbb{Z}^{+}$. For any non-negative integers i, j, define $[i, j]$ to be the set of solutions $\left(x_{1}, x_{2}, \ldots, x_{2 d}\right)$ satisfying

$$
\begin{aligned}
& x_{1}+x_{2}+\ldots+x_{2 d}=p, \\
& x_{s_{m}}=0, \text { for } m=1,2, \ldots, i \text {, where }\left\{s_{1}, s_{2}, \ldots, s_{i}\right\} \subseteq\{1,2, \ldots, 2 d\}, \\
& x_{t_{n}}=k, \text { for } n=1,2, \ldots, j \text {, where }\left\{t_{1}, t_{2}, \ldots, t_{j}\right\} \subseteq\{1,2, \ldots, 2 d\} \text {, and } \\
& 1 \leq x_{r} \leq k-1, \text { for } r \in\{1,2, \ldots, 2 d\}-\left(\left\{s_{1}, s_{2}, \ldots, s_{i}\right\} \cup\left\{t_{1}, t_{2}, \ldots, t_{j}\right\}\right) .
\end{aligned}
$$

Furthermore, we denote $\Phi(p, d,[i, j]):=\sum_{\left(x_{1}, x_{2}, \ldots, x_{2 d}\right) \in[i, j]}\binom{k}{x_{1}}\binom{k}{x_{2}} \ldots\binom{k}{x_{2 d}}$.

Observation 2.3.4

(a) $\Phi(p, d,[i, j]) \geq 0$ for $0 \leq i, j \leq d$.
(b) For each $[i, j]$ defined above, $0 \leq i, j \leq d$.
(c) $\Phi(p, d,[d, d])=\binom{2 d}{d}$.
(d) $\Phi(p, d,[i, d])=\Phi(p, d,[d, i])=0$ for $0 \leq i \leq d-1$.
(e) If p is even, then $\Phi^{*}\left(p, \frac{p}{2}\right)=2^{p}$.

Proof:
(a) This follows directly from the definition of $\Phi(p, d,[i, j])$.
(b) Suppose $i>d$. Hence, $\sum_{h=1}^{2 d} x_{h}=\sum_{m=1}^{i} x_{s_{m}}+\sum_{h \neq s_{m}} x_{h} \leq 0+(2 d-i) k<d k=p$, a contradiction. Similarly, if $j>d$, then $\sum_{h=1}^{2 d} x_{h} \geq \sum_{n=1}^{j} x_{t_{n}}=j k>d k=p$, a contradiction.
(c) $\Phi(p, d,[d, d])=\binom{2 d}{d, d, 0}\binom{k}{0}^{d}\binom{k}{k}^{d}=\binom{2 d}{d}$.
(d) Observe that $[i, d]=\emptyset$ for every $i, 0 \leq i \leq d-1$. For if $x_{t_{n}}=k$, for $n=$ $1,2, \ldots, d$, then $\sum_{h=1}^{2 d} x_{h}=p$ implies $x_{r}=0$ for all $r \neq t_{n}$, i.e. $i=d$, a contradiction. Similarly, $[d, i]=\emptyset$ for every $i, 0 \leq i \leq d-1$. For if $x_{s_{m}}=0$, for $m=1,2, \ldots, d$, then $\sum_{h=1}^{2 d} x_{h}=p$ implies $x_{r}=k$ for all $r \neq s_{m}$, i.e. $i=d$, a contradiction. Hence, $\Phi(p, d,[i, d])=\Phi(p, d,[d, i])=0$ for all $i, 0 \leq i \leq d-1$.
(e) Let $p=2 d$. Then, $k=2$ and $\left(x_{1}, x_{2}, \ldots, x_{2 d}\right)=(1,1, \ldots, 1)$ is the only solution satisfying (2.2). Hence, $\Phi^{*}\left(p, \frac{p}{2}\right)=\binom{k}{1}^{2 d}=2^{p}$.

Now, our aim is to determine $\Phi^{*}(p, d)$, which can be seen as $\Phi^{*}(p, d)=\Phi(p, d,[0,0])$. In the proof of our next result, we make use of the following combinatorial identities which we state without proof.

Lemma 2.3.5 For non-negative integers $x_{i}, n_{i}, n, k, r, n \geq 1, r \leq k \leq n$ and $x_{i} \leq n_{i}$ for $i=1,2 \ldots, r$,
(a) $\binom{n}{k}\binom{k}{r}=\binom{n}{r}\binom{n-r}{k-r}$.
(b) $\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\ldots+(-1)^{n}\binom{n}{n}=0$.
(c) $\sum_{x_{1}+x_{2}+\ldots x_{r}=p}\binom{n_{1}}{x_{1}}\binom{n_{2}}{x_{2}} \ldots\binom{n_{r}}{x_{r}}=\binom{n_{1}+n_{2}+\ldots+n_{r}}{p}$. (Generalised Vandermonde's identity)

Lemma 2.3.6 Suppose $p \geq 4$ is an integer such that $p=k d$ for some non-trivial divisors $k, d \in \mathbb{Z}^{+}$. Then, for $0 \leq i, j \leq d$,
$\Phi(p, d,[i, j])=\sum_{s=i}^{d} \sum_{t=j}^{d}\left[(-1)^{(s-i)+(t-j)}\binom{2 d}{s, t, 2 d-(s+t)}\binom{(2 d-(s+t)) k}{(d-t) k}\binom{s}{i}\binom{t}{j}\right]$.
Proof: Let μ, λ be any two integers such that $i \leq \mu \leq d$ and $j \leq \lambda \leq d$. We proceed using a double counting method. Suppose $\alpha:=\binom{k}{\bar{x}_{1}}\binom{k}{\bar{x}_{2}} \ldots\binom{k}{\bar{x}_{2 d}}$, where $\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{2 d}\right)$ is an element of $[\mu, \lambda]$. We shall show that each α contributes the same count to both sides of the equality.

Case 1. $\mu=i$ and $\lambda=j$.
On the left side, α is counted exactly once. The expression $\binom{2 d}{s, t, 2 d-(s+t)}\binom{k}{0}^{s}\binom{k}{k}^{t}\left(\begin{array}{c}\binom{(2 d-(s+t)) k}{(d-t) k}\end{array}\right.$ represents choosing s and t groups from all $2 d$ groups of k elements to select 0 and k elements, respectively, from each group, after which $(d-t) k$ elements are selected from the remaining $(2 d-(s+t)) k$ elements to form a total of $p=d k$ selected elements.

Thus, on the right, α is counted exactly once in the first term $(-1)^{(i-i)+(j-j)}\left(\begin{array}{c}2 d, j, 2 d-(i+j)\end{array}\right)$ $(\underset{(d-j) k}{(2 d-(i+j) k})\binom{i}{i}\binom{j}{j}=\binom{2 d}{i, j, 2 d-(i+j)}\binom{k}{0}^{i}\binom{k}{k}^{j}\binom{(2 d-(i+j)) k}{(d-j) k}$ and contributes a zero count in the subsequent terms $\left(\begin{array}{c}\substack{s, t, 2 d-(s+t)}\end{array}\right)\binom{(2 d-(s+t)) k}{(d-t) k}$ if $s>i$ or $t>j$. Thus, α is counted once on each side.

By definition of α, α is counted by the term, $\Phi(p, d,[i, j])$, on the left if and only if $[\mu, \lambda]=[i, j]$. Therefore, α has a zero count on the left side for the following three cases. It suffices to show that α contributes to a count of zero on the right in each of the following cases as well.

Case 2. $\mu=i$ and $\lambda>j$.
The λ groups of k in α could be assembled with j groups of k from $\left(\begin{array}{c}2 d, j 2 d-(i+j)\end{array}\right)$ and $\lambda-j$ groups of k that are possible from $\binom{(2 d-(i+j)) k}{(d-j) k}$, i.e. α is counted $\binom{\lambda}{j}$ times in $(\underset{i, j, 2 d-(i+j)}{2 d})\binom{(2 d-(i+j)) k}{(d-j) k}$. So, on the right, α is counted

$$
\begin{gathered}
\binom{\lambda}{j} \text { times in }\binom{2 d}{i, j, 2 d-(i+j)}\binom{(2 d-(i+j)) k}{(d-j) k}, \\
\binom{\lambda}{j+1} \text { times in }\binom{2 d}{i, j+1,2 d-(i+j+1)}\binom{(2 d-(i+j+1)) k}{(d-(j+1)) k}, \\
\vdots \\
\binom{\lambda}{\lambda} \operatorname{times} \text { in }\binom{2 d}{i, \lambda, 2 d-(i+\lambda)}\binom{(2 d-(i+\lambda)) k}{(d-\lambda) k} .
\end{gathered}
$$

and none in the subsequent terms $\binom{2 d}{s, t, 2 d-(s+t)}\binom{(2 d-(s+t)) k}{(d-t) k}$ if $s>i$ or $t>\lambda$. So, α has a total count of $\sum_{s=i}^{i} \sum_{t=j}^{\lambda}\left[(-1)^{(s-i)+(t-j)}\binom{\lambda}{t}\binom{s}{i}\binom{t}{j}\right]=(-1)^{(i-i)}\binom{i}{i} \sum_{t=j}^{\lambda}(-1)^{(t-j)}\binom{\lambda}{t}\binom{t}{j}$ $=\sum_{t=j}^{\lambda}(-1)^{(t-j)}\binom{\lambda}{j}\binom{\lambda-j}{t-j}=\binom{\lambda}{j} \sum_{t=j}^{\lambda}(-1)^{(t-j)}\binom{\lambda-j}{t-j}=\binom{\lambda}{j}(0)=0$, where Lemmas 2.3.5(a) and 2.3.5(b) were invoked in the second and fourth equalities respectively. Thus, α has a zero count on each side.

Case 3. $\mu>i$ and $\lambda=j$.
Similar to Case 2.

Case 4. $\mu>i$ and $\lambda>j$.
On the right, α is counted $\binom{\mu}{s}\binom{\lambda}{t}$ times in the term $\binom{2 d}{s, t, 2 d-(s+t)}\binom{(2 d-(s+t)) k}{(d-t) k}$, $i \leq s \leq \mu$ and $j \leq t \leq \lambda$ and 0 times if $\mu<s \leq d$ or $\lambda<t \leq d$. In other words, on the right, α is counted

$$
\begin{aligned}
& \sum_{s=i}^{\mu} \sum_{t=j}^{\lambda}\left[(-1)^{(s-i)+(t-j)}\binom{\mu}{s}\binom{\lambda}{t}\binom{s}{i}\binom{t}{j}\right. \\
& =\sum_{s=i}^{\mu}\left\{(-1)^{(s-i)}\binom{\mu}{s}\binom{s}{i} \sum_{t=j}^{\lambda}\left[(-1)^{(t-j)}\binom{\lambda}{t}\binom{t}{j}\right]\right\} \\
& =\sum_{s=i}^{\mu}\left\{(-1)^{(s-i)}\binom{\mu}{s}\binom{s}{i} \sum_{t=j}^{\lambda}\left[(-1)^{(t-j)}\binom{\lambda}{j}\binom{\lambda-j}{t-j}\right]\right\} \\
& =\sum_{s=i}^{\mu}\left\{(-1)^{(s-i)}\binom{\mu}{s}\binom{s}{i}\binom{\lambda}{j} \sum_{t=j}^{\lambda}\left[(-1)^{(t-j)}\binom{\lambda-j}{t-j}\right]\right\} \\
& =\sum_{s=i}^{\mu}\left\{(-1)^{(s-i)}\binom{\mu}{s}\binom{s}{i}\binom{\lambda}{j}(0)\right\} \\
& =0 .
\end{aligned}
$$

times, where Lemmas 2.3.5(a) and 2.3.5(b) were invoked in the second and fourth equalities above respectively. Thus, α contributes a count of zero on each side.

Corollary 2.3.7 Suppose $p \geq 4$ is an integer such that $p=k d$ for some non-trivial divisors $k, d \in \mathbb{Z}^{+}$. Then,
(i) $\Phi^{*}(p, d)=\sum_{s=0}^{d} \sum_{t=0}^{d}\left[(-1)^{(s+t)}\binom{2 d}{s, t, 2 d-(s+t)}\binom{(2 d-(s+t)) k}{(d-t) k}\right]$.
(ii) $\binom{2 p}{p}=\sum_{i=0}^{d} \sum_{j=0}^{d} \sum_{s=i}^{d} \sum_{i=j}^{d}\left[(-1)^{(s-i)+(t-j)}\left(\begin{array}{c}2 d, t, 2 d-(s+t)\end{array}\right)\binom{(2 d-(s+t)) k}{(d-t) k}\binom{s}{i}\binom{t}{j}\right]$.
(iii) $\Phi(p, d,[i, j])=\Phi(p, d,[j, i])$ for $0 \leq i, j \leq d$.

Proof:
(i) This follows from the fact that $\Phi^{*}(p, d)=\Phi(p, d,[0,0])$.
(ii) By generalised Vandermonde's identity, $\binom{2 p}{p}=\sum_{i=0}^{d} \sum_{j=0}^{d} \Phi(p, d,[i, j])$.
 $\Phi(p, d,[j, i])=\sum_{s=j}^{d} \sum_{t=i}^{d}\left[(-1)^{(s-j)+(t-i)}\binom{2 d}{s, t, 2 d-(s+t)}\binom{(2 d-(s+t)) k}{(d-t) k}\binom{s}{j}\binom{t}{i}\right]$

Now, we are ready to construct an orientation F of $K(p, p, q)$, which resembles the definition of $\Phi^{*}(p, d)$ (see (2.2)). We divide each of V_{1} and V_{2} into d groups of size k. Then, orientate F such that for all $1 \leq i \leq q,\left|O\left(3_{i}\right)\right|=p$ and $O\left(3_{i}\right)$ contains some but not all vertices of each group. This distinctive property will aid in ensuring $d(F)=2$.

Proposition 2.3.8 Suppose $p \geq 4$ is an integer such that $p=k d$ for some nontrivial divisors $k, d \in \mathbb{Z}^{+}$. Then, $\bar{d}(K(p, p, q))=2$, if $2 k+2 \leq q \leq \max _{d}\left\{\Phi^{*}(p, d)\right\}+$ 2, where the maximum is taken over all positive divisors d of p satisfying $1<d<p$.

Proof: Partition $V_{1} \cup V_{2}$ into $X_{1}, X_{2}, \ldots, X_{2 d}$ where

$$
\begin{aligned}
& X_{s}=\left\{1_{j} \mid j \equiv s(\bmod d)\right\}, \text { and } \\
& X_{d+s}=\left\{2_{(s-1) k+1}, 2_{(s-1) k+2}, \ldots, 2_{(s-1) k+k}\right\},
\end{aligned}
$$

for $s=1,2, \ldots, d$. Observe that $\left|X_{r}\right|=k$ for all $r=1,2, \ldots, 2 d$. First, we define an orientation F for $K(p, p, 2 k+2)$ as follows.
(I) $\left(V_{2}-X_{d+s}\right) \rightarrow X_{s} \rightarrow X_{d+s} \rightarrow\left(V_{1}-X_{s}\right)$, for $s=1,2, \ldots, d$.
(II) $V_{1} \rightarrow 3_{2 k+1} \rightarrow V_{2} \rightarrow 3_{2 k+2} \rightarrow V_{1}$.
(III) For $t=1,2, \ldots, k$,
(a) $\left\{2_{k}, 2_{2 k}, \ldots, 2_{d k}\right\} \cup\left(V_{1}-\left\{1_{(t-1) d+1}, 1_{(t-1) d+2}, \ldots, 1_{(t-1) d+d}\right\}\right) \rightarrow 3_{t} \rightarrow$ $\left\{1_{(t-1) d+1}, 1_{(t-1) d+2}, \ldots, 1_{(t-1) d+d}\right\} \cup\left(V_{2}-\left\{2_{k}, 2_{2 k}, \ldots, 2_{d k}\right\}\right)$, and
(b) $\left\{1_{1}, 1_{2}, \ldots, 1_{d}\right\} \cup\left(V_{2}-\left\{2_{t}, 2_{t+k}, \ldots, 2_{t+(d-1) k}\right\}\right) \rightarrow 3_{t+k} \rightarrow$ $\left\{2_{t}, 2_{t+k}, \ldots, 2_{t+(d-1) k}\right\} \cup\left(V_{1}-\left\{1_{1}, 1_{2}, \ldots, 1_{d}\right\}\right)$.

Now, consider the case where $q>p+2$. Let $x_{i}=\left|O\left(3_{j}\right) \cap X_{i}\right|$ for some j, where $2 k+2<j \leq q$, and $i=1,2, \ldots, 2 d$. So, for each solution $\left(x_{1}, x_{2}, \ldots, x_{2 d}\right)^{*}$ of (2.2), there are $\binom{k}{x_{1}}\binom{k}{x_{2}} \ldots\binom{k}{x_{2 d}}$ ways to choose p vertices (as the outset of a vertex
3_{j}), where x_{i} vertices are selected from the set X_{i}, satisfying $1 \leq x_{i} \leq k-1$, for $i=1,2, \ldots, 2 d$, and $x_{1}+x_{2}+\ldots+x_{2 d}=p$. Summing over all possible solutions $\left(x_{1}, x_{2}, \ldots, x_{2 d}\right)^{*}$, there is a total of $\Phi^{*}(p, d):=\sum_{\left(x_{1}, x_{2}, \ldots, x_{2 d}\right)^{*}}\binom{k}{x_{1}}\binom{k}{x_{2}} \ldots\binom{k}{x_{2 d}}$ of such combinations of p vertices of $V_{1} \cup V_{2}$. Denote this set of combinations as Ψ.

Note that the $2 k$ outsets of $3_{1}, 3_{2}, \ldots, 3_{2 k}$ from (III) are elements of Ψ. That leaves $|\Psi|-2 k=\Phi^{*}(p, d)-2 k$ combinations of p vertices of $V_{1} \cup V_{2}$. Note however that $O\left(3_{2 k+1}\right)$ and $O\left(3_{3 k+2}\right)$ from (II) are not elements of Ψ. Hence, for $2 k+2<$ $j \leq q \leq \max _{d}\left\{\Phi^{*}(p, d)\right\}+2$, we extend the definition of the above orientation so that the outset of vertices $3_{2 k+3}, 3_{2 k+4}, \ldots, 3_{q}$ are these remaining elements of Ψ. (See Figure 2.3.1 for F when $d=3$, and $k=2$.)

Figure 2.3.1: Orientation F for $d=3$, and $k=2$.
For clarity, only the arcs from (1) V_{1} to V_{2} and (2) V_{3} to V_{1} and V_{2} are shown.

Claim: For all $u, v \in V(K(p, p, q)), d_{F}(u, v) \leq 2$.

Case 1. $u=1_{a}, v=1_{b}, a \neq b$.
Since $1 \leq a, b \leq p=k d$, let $a=\left(\alpha_{1}-1\right) d+\alpha_{2}$ and $b=\left(\beta_{1}-1\right) d+\beta_{2}$ for some $\alpha_{i}, \beta_{i}, i=1,2$, satisfying $1 \leq \alpha_{1}, \beta_{1} \leq k$ and $1 \leq \alpha_{2}, \beta_{2} \leq d$. If $\alpha_{2}=\beta_{2}$, then $\alpha_{1} \neq \beta_{1}$. Note that 1_{a} and 1_{b} are in the same X_{i} and by (III)(a) of orientation $F, 1_{a} \rightarrow 3_{\beta_{1}} \rightarrow 1_{b}$. If $\alpha_{2} \neq \beta_{2}$, then 1_{a} and 1_{b} are in different X_{i} 's and by (I) of orientation $F, 1_{a} \rightarrow X_{d+\alpha_{2}} \rightarrow 1_{b}$.

Case 2. $u=2_{a}, v=2_{b}, a \neq b$.
Since $1 \leq a, b \leq p=k d$, let $a=\left(\alpha_{1}-1\right) k+\alpha_{2}$ and $b=\left(\beta_{1}-1\right) k+\beta_{2}$ for some $\alpha_{i}, \beta_{i}, i=1,2$, satisfying $1 \leq \alpha_{1}, \beta_{1} \leq d$ and $1 \leq \alpha_{2}, \beta_{2} \leq k$. If $\alpha_{1}=\beta_{1}$, then $\alpha_{2} \neq \beta_{2}$. Note that 2_{a} and 2_{b} are in the same X_{i} and by (III)(b) of orientation F, $2_{a} \rightarrow 3_{\beta_{2}+k} \rightarrow 2_{b}$. If $\alpha_{1} \neq \beta_{1}$, then 2_{a} and 2_{b} are in different X_{i} 's and by (I) of orientation $F, 2_{a} \rightarrow X_{\beta_{1}} \rightarrow 2_{b}$.

Case 3. $u=1_{a}, v=2_{b}$.
By (II), $1_{a} \rightarrow 3_{2 k+1} \rightarrow 2_{b}$.

Case 4. $u=2_{a}, v=1_{b}$.
By (II), $2_{a} \rightarrow 3_{2 k+2} \rightarrow 1_{b}$.

Case 5. $u=1_{a}, v=3_{b}$.
Subcase 5a. $b=2 k+1$.
By (II), $V_{1} \rightarrow 3_{2 k+1}$.

Subcase 5b. $b \neq 2 k+1$.
Suppose $1_{a} \in X_{i^{*}}$ for some $i^{*}=1,2, \ldots, d$. Then, $1_{a} \rightarrow X_{d+i^{*}}$ by (I). Since for each $3_{b}, I\left(3_{b}\right) \cap X_{d+i} \neq \emptyset$ for each $i=1,2, \ldots, d$, by (II) and (III), let $w \in$
$I\left(3_{b}\right) \cap X_{d+i^{*}}$. It follows that $1_{a} \rightarrow w \rightarrow 3_{b}$.

Case 6. $u=2_{a}, v=3_{b}$.
Subcase 6 a. $b=2 k+2$.
By (II), $V_{2} \rightarrow 3_{2 k+2}$.

Subcase 6b. $b \neq 2 k+2$.
Suppose $2_{a} \in X_{d+i^{*}}$ for some $i^{*}=1,2, \ldots, d$. Then, $2_{a} \rightarrow V_{1}-X_{i^{*}}$ by (I). Since for each $3_{b}, I\left(3_{b}\right) \cap X_{i} \neq \emptyset$ for each $i=1,2, \ldots, d$, by (II) and (III), let $w \in I\left(3_{b}\right) \cap X_{j}$ for some $j=1,2, \ldots, d$ and $j \neq i^{*}$. It follows that $2_{a} \rightarrow w \rightarrow 3_{b}$.

Case 7. $u=3_{a}, v=1_{b}$.
Subcase 7a. $a=2 k+2$.
By (II), $3_{2 k+2} \rightarrow V_{1}$.

Subcase 7b. $a \neq 2 k+2$.
Suppose $1_{b} \in X_{i^{*}}$ for some $i^{*}=1,2, \ldots, d$. Then, $X_{d+j} \rightarrow 1_{b}$ for all $j=$ $1,2, \ldots, d$ and $j \neq i^{*}$ by (I). Since for each $3_{a}, O\left(3_{a}\right) \cap X_{d+i} \neq \emptyset$ for each $i=$ $1,2, \ldots, d$, by (II) and (III), let $w \in O\left(3_{a}\right) \cap X_{d+j}$ for some $j=1,2, \ldots, d$, and $j \neq i^{*}$. It follows that $3_{a} \rightarrow w \rightarrow 1_{b}$.

Case 8. $u=3_{a}, v=2_{b}$.
Subcase 8a. $a=2 k+1$.
By (II), $3_{2 k+1} \rightarrow V_{2}$.

Subcase $8 \mathrm{~b} . a \neq 2 k+1$.
Suppose $2_{b} \in X_{d+i^{*}}$ for some $i^{*}=1,2, \ldots, d$. Then, $X_{i^{*}} \rightarrow 2_{b}$. Since for each $3_{a}, O\left(3_{a}\right) \cap X_{i} \neq \emptyset$ for each $i=1,2, \ldots, d$, by (II) and (III), let $w \in O\left(3_{a}\right) \cap X_{i^{*}}$. It follows that $3_{a} \rightarrow w \rightarrow 2_{b}$.

Case 9. $u=3_{a}, v=3_{b}$.
Subcase 9a. $a \neq 2 k+1,2 k+2$ and $b \neq 2 k+1,2 k+2$.
Observe from (III) that $\left|O\left(3_{x}\right) \cap\left(V_{1} \cup V_{2}\right)\right|=p$ for $x=a, b$. Furthermore, $O\left(3_{a}\right) \cap\left(V_{1} \cup V_{2}\right) \nsubseteq O\left(3_{b}\right) \cap\left(V_{1} \cup V_{2}\right)$ if $b \neq a$. Thus, there exists a vertex $w \in V_{1} \cup V_{2}$ such that $3_{a} \rightarrow w \rightarrow 3_{b}$.

Subcase 9b. $a=2 k+1$ and $b \neq 2 k+1,2 k+2$.
$3_{2 k+1} \rightarrow V_{2}$ by (II), and $I\left(3_{b}\right) \cap X_{d+i} \neq \emptyset$ for every $i=1,2, \ldots, d$, imply the existence of $w \in I\left(3_{b}\right) \cap V_{2}$. Hence, $3_{a} \rightarrow w \rightarrow 3_{b}$.

Subcase 9c. $a=2 k+2$ and $b \neq 2 k+1,2 k+2$.
$3_{2 k+2} \rightarrow V_{1}$ by (II), and $I\left(3_{b}\right) \cap X_{i} \neq \emptyset$ for every $i=1,2, \ldots, d$, imply the existence of $w \in I\left(3_{b}\right) \cap V_{1}$. Hence, $3_{a} \rightarrow w \rightarrow 3_{b}$.

Subcase 9 d. $a \neq 2 k+1,2 k+2$ and $b=2 k+1$.
$V_{1} \rightarrow 3_{2 k+1}$ by (II), and $O\left(3_{a}\right) \cap X_{i} \neq \emptyset$ for every $i=1,2, \ldots, d$, imply the existence of $w \in O\left(3_{a}\right) \cap V_{1}$. Hence, $3_{a} \rightarrow w \rightarrow 3_{b}$.

Subcase 9e. $a \neq 2 k+1,2 k+2$ and $b=2 k+2$.
$V_{2} \rightarrow 3_{2 k+2}$ by (II), and $O\left(3_{a}\right) \cap X_{d+i} \neq \emptyset$ for every $i=1,2, \ldots, d$, imply the existence of $w \in O\left(3_{a}\right) \cap V_{2}$. Hence, $3_{a} \rightarrow w \rightarrow 3_{b}$.

Subcase 9f. $a=2 k+1$ and $b=2 k+2$.
By (II), $3_{2 k+1} \rightarrow V_{2} \rightarrow 3_{2 k+2}$.

Subcase 9g. $a=2 k+2$ and $b=2 k+1$.
By (II), $3_{2 k+2} \rightarrow V_{1} \rightarrow 3_{2 k+1}$.

Example 2.3.9 If $8 \leq q \leq 488$, then $\bar{d}(K(6,6, q))=2$.

Proof: Observe that the only non-trivial divisors of 6 are 2 and 3. By Corollary 2.3.7(i), $\Phi^{*}(6,2)=486$ and $\Phi^{*}(6,3)=64$. Hence, by Proposition 2.3.8, if $8 \leq q \leq$ $\max \{486,64\}+2$, then $\bar{d}(K(6,6, q))=2$.

Alternatively, we may verify the computation of $\Phi^{*}(6,2)$ and $\Phi^{*}(6,3)$ as follows.

Case 1. $d=2, k=3$.
Any solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ satisfying (2.2) is a permutation of $(1,1,2,2)$. Thus, $\sum_{\left(x_{1}, x_{2}, \ldots, x_{2 d}\right)}\binom{k}{x_{1}}\binom{k}{x_{2}} \ldots\binom{k}{x_{2 d}}=\binom{4}{2}\binom{3}{1}^{2}\binom{3}{2}^{2}=486$.

Case 2. $d=3, k=2$.
The only solution of (2.2) is $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(1,1,1,1,1,1)$. Thus, $\sum_{\left(x_{1}, x_{2}, \ldots, x_{2 d}\right)}\binom{k}{x_{1}}\binom{k}{x_{2}} \ldots\binom{k}{x_{2 d}}=\binom{2}{1}^{6}=64$.

Discussion 2.3.10

Since p may have different factorisations, the natural question to ask is which non-trivial divisor(s) d of p gives the best bound. Verification, using Maple [55], for all non-trivial divisors d of each composite integer $p \leq 100$ shows that $\max _{d}\left\{\Phi^{*}(p, d)\right\}=$ $\Phi^{*}\left(p, d_{0}\right)$ with d_{0} being the smallest non-trivial divisor of each p. Therefore, if p is even, we define

$$
\begin{aligned}
\Phi_{\text {even }}(p) & :=\Phi^{*}(p, 2) \\
& =\sum_{s=0}^{2} \sum_{t=0}^{2}\left[(-1)^{(s+t)}\binom{4}{s, t, 4-(s+t)}\binom{(4-(s+t)) \frac{p}{2}}{(2-t) \frac{p}{2}}\right] \\
& =\binom{2 p}{p}-8\binom{\frac{3 p}{2}}{p}+12\binom{p}{\frac{p}{2}}-6 .
\end{aligned}
$$

Furthermore, we wish to extend Definition 2.3.2 and Proposition 2.3.8 for prime numbers and $d=2$ seems to be the best candidate. Hence, we have the following
generalisation, $\Phi_{\text {odd }}(p)$, for odd integers $p \geq 5$, which also provides a better bound than $\Phi\left(p, d_{0}\right)$ in cases where p is odd and composite.

Definition 2.3.11 Suppose $p \geq 5$ is an odd integer. Denote a solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{* *}$ if $x_{1}, x_{2}, x_{3}, x_{4}$ satisfies

$$
\begin{align*}
& x_{1}+x_{2}+x_{3}+x_{4}=p, \tag{2.3}\\
& 1 \leq x_{i} \leq\left\lfloor\frac{p}{2}\right\rfloor, \text { for } i=1,2, \text { and } \\
& 1 \leq x_{i} \leq\left\lfloor\frac{p}{2}\right\rfloor-1, \text { for } i=3,4
\end{align*}
$$

Define $\Phi_{\text {odd }}(p):=\sum_{\left(x_{1}, x_{2}, x_{3}, x_{4}\right){ }^{* *}}\binom{\left\lfloor\frac{p}{2}\right\rfloor+1}{x_{1}}\binom{\left\lfloor\frac{p}{2}\right\rfloor+1}{x_{2}}\binom{\left\lfloor\frac{p}{2}\right\rfloor}{ x_{3}}\binom{\left\lfloor\frac{p}{2}\right\rfloor}{ x_{4}}$.

Definition 2.3.12

For each $i=1,2,3,4$, denote the upper bound of x_{i} in (2.3) to be a_{i}, where $a_{1}=a_{2}=\left\lfloor\frac{p}{2}\right\rfloor$ and $a_{3}=a_{4}=\left\lfloor\frac{p}{2}\right\rfloor-1$. Then, for any non-negative integers i, j, define $[i, j]$ to be the set of solutions $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ satisfying

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=p, \\
& x_{s_{m}}=0, \text { for } m=1,2, \ldots, i \text {, where }\left\{s_{1}, s_{2}, \ldots, s_{i}\right\} \subseteq\{1,2,3,4\}, \\
& x_{t_{n}}=a_{t_{n}}+1, \text { for } n=1,2, \ldots, j \text {, where }\left\{t_{1}, t_{2}, \ldots, t_{j}\right\} \subseteq\{1,2,3,4\} \text {, and } \\
& 1 \leq x_{r} \leq a_{r}, \text { for } r \in\{1,2,3,4\}-\left(\left\{s_{1}, s_{2}, \ldots, s_{i}\right\} \cup\left\{t_{1}, t_{2}, \ldots, t_{j}\right\}\right) .
\end{aligned}
$$

Furthermore, we denote $\Phi_{\text {odd }}(p,[i, j]):=\sum_{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in[i, j]}\binom{\left\lfloor\frac{p}{2}\right\rfloor+1}{x_{1}}\binom{\left\lfloor\frac{p}{2}\right\rfloor+1}{x_{2}}\binom{\left\lfloor\frac{p}{2}\right\rfloor}{\left.x_{3}\right\rfloor}\binom{\left\lfloor\frac{p}{2}\right\rfloor}{ x_{4}}$.
We may find an expression of $\Phi_{o d d}(p)$ by exhausting all possible values of i and j in $\Phi_{o d d}(p,[i, j])$.

Lemma 2.3.13 If $p \geq 5$ is an odd integer, then $\Phi_{\text {odd }}(p)=\binom{2 p}{p}-4\binom{3 x+2}{x+1}-4\binom{3 x+1}{x}+$ $2\binom{2 x+2}{x+1}+8\binom{2 x+1}{x}+2\binom{2 x}{x}-4$, where $x=\left\lfloor\frac{p}{2}\right\rfloor$.

Proof: By generalised Vandermonde's identity,

$$
\begin{align*}
\binom{2 p}{p} & =\sum_{x_{1}+x_{2}+x_{3}+x_{4}=p}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}} \tag{2.4}\\
& =\sum_{i=0}^{2} \sum_{j=0}^{2} \Phi_{o d d}(p,[i, j]) .
\end{align*}
$$

By definition, $\Phi_{o d d}(p)=\Phi_{o d d}(p,[0,0])$. For $i \geq 1$ or $j \geq 1$, we shall count and subtract the contribution $\Phi_{\text {odd }}(p,[i, j])$ of each case from (2.4).

Claim 1: $\Phi_{\text {odd }}(p,[2,2])=4$.
Case 1.1. $\left\{x_{1}, x_{2}\right\}=\{x+1,0\}$ and $\left\{x_{3}, x_{4}\right\}=\{x, 0\}$.
Then, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case 1.1 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{2}{1}\binom{2}{1}\binom{x+1}{x+1}\binom{x+1}{0}\binom{x}{x}\binom{x}{0}=4$.
Case 1.2. $x_{1}=x_{2}=0$ and $x_{3}=x_{4}=x$.
Then, $x_{1}+x_{2}+x_{3}+x_{4}=2 x<p$. Thus, this case is not possible.

Case 1.3. $x_{1}=x_{2}=x+1$ and $x_{3}=x_{4}=0$.
Then, $x_{1}+x_{2}+x_{3}+x_{4}=2 x+2>p$. Thus, this case is not possible.

Claim 2: $\Phi_{\text {odd }}(p,[2,1])=2 x+2$.
Case 2.1. Exactly one of x_{1}, x_{2} equals $x+1$ and $x_{3}=x_{4}=0$.
Since $x_{1}+x_{2}+x_{3}+x_{4}=p$, it follows that either $x_{1}=x+1, x_{2}=x, x_{3}=x_{4}=0$ or $x_{1}=x, x_{2}=x+1, x_{3}=x_{4}=0$. Thus, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case 2.1 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=$ $\binom{2}{1}\binom{x+1}{x+1}\binom{x+1}{x}\binom{x}{0}\binom{x}{0}=2 x+2$.

Case 2.2. $x_{1}=x_{2}=0$ and exactly one of x_{3}, x_{4} equals x.
Similar to Case 1.2, this case is not possible.

Case 2.3. Exactly one of x_{1}, x_{2} is zero, exactly one of x_{3}, x_{4} is zero and exactly one x_{i} equals $a_{i}+1$.
W.l.o.g., suppose $x_{1}=x_{3}=0$. Since $x_{1}+x_{2}+x_{3}+x_{4}=p$, it follows that $x_{2}+x_{4}=p$, which implies $x_{2}=x+1$ and $x_{4}=x$. This contradicts the condition of having exactly one x_{i} equals $a_{i}+1$. Thus, this case is not possible.

Claim 3: $\Phi_{\text {odd }}(p,[2,0])=0$.
This means exactly two of x_{i} 's, $i=1,2,3,4$, equals zero and none of the x_{i} 's equals $a_{i}+1$. This is not possible since $x_{1}+x_{2}+x_{3}+x_{4}=p$.

Claim 4: $\Phi_{\text {odd }}(p,[1,2])=2 x+2$.
Since $x_{1}+x_{2}+x_{3}+x_{4}=p$, thus, we have the following.
Case 4. $x_{3}=x_{4}=x$ and either $x_{1}=1, x_{2}=0$ or $x_{1}=0, x_{2}=1$.

$$
\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case } 4}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{2}{1}\binom{x+1}{1}\binom{x+1}{0}\binom{x}{x}\binom{x}{x}=2 x+2 .
$$

Claim 5: $\Phi_{\text {odd }}(p,[1,1])=2\binom{2 x+2}{x+1}+8\binom{2 x+1}{x}+2\binom{2 x}{x}-8 x-24$.
Case 5.1. $1 \leq x_{3}, x_{4} \leq x-1$ and either $x_{1}=0, x_{2}=x+1$ or $x_{1}=x+1, x_{2}=0$.
W.l.o.g., assume $x_{1}=0, x_{2}=x+1$. Then, $x_{1}+x_{2}+x_{3}+x_{4}=p$ implies that $x_{3}+x_{4}=x$. For $1 \leq x_{3}, x_{4} \leq x-1, \sum_{x_{3}+x_{4}=x}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{2 x}{x}-\binom{x}{0}\binom{x}{x}-\binom{x}{x}\binom{x}{0}=$ $\binom{2 x}{x}-2$ by generalised Vandermonde's identity. A similar expression is obtained if $x_{1}=x+1, x_{2}=0$. Thus, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case 5.1 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{2}{1}\left[\binom{2 x}{x}-2\right]=2\binom{2 x}{x}-4$.

Case 5.2. $1 \leq x_{1}, x_{2} \leq x$ and either $x_{3}=0, x_{4}=x$ or $x_{3}=x, x_{4}=0$.
W.l.o.g., assume $x_{3}=0, x_{4}=x$. Then, $x_{1}+x_{2}+x_{3}+x_{4}=p$ implies that $x_{1}+x_{2}=x+1$. For $1 \leq x_{1}, x_{2} \leq x, \sum_{x_{1}+x_{2}=x+1}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}=\binom{2 x+2}{x+1}-\binom{x+1}{0}\binom{x+1}{x+1}-$
$\binom{x+1}{x+1}\binom{x+1}{0}=\binom{2 x+2}{x+1}-2$ by generalised Vandermonde's identity. A similar expression is obtained if $x_{3}=x, x_{4}=0$. Thus, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case } 5.2}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=$ $\binom{2}{1}\left[\binom{2 x+2}{x+1}-2\right]=2\binom{2 x+2}{x+1}-4$.

Case 5.3. Exactly one of x_{1}, x_{2} equals zero and exactly one of x_{3}, x_{4} equals x.
W.l.o.g., assume $x_{1}=0$ and $x_{3}=x$. Then, $x_{1}+x_{2}+x_{3}+x_{4}=p$ implies that $x_{2}+x_{4}=x+1$. For $1 \leq x_{2} \leq x$ and $1 \leq x_{4} \leq x-1, \sum_{x_{2}+x_{4}=x+1}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{2 x+1}{x+1}-$ $\binom{x+1}{x+1}\binom{x}{0}-\binom{x+1}{1}\binom{x}{x}=\binom{2 x+1}{x+1}-x-2$ by generalised Vandermonde's identity. A similar expression is obtained for the other three subcases. Thus, $\underset{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case 5.3 }}}{ }\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=$ $\binom{2}{1}^{2}\left[\binom{2 x+1}{x+1}-x-2\right]=4\binom{2 x+1}{x+1}-4 x-8$.

Case 5.4. Exactly one of x_{1}, x_{2} equals $x+1$ and exactly one of x_{3}, x_{4} equals zero.
W.l.o.g., assume $x_{1}=x+1$ and $x_{3}=0$. Then, $x_{1}+x_{2}+x_{3}+x_{4}=p$ implies that $x_{2}+x_{4}=x$. For $1 \leq x_{2} \leq x$ and $1 \leq x_{4} \leq x-1, \sum_{x_{2}+x_{4}=x}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{2 x+1}{x}-$ $\binom{x+1}{0}\binom{x}{x}-\binom{x+1}{x}\binom{x}{0}=\binom{2 x+1}{x}-x-2$ by generalised Vandermonde's identity. A similar expression is obtained for the other three subcases. Thus, $\underset{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case 5.4 }}}{ }\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=$ $\binom{2}{1}^{2}\left[\binom{2 x+1}{x}-x-2\right]=4\binom{2 x+1}{x}-4 x-8$.

Summing all Cases 5.1-5.4, we have $\Phi_{\text {odd }}(p,[1,1])$ as claimed.

Claim 6: $\Phi_{\text {odd }}(p,[1,0])=2\binom{3 x+2}{2 x+1}+2\binom{3 x+1}{2 x+1}-2\binom{2 x+2}{x+1}-8\binom{2 x+1}{x}-2\binom{2 x}{x}+2 x+10$.
Case 6.1. Exactly one of x_{1}, x_{2} equals 0 .
Subcase 6.1.1. $x_{1}=0$ (and $1 \leq x_{2} \leq x$ and $1 \leq x_{3}, x_{4} \leq x-1$).
Then, $x_{2}+x_{3}+x_{4}=p$. Now, we want to count and exclude the following subcases.

Subcase 6.1.1.1. $x_{2}=x+1$ and either $x_{3}=x, x_{4}=0$ or $x_{3}=0, x_{4}=x$.

$$
\sum_{\substack{x_{2}+x_{3}+x_{4}=p \\ \text { Subcase } 6.1 .1 .1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{x+1}{x+1}\binom{x}{x}\binom{x}{0}+\binom{x+1}{x+1}\binom{x}{0}\binom{x}{x}=2 .
$$

Subcase 6.1.1.2. $x_{2}=1$ and $x_{3}=x_{4}=x$.

$$
\sum_{\substack{x_{2}+x_{3}+x_{4}=p \\ \text { Subcase 6.1.1.2 }}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{x+1}{1}\binom{x}{x}\binom{x}{x}=x+1 .
$$

Subcase 6.1.1.3. $x_{2}=x+1$ and $1 \leq x_{3}, x_{4} \leq x-1$.
Then, $x_{3}+x_{4}=x$. It follows from the generalised Vandermonde's identity that $\sum_{x_{3}+x_{4}=x}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{2 x}{x}$. So, $\sum_{\substack{x_{2}++x_{3}+x_{4}=p \\ \text { Subcase 6.1.1.3 }}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\sum_{x_{3}+x_{4}=x}\binom{x}{x_{3}}\binom{x}{x_{4}}-\binom{x}{x}\binom{x}{0}-$ $\binom{x}{0}\binom{x}{x}=\binom{2 x}{x}-2$.

Subcase 6.1.1.4. $x_{3}=x, 1 \leq x_{2} \leq x$ and $1 \leq x_{4} \leq x-1$.
Then, $x_{2}+x_{4}=x+1$. It follows from the generalised Vandermonde's identity

$$
\begin{aligned}
& \text { that } \sum_{x_{2}+x_{4}=x+1}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{2 x+1}{x+1} \text {. So, } \sum_{\substack{x_{2}+x_{3}+x_{4}=p \\
\text { Subcase 6.1.1.4 }}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\sum_{x_{2}+x_{4}=x+1}\binom{x+1}{x_{2}}\binom{x}{x_{4}}- \\
& \binom{x+1}{x+1}\binom{x}{0}-\binom{x+1}{1}\binom{x}{x}=\binom{2 x+1}{x+1}-x-2 .
\end{aligned}
$$

Subcase 6.1.1.5. $x_{4}=x, 1 \leq x_{2} \leq x$ and $1 \leq x_{3} \leq x-1$.
By symmetry to Subcase 6.1.1.4, $\sum_{\substack{x_{2}+x_{3}+x_{4}=p \\ \text { Subcase 6.1.1.5 }}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{2 x+1}{x+1}-x-2$.
Now, by generalised Vandermonde's identity, $\sum_{x_{2}+x_{3}+x_{4}=p}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{3 x+1}{2 x+1}$.
So, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Subcase 6.1.1 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\sum_{x_{2}+x_{3}+x_{4}=p}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}-\sum_{i=1}^{5} \sum_{\substack{x_{2}+x_{3}+x_{4}=p \\ \text { Subcase 6.1.1.i }}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=$ $\binom{3 x+1}{2 x+1}-2\binom{$ Subcase 6.1 .1}{$2 x+1}-\binom{2 x}{x}+x+3$.

Subcase 6.1.2. $x_{2}=0$ (and $1 \leq x_{1} \leq x$ and $1 \leq x_{3}, x_{4} \leq x-1$).
By symmetry to Subcase 6.1.1, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Subcase 6.1.2 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{3 x+1}{2 x+1}-$ $2\binom{2 x+1}{x+1}-\binom{2 x}{x}+x+3$.

$$
\text { Hence, } \sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case } 6.1}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=2\binom{3 x+1}{2 x+1}-4\binom{2 x+1}{x_{1}+1}-2\binom{2 x}{x}+2 x+6 \text {. }
$$

Case 6.2. Exactly one of x_{3}, x_{4} equals 0 .
Subcase 6.2.1. $x_{3}=0$ (with $1 \leq x_{1}, x_{2} \leq x$ and $1 \leq x_{4} \leq x-1$).
Then, $x_{1}+x_{2}+x_{4}=p$. Now, we want to count and exclude the following subcases.

Subcase 6.2.1.1. $x_{4}=x$ and either $x_{1}=x+1, x_{2}=0$ or $x_{1}=0, x_{2}=x+1$.

$$
\sum_{\substack{x_{1}+x_{2}+x_{4}=p \\ \text { Subcase } 6.2 .1 .1}}\binom{x+1}{x_{1}}\binom{x}{x_{2}}\binom{x}{x_{4}}=\binom{x+1}{x+1}\binom{x+1}{0}\binom{x}{x}+\binom{x+1}{0}\binom{x+1}{x+1}\binom{x}{x}=2 .
$$

Subcase 6.2.1.2. $x_{4}=0$ and either $x_{1}=x+1, x_{2}=x$ or $x_{1}=x, x_{2}=x+1$.

$$
\sum_{\substack{x_{1}+x_{2}+x_{4}=p \\ \text { Subcase 6.2.1.2 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{x+1}{x+1}\binom{x+1}{x}\binom{x}{0}+\binom{x+1}{x}\binom{x+1}{x+1}\binom{x}{0}=2 x+2 .
$$

Subcase 6.2.1.3. $x_{1}=x+1,1 \leq x_{2} \leq x$ and $1 \leq x_{4} \leq x-1$.
Then, $x_{2}+x_{4}=x$. It follows from the generalised Vandermonde's identity that

$$
\begin{aligned}
& \sum_{\substack{x_{2}+x_{4}=x}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{2 x+1}{x} . \quad \text { So, } \sum_{\substack{x_{1}+x_{2}+x_{4}=p \\
\text { Subase } 6.213}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\sum_{x_{2}+x_{4}=x}\binom{x+1}{x_{2}}\binom{x}{x_{4}}- \\
& \binom{x+1}{x}\binom{x}{0}-\binom{x+1}{0}\binom{x}{x}=\binom{2 x+1}{x}-x-2
\end{aligned}
$$

Subcase 6.2.1.4. $x_{2}=x+1,1 \leq x_{1} \leq x$ and $1 \leq x_{4} \leq x-1$.
By symmetry to Subcase 6.2.1.3, $\underset{\begin{array}{c}x_{1}+x_{2}+x_{4}=p \\ \text { Subcase 6.2.1.4 }\end{array}}{ }\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{2 x+1}{x}-x-2$.
Subcase 6.2.1.5. $x_{4}=x$ and $1 \leq x_{1}, x_{2} \leq x$.
Then, $x_{1}+x_{2}=x+1$. It follows from the generalised Vandermonde's identity

$$
\begin{aligned}
& \text { that } \sum_{\substack{x_{1}+x_{2}=x+1}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}=\binom{2 x+2}{x+1} \text {. So } \sum_{\substack{x_{1}+x_{2}+x_{4}=p \\
\text { Subcase 6.2.1.5 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\sum_{x_{1}+x_{2}=x+1}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}- \\
& \binom{x+1}{x+1}\binom{x+1}{0}-\binom{x+1}{0}\binom{x+1}{x+1}=\binom{2 x+2}{x+1}-2 .
\end{aligned}
$$

Now, by generalised Vandermonde's identity, $\sum_{x_{1}+x_{2}+x_{4}=p}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{3 x+2}{2 x+1}$.
So, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\sum_{x_{1}+x_{2}+x_{4}=p}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}-\sum_{i=1}^{5} \sum_{\substack{x_{1}+x_{2}+x_{4}=p \\ \text { Subcase 6.2.1.i }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=$ $\binom{3 x+2}{2 x+1}-\binom{$ Subcase 6.2 .1}{$x+1}-2\binom{2 x+1}{x}+2$.

Subcase 6.2.2. $x_{4}=0$ (with $1 \leq x_{1}, x_{2} \leq x$ and $1 \leq x_{3} \leq x-1$).
By symmetry to Subcase 6.2.1, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Subcase 6.2.2 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{3 x+2}{2 x+1}-$ $\binom{2 x+2}{x+1}-2\binom{2 x+1}{x}+2$.

Hence, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case } 6.2}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=2\binom{3 x+2}{2 x+1}-2\binom{2 x+2}{x+1}-4\binom{2 x+1}{x}+4$.
So, $\Phi_{\text {odd }}(p,[1,0])=\sum_{i=1}^{2} \sum_{x_{1}+x_{2}+x_{3}+x_{4}=p}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=2\binom{3 x+2}{2 x+1}+2\binom{3 x+1}{2 x+1}-$ $2\binom{2 x+2}{x+1}-8\binom{2 x+1}{x}-2\binom{2 x}{x}+2 x+10$.

Claim 7: $\Phi_{o d d}(p,[0,2])=0$.
If there are exactly two x_{i} 's such that $x_{i}=a_{i}+1$ and since $x_{1}+x_{2}+x_{3}+x_{4}=p$, it either results in Cases 1.1 or 4. i.e. Thus, this case is not possible.

Claim 8: $\Phi_{\text {odd }}(p,[0,1])=2\binom{3 x+2}{x+1}+2\binom{3 x+1}{x}-2\binom{2 x+2}{x+1}-8\binom{2 x+1}{x}-2\binom{2 x}{x}+2 x+10$.

Case 8.1. Exactly one of x_{1}, x_{2} equals $x+1$.
Subcase 8.1.1. $x_{1}=x+1$ (with $1 \leq x_{2} \leq x$ and $1 \leq x_{3}, x_{4} \leq x-1$).
Then, $x_{2}+x_{3}+x_{4}=x$. Now, we want to count and exclude the following subcases.

Subcase 8.1.1.1. $x_{2}=0$ and either $x_{3}=x, x_{4}=0$ or $x_{3}=0, x_{4}=x$.

$$
\sum_{\substack{x_{2}+x_{3}+x_{4}=x \\ \text { Subcase 8.1.1.1. }}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{x+1}{0}\binom{x}{x}\binom{x}{0}+\binom{x+1}{0}\binom{x}{0}\binom{x}{x}=2 .
$$

Subcase 8.1.1.2. $x_{2}=x$ and $x_{3}=x_{4}=0$.

$$
\sum_{\substack{x_{2}+x_{3}+x_{4}=x \\ \text { Subcase 8.1.1.2 }}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{x+1}{x}\binom{x}{0}\binom{x}{0}=x+1 .
$$

Subcase 8.1.1.3. $x_{2}=0$ and $1 \leq x_{3}, x_{4} \leq x-1$.
Then, $x_{3}+x_{4}=x$. It follows from the generalised Vandermonde's identity that $\sum_{x_{3}+x_{4}=x}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{2 x}{x}$. So, $\sum_{\substack{x_{2}+x_{3}+x_{4}=x \\ \text { Subcase 8.1.1.3 }}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\sum_{x_{3}+x_{4}=x}\binom{x}{x_{3}}\binom{x}{x_{4}}-\binom{x}{x}\binom{x}{0}-$ $\binom{x}{0}\binom{x}{x}=\binom{2 x}{x}-2$.

Subcase 8.1.1.4. $x_{3}=0,1 \leq x_{2} \leq x$ and $1 \leq x_{4} \leq x-1$.
Then, $x_{2}+x_{4}=x$. It follows from the generalised Vandermonde's identity that $\sum_{x_{2}+x_{4}=x}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{2 x+1}{x}$. So, $\sum_{\substack{x_{2}+x_{3}+x_{4}=x \\ S}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\sum_{x_{2}+x_{4}=x}\binom{x+1}{x_{2}}\binom{x}{x_{4}}-$ $\binom{x+1}{x}\binom{x}{0}-\binom{x+1}{0}\binom{x}{x}=\binom{2 x+1}{x}-x-2$.

Subcase 8.1.1.5. $x_{4}=0,1 \leq x_{2} \leq x$ and $1 \leq x_{3} \leq x-1$.
By symmetry to Subcase 8.1.1.4, $\sum_{\substack{x_{2}+x_{3}+x_{4}=x \\ \text { Subcase 8.1.1.5 }}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{2 x+1}{x}-x-2$.
Now, by generalised Vandermonde's identity, $\sum_{x_{2}+x_{3}+x_{4}=x}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{3 x+1}{x}$. So, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Subcase 8.1.1 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\sum_{x_{2}+x_{3}+x_{4}=x}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}-\sum_{i=1}^{5} \sum_{\substack{x_{2}+x_{3}+x_{4}=x \\ \text { Subcase 8.1.1.i }}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=$ $\binom{3 x+1}{x}-2\binom{$ Subcase 8.1 .1}{$x}-\binom{2 x}{x}+x+3$.

Subcase 8.1.2. $x_{2}=x+1$ (and $1 \leq x_{1} \leq x$ and $\left.1 \leq x_{3}, x_{4} \leq x-1\right)$.
By symmetry to Subcase 8.1.1, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Subcase 8.1.2 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{3 x+1}{x}-$ $2\binom{2 x+1}{x}-\binom{2 x}{x}+x+3$.

Hence, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case 8.1 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=2\binom{3 x+1}{x}-4\binom{2 x+1}{x}-2\binom{2 x}{x}+2 x+6$.
Case 8.2. Exactly one of x_{3}, x_{4} equals x.
Subcase 8.2.1. $x_{3}=x\left(\right.$ and $1 \leq x_{1}, x_{2} \leq x$ and $\left.1 \leq x_{4} \leq x-1\right)$.
Then, $x_{1}+x_{2}+x_{4}=x+1$. Now, we want to count and exclude the following subcases.

Subcase 8.2.1.1. $x_{4}=0$ and either $x_{1}=x+1, x_{2}=0$ or $x_{1}=0, x_{2}=x+1$.

$$
\sum_{\substack{x_{1}+x_{2}+x_{x}=x+1 \\ \text { Subacese } 8.2 .1 .1}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{x+1}{x+1}\binom{x+1}{0}\binom{x}{0}+\binom{x+1}{0}\binom{x+1}{x+1}\binom{x}{0}=2 .
$$

Subcase 8.2.1.2. $x_{4}=x$ and either $x_{1}=0, x_{2}=1$ or $x_{1}=1, x_{2}=0$.

$$
\sum_{\substack{x_{1}+x_{2}+x_{4}=x+1 \\ \text { Subcase 8.2.1.2 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{x+1}{0}\binom{x+1}{1}\binom{x}{x}+\binom{x+1}{1}\binom{x+1}{0}\binom{x}{x}=2 x+2 .
$$

Subcase 8.2.1.3. $x_{1}=0,1 \leq x_{2} \leq x$ and $1 \leq x_{4} \leq x-1$.
Then, $x_{2}+x_{4}=x+1$. It follows from the generalised Vandermonde's identity

$$
\begin{aligned}
& \text { that } \sum_{x_{2}+x_{4}=x+1}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{2 x+1}{x+1} \text {. So, } \sum_{\substack{x_{1}+x_{2}+x_{4}=x+1 \\
\text { Subcase 8.2.1.3.3 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\sum_{x_{2}+x_{4}=x+1}\binom{x+1}{x_{2}}\binom{x}{x_{4}}- \\
& \binom{x+1}{x+1}\binom{x}{0}-\binom{x+1}{1}\binom{x}{x}=\binom{2 x+1}{x+1}-x-2 .
\end{aligned}
$$

Subcase 8.2.1.4. $x_{2}=0,1 \leq x_{1} \leq x$ and $1 \leq x_{4} \leq x-1$.
By symmetry to Subcase 8.2.1.3, $\sum_{\substack{x_{1}+x_{2}+x_{4}=x+1 \\ \text { Subcase 8.2.1.1 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{2 x+1}{x+1}-x-2$.

Subcase 8.2.1.5. $x_{4}=0$ and $1 \leq x_{1}, x_{2} \leq x$.
Then, $x_{1}+x_{2}=x+1$. It follows from the generalised Vandermonde's identity that $\sum_{x_{1}+x_{2}=x+1}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}=\binom{2 x+2}{x+1}$. So, $\sum_{\substack{x_{1}+x_{2}+x_{4}=x+1 \\ \text { Subcase 8.2.1.5 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\sum_{x_{1}+x_{2}=x+1}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}-$ $\binom{x+1}{x+1}\binom{x+1}{0}-\binom{x+1}{0}\binom{x+1}{x+1}=\binom{2 x+2}{x+1}-2$.

Now, by generalised Vandermonde's identity, $\sum_{x_{1}+x_{2}+x_{4}=x+1}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}=\binom{3 x+2}{x+1}$.
So, $\left.\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Subcase 8.2.1 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\sum_{x_{1}+x_{2}+x_{4}=x+1}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{4}}-\sum_{i=1}^{5} \sum_{\text {Subcase 8.2.1.i }}^{x_{1}+x_{2}+x_{4}=x} \begin{array}{c} \\ \text { Sut } \\ x_{1}\end{array}\right)\binom{x+1}{x_{2}}\binom{x}{x_{4}}=$ $\binom{3 x+2}{x+1}-\binom{$ Subcase 8.2.2.1 }{$x+1}-2\binom{2 x+1}{x+1}+2$.

Subcase 8.2.2. $x_{4}=x$ (and $1 \leq x_{1}, x_{2} \leq x$ and $1 \leq x_{3} \leq x-1$).
By symmetry to Subcase 8.2.1, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Subcase 8.2.2 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=\binom{3 x+2}{x+1}-$

$$
\binom{2 x+2}{x+1}-2\binom{2 x+1}{x+1}+2 .
$$

> Hence, $\sum_{\substack{x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case 8.2 }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=2\binom{3 x+2}{x+1}-2\binom{2 x+2}{x+1}-4\binom{2 x+1}{x+1}+4$.
> So, $\Phi_{\text {odd }}(p,[0,1])=\sum_{i=1}^{2} \sum_{\substack{2 \\ x_{1}+x_{2}+x_{3}+x_{4}=p \\ \text { Case 8.i }}}\binom{x+1}{x_{1}}\binom{x+1}{x_{2}}\binom{x}{x_{3}}\binom{x}{x_{4}}=2\binom{3 x+2}{x+1}+2\binom{3 x+1}{x}-$ $2\binom{2 x+2}{x+1}-8\binom{2 x+1}{x}-2\binom{2 x}{x}+2 x+10$.

Finally, by $(2.4), \Phi_{\text {odd }}(p)=\Phi_{o d d}(p,[0,0])=\binom{2 p}{p}-\Phi_{o d d}(p,[1,0])-\Phi_{\text {odd }}(p,[0,1])-$ $\sum_{i=1}^{2} \sum_{j=1}^{2} \Phi_{\text {odd }}(p,[i, j])=\binom{2 p}{p}-4\binom{3 x+2}{x+1}-4\binom{3 x+1}{x}+2\binom{2 x+2}{x+1}+8\binom{2 x+1}{x}+2\binom{2 x}{x}-4$.

With an expression for $\Phi_{o d d}(p)$ now, we will use its special property to construct an orientation F of $K(p, p, q)$ for odd $p \geq 5$. Similar to Proposition 2.3.8, we divide each of V_{1} and V_{2} into 2 groups, with sizes $\left\lfloor\frac{p}{2}\right\rfloor$ and $\left\lceil\frac{p}{2}\right\rceil$. Then, orientate F such that for all $1 \leq i \leq q,\left|O\left(3_{i}\right)\right|=p$ and $O\left(3_{i}\right)$ contains some but not all vertices of each group. As before, this design will aid in ensuring $d(F)=2$.

Proposition 2.3.14 Suppose $p \geq 5$ is an odd integer. If $p+3 \leq q \leq \Phi_{\text {odd }}(p)+2$, then $\bar{d}(K(p, p, q))=2$.

Proof: Partition $V_{1} \cup V_{2}$ into $X_{i}, i=1,2,3,4$.

$$
\begin{aligned}
& X_{1}=\left\{1_{j} \mid j \equiv 1(\bmod 2)\right\}, X_{3}=\left\{1_{j} \mid j \equiv 0(\bmod 2)\right\}, \text { and } \\
& X_{4}=\left\{2_{1}, 2_{2}, \ldots, 2_{\lfloor p / 2\rfloor}\right\}, \text { and } X_{2}=\left\{2_{\lfloor p / 2\rfloor+1}, 2_{\lfloor p / 2\rfloor+2}, \ldots, 2_{p}\right\} .
\end{aligned}
$$

Observe that $\left|X_{1}\right|=\left|X_{2}\right|=\left\lfloor\frac{p}{2}\right\rfloor+1$ and $\left|X_{3}\right|=\left|X_{4}\right|=\left\lfloor\frac{p}{2}\right\rfloor$. First, we shall define an orientation F for $K(p, p, p+3)$ as follows.
(I) $X_{1} \rightarrow X_{4} \rightarrow X_{3} \rightarrow X_{2} \rightarrow X_{1}$.
(II) $V_{1} \rightarrow 3_{p+2} \rightarrow V_{2} \rightarrow 3_{p+3} \rightarrow V_{1}$.
(III) For $i=1, \ldots,\left\lfloor\frac{p}{2}\right\rfloor$,
(a) $\left\{2_{1}, 2_{\lfloor p / 2\rfloor+1}\right\} \cup\left(V_{1}-\left\{1_{2 i-1}, 1_{2 i}\right\}\right) \rightarrow 3_{i} \rightarrow\left\{1_{2 i-1}, 1_{2 i}\right\} \cup\left(V_{2}-\left\{2_{1}, 2_{\lfloor p / 2\rfloor+1}\right\}\right)$,
(b) $\left\{1_{1}, 1_{2}\right\} \cup\left(V_{2}-\left\{2_{i}, 2_{i+\lfloor p / 2\rfloor}\right\}\right) \rightarrow 3_{i+\lfloor p / 2\rfloor+1} \rightarrow\left\{2_{i}, 2_{i+\lfloor p / 2\rfloor}\right\} \cup\left(V_{1}-\left\{1_{1}, 1_{2}\right\}\right)$;
and
(c) $\left\{2_{1}, 2_{\lfloor p / 2\rfloor+1}\right\} \cup\left(V_{1}-\left\{1_{p-1}, 1_{p}\right\}\right) \rightarrow 3_{\lfloor p / 2\rfloor+1} \rightarrow\left\{1_{p-1}, 1_{p}\right\} \cup\left(V_{2}-\left\{2_{1}, 2_{\lfloor p / 2\rfloor+1}\right\}\right)$,
(d) $\left\{1_{1}, 1_{2}\right\} \cup\left(V_{2}-\left\{2_{\lfloor p / 2\rfloor}, 2_{p}\right\}\right) \rightarrow 3_{p+1} \rightarrow\left\{2_{\lfloor p / 2\rfloor}, 2_{p}\right\} \cup\left(V_{1}-\left\{1_{1}, 1_{2}\right\}\right)$.

Now, consider the case where $q>p+3$. Let $x_{i}=\left|O\left(3_{j}\right) \cap X_{i}\right|$ for some j, where $p+3<j \leq q$, and $i=1,2,3,4$. So, for each solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{* *}$ of (2.3), there are $\binom{\lfloor p / 2\rfloor+1}{x_{1}}\binom{\lfloor p / 2\rfloor+1}{x_{2}}\binom{\lfloor p / 2\rfloor}{ x_{3}}\binom{\lfloor p / 2\rfloor}{ x_{4}}$ ways to choose p vertices (as the outset of a vertex 3_{j}), where x_{i} vertices are selected from the set X_{i}, satisfying $1 \leq x_{1}, x_{2} \leq\left\lfloor\frac{p}{2}\right\rfloor, 1 \leq x_{3}, x_{4} \leq\left\lfloor\frac{p}{2}\right\rfloor-1$ and $x_{1}+x_{2}+x_{3}+x_{4}=p$. Summing over all possible solutions $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{* *}$ of (2.3), there is a total of $\Phi_{\text {odd }}(p):=$ $\sum_{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)}\binom{\left\lfloor\frac{p}{2}\right\rfloor+1}{x_{1}}\binom{\left\lfloor\frac{p}{2}\right\rfloor+1}{x_{2}}\binom{\left\lfloor\frac{p}{2}\right\rfloor}{ x_{3}}\binom{\left\lfloor\frac{p}{2}\right\rfloor}{ x_{4}}$ of such combinations of p vertices of $V_{1} \cup V_{2}$. Denote this set of combinations as $\Psi_{\text {odd }}$.

Note from (III) that the $p+1$ outsets of $3_{1}, 3_{2}, \ldots, 3_{p+1}$ are elements of $\Psi_{\text {odd }}$. That leaves $\left|\Psi_{o d d}\right|-(p+1)=\Phi_{\text {odd }}(p)-(p+1)$ combinations of p vertices of $V_{1} \cup V_{2}$. Note however that $O\left(3_{p+2}\right)$ and $O\left(3_{p+3}\right)$ from (II) are not elements of $\Psi_{\text {odd }}$. Hence, for $p+1+2<j \leq q \leq \max _{d}\left\{\Phi_{o d d}(p)\right\}+2$, we extend the definition of the above orientation so that the outsets of vertices $3_{p+3}, 3_{p+4}, \ldots, 3_{q}$ are these remaining elements of $\Psi_{o d d}$. (See Figure 2.3.2 for F for $p=5$ and $q=9$.)

Figure 2.3.2: Orientation F for $p=5$ and $q=9$.
For clarity, only the arcs from (1) V_{1} to V_{2} and (2) V_{3} to V_{1} and V_{2} are shown.

Claim: For all $u, v \in V(K(p, p, q)), d_{F}(u, v) \leq 2$.

Case 1. $u=1_{a}, v=1_{b}, a \neq b$.
If $1_{a} \in X_{1}$ and $1_{b} \in X_{3}$, then we have $1_{a} \rightarrow 2_{1} \rightarrow 1_{b}$ by (I). If $1_{a} \in X_{3}$ and $1_{b} \in X_{1}$, then we have $1_{a} \rightarrow 2_{p} \rightarrow 1_{b}$ by (I). If $1_{a}, 1_{b} \in X_{1}$ (X_{3}, respectively), and $b=2 i-1$ (2i, respectively) for some $1 \leq i \leq\left\lfloor\frac{p}{2}\right\rfloor+1\left(1 \leq i \leq\left\lfloor\frac{p}{2}\right\rfloor\right.$, respectively), then $1_{a} \rightarrow 3_{i} \rightarrow 1_{b}$ by (III)(a) and (c).

Case 2. $u=2_{a}, v=2_{b}, a \neq b$.
If $2_{a} \in X_{4}$ and $2_{b} \in X_{2}$, then we have $2_{a} \rightarrow 1_{2} \rightarrow 2_{b}$ by (I). If $2_{a} \in X_{2}$ and $2_{b} \in X_{4}$, then we have $2_{a} \rightarrow 1_{1} \rightarrow 2_{b}$ by (I). If $2_{a}, 2_{b} \in X_{4}$, and $1 \leq b \leq\left\lfloor\frac{p}{2}\right\rfloor$, then $2_{a} \rightarrow 3_{b+\left\lfloor\frac{p}{2}\right\rfloor+1} \rightarrow 2_{b}$ by (III)(b). If $2_{a}, 2_{b} \in X_{2}$, and $b=i+\left\lfloor\frac{p}{2}\right\rfloor$ for some i, $1 \leq i \leq\left\lfloor\frac{p}{2}\right\rfloor+1$, then $2_{a} \rightarrow 3_{i+\left\lfloor\frac{p}{2}\right\rfloor+1} \rightarrow 2_{b}$ by (III)(b) and (d).

Case 3. $u=1_{a}, v=2_{b}$.

$$
\text { By (II), } 1_{a} \rightarrow 3_{p+2} \rightarrow 2_{b} .
$$

Case 4. $u=2_{a}, v=1_{b}$.
By (II), $2_{a} \rightarrow 3_{p+3} \rightarrow 1_{b}$.

Case 5. $u=1_{a}, v=3_{b}$.
Subcase 5a. $b=p+2$.
$\mathrm{By}(\mathrm{II}), V_{1} \rightarrow 3_{p+2}$.

Subcase 5b. $b \neq p+2$.
Suppose $1_{a} \in X_{1}$. Then, $1_{a} \rightarrow X_{4}$ by (I). Since for each $3_{b} \in V_{3}, I\left(3_{b}\right) \cap X_{4} \neq \emptyset$ by (II) and (III), let $w \in I\left(3_{b}\right) \cap X_{4}$. It follows that $1_{a} \rightarrow w \rightarrow 3_{b}$. A similar argument follows if $1_{a} \in X_{3}$.

Case 6. $u=2_{a}, v=3_{b}$.
Subcase 6a. $b=p+3$.
By (II), $V_{2} \rightarrow 3_{p+3}$.

Subcase 6b. $b \neq p+3$.
Suppose $2_{a} \in X_{4}$. Then, $2_{a} \rightarrow X_{3}$ by (I). Since for each $3_{b} \in V_{3}, I\left(3_{b}\right) \cap X_{3} \neq \emptyset$ by (II) and (III), let $w \in I\left(3_{b}\right) \cap X_{3}$. It follows that $2_{a} \rightarrow w \rightarrow 3_{b}$. A similar argument follows if $2_{a} \in X_{2}$.

Case 7. $u=3_{a}, v=1_{b}$.
Subcase 7a. $a=p+3$.
By (II), $3_{p+3} \rightarrow V_{1}$.

Subcase 7b. $a \neq p+3$.
Suppose $1_{b} \in X_{1}$. Recall that $X_{2} \rightarrow X_{1}$ by (I). Since for each $3_{a} \in V_{3}$, $O\left(3_{a}\right) \cap X_{2} \neq \emptyset$ by (II) and (III), let $w \in O\left(3_{a}\right) \cap X_{2}$. It follows that $3_{a} \rightarrow w \rightarrow 1_{b}$. A similar argument follows if $1_{b} \in X_{3}$.

Case 8. $u=3_{a}, v=2_{b}$.
Subcase 8a. $a=p+2$.
By (II), $3_{p+2} \rightarrow V_{2}$.

Subcase 8b. $a \neq p+2$.
Suppose $2_{b} \in X_{4}$. Then, $X_{1} \rightarrow 2_{b}$ by (I). Since for each $3_{a} \in V_{3}, O\left(3_{a}\right) \cap X_{1} \neq \emptyset$ by (II) and (III), let $w \in O\left(3_{a}\right) \cap X_{1}$. It follows that $3_{a} \rightarrow w \rightarrow 2_{b}$. A similar argument follows if $2_{b} \in X_{2}$.

Case 9. $u=3_{a}, v=3_{b}$.
Subcase 9a. $a \neq p+2, p+3$ and $b \neq p+2, p+3$.
Observe from (III) that $\left|O\left(3_{x}\right) \cap\left(V_{1} \cup V_{2}\right)\right|=p$ for $x=a, b$. Furthermore, $O\left(3_{a}\right) \cap\left(V_{1} \cup V_{2}\right) \nsubseteq O\left(3_{b}\right) \cap\left(V_{1} \cup V_{2}\right)$ if $b \neq a$. Thus, there exists a vertex $w \in V_{1} \cup V_{2}$ such that $3_{a} \rightarrow w \rightarrow 3_{b}$.

Subcase 9b. $a=p+2$ and $b \neq p+2, p+3$.
$3_{p+2} \rightarrow V_{2}$ by (II) and $I\left(3_{b}\right) \cap X_{i} \neq \emptyset$ for all $i=2,4$, imply the existence of $w \in I\left(3_{b}\right) \cap V_{2}$. Hence, $3_{a} \rightarrow w \rightarrow 3_{b}$.

Subcase 9c. $a=p+3$ and $b \neq p+2, p+3$.
$3_{p+3} \rightarrow V_{1}$ by (II) and $I\left(3_{b}\right) \cap X_{i} \neq \emptyset$ for all $i=1,3$, imply the existence of $w \in I\left(3_{b}\right) \cap V_{1}$. Hence, $3_{a} \rightarrow w \rightarrow 3_{b}$.

Subcase 9d. $a \neq p+2, p+3$ and $b=p+2$.
$V_{1} \rightarrow 3_{p+2}$ and $O\left(3_{a}\right) \cap X_{i} \neq \emptyset$ for all $i=1,3$, imply the existence of $w \in$ $O\left(3_{a}\right) \cap V_{1}$. Hence, $3_{a} \rightarrow w \rightarrow 3_{b}$.

Subcase 9e. $a \neq p+2, p+3$ and $b=p+3$.
$V_{2} \rightarrow 3_{p+3}$ by (II) and $O\left(3_{a}\right) \cap X_{i} \neq \emptyset$ for all $i=2,4$, imply the existence of $w \in O\left(3_{a}\right) \cap V_{2}$. Hence, $3_{a} \rightarrow w \rightarrow 3_{b}$.

Subcase 9f. $a=p+2$ and $b=p+3$.
By (II), $3_{p+2} \rightarrow V_{2} \rightarrow 3_{p+3}$.

Subcase 9g. $a=p+3$ and $b=p+2$.

$$
\text { By (II), } 3_{p+3} \rightarrow V_{1} \rightarrow 3_{p+2} .
$$

Example 2.3.15 If $10 \leq q \leq 2090$, then $\bar{d}(K(7,7, q))=2$.

Proof: By Lemma 2.3.13 and Proposition 2.3.14, if $10 \leq q \leq \Phi_{\text {odd }}(7)+2=2090$, then $\bar{d}(K(7,7, q))=2$.

Alternatively, we may verify the computation of $\Phi_{\text {odd }}(7)$ as follows. A solution $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{* *}$ of (2.3) is either a permutation of $(1,1,2,3)$ or a permutation of $(1,2,2,2)$. Hence, by enumerating all solutions, we have $\Phi_{\text {odd }}(7)=4\binom{3}{1}\binom{3}{2}\binom{4}{3}\binom{4}{1}+$ $2\binom{3}{1}\binom{3}{1}\binom{4}{3}\binom{4}{2}+2\binom{3}{1}\binom{3}{2}\binom{4}{2}\binom{4}{2}+2\binom{3}{2}\binom{3}{2}\binom{4}{2}\binom{4}{1}=2088$.

In Discussion 2.3.10, we claimed that $\Phi_{\text {even }}(p)$ is the best possible bound of $\Phi^{*}(p, d)$ amidst all non-trivial divisors d of p when $p \geq 4$ is even, and $\Phi_{o d d}(p)$ is a better bound than $\Phi^{*}(p, d)$ when $p \geq 5$ is odd and composite. Now, we shall prove it, i.e. $\Phi_{\text {even }}(p)\left(\Phi_{\text {odd }}(p)\right.$, respectively $)$ is greater than $\max _{3 \leq d<p}\left\{\Phi^{*}(p, d)\right\}$ for each even (odd and composite, respectively) $p \geq 4$.

Proposition 2.3.16 Suppose $p \geq 4$ is a composite integer and d is a divisor of p, where $3 \leq d<p$.

$$
\max _{3 \leq d<p}\left\{\Phi^{*}(p, d)\right\}< \begin{cases}\Phi_{\text {even }}(p), & \text { if } p \text { is even } \\ \Phi_{\text {odd }}(p), & \text { if } p \text { is odd }\end{cases}
$$

Proof:

Case 1. p is even.

Claim 1: For any even integer $p \geq 14$ and any divisor $3 \leq d<p$ of $p,\binom{2 p-\frac{p}{d}}{p}-$ $8\binom{\frac{3 p}{p}}{p}+12\binom{p}{\frac{p}{2}}-6>0$.

$$
\begin{aligned}
\binom{2 p-\frac{p}{d}}{p}-8\binom{\frac{3 p}{2}}{p}+12\binom{p}{\frac{p}{2}}-6 & \geq\binom{ 2 p-\frac{p}{d}}{p}-8\binom{\frac{3 p}{2}}{p} \\
& \geq\binom{\frac{5 p}{3}}{p}-8\binom{\frac{3 p}{2}}{p} \\
& >0 .
\end{aligned}
$$

The first inequality is due to $12\binom{p}{\frac{p}{2}} \geq 6$, while the second inequality follows as $d \geq 3$ and $f(z):=\binom{z}{p}$ is an increasing function for $z \geq p$. Since $f(z)$ is also strictly convex for $z \geq p$ and $\left(\frac{5(13)}{13}\right)-8\left(\begin{array}{c}\frac{3(13)}{13}\end{array}\right)>0$, the last inequality follows for all $p \geq 13$. So, Claim 1 follows.

Now, for each even integer $p \leq 12$, we verified, using Maple, $\Phi^{*}(p, d)<\Phi_{\text {even }}(p)$ for all divisors $3 \leq d<p$ of p. (See Table 2.1.) Let $p \geq 14$ be an even integer.

Note that $\sum_{i=1}^{d} \sum_{j=0}^{d} \Phi(p, d,[i, j]) \geq\binom{ k}{0}\binom{(2 d-1) k}{p}=\binom{2 p-\frac{p}{d}}{p}$ as the expression $\binom{k}{0}\binom{(2 d-1) k}{p}$ counts the number of ways such that none is selected from a (fixed) group of k elements and p elements are selected from the remaining $2 d-1$ groups of k elements. Also, recall that $\binom{2 p}{p}=\sum_{i=0}^{d} \sum_{j=0}^{d} \Phi(p, d,[i, j])=\Phi(p, d,[0,0])+\sum_{i=1}^{d} \sum_{j=0}^{d} \Phi(p, d,[i, j])+$ $\sum_{j=1}^{d} \Phi(p, d,[0, j])$ by generalised Vandermonde's identity. It follows for each even integer $p \geq 14$ and each divisor $3 \leq d<p$ of p that,

$$
\begin{aligned}
\binom{2 p}{p}-\Phi^{*}(p, d) & =\binom{2 p}{p}-\Phi(p, d,[0,0]) \\
& =\sum_{i=1}^{d} \sum_{j=0}^{d} \Phi(p, d,[i, j])+\sum_{j=1}^{d} \Phi(p, d,[0, j]) \\
& \geq\binom{ 2 p-\frac{p}{d}}{p} \\
& >8\binom{\frac{3 p}{2}}{p}-12\binom{p}{\frac{p}{2}}+6 \\
& =\binom{2 p}{p}-\Phi_{\text {even }}(p)
\end{aligned}
$$

where the last inequality is due to Claim 1 .

Case 2. p is odd and composite.
Set $x:=\left\lfloor\frac{p}{2}\right\rfloor$.

Claim 2: For any composite and odd integer $p \geq 17$ and any divisor $3 \leq d<p$ of $p,\binom{2 p-\frac{p}{d}}{p}-4\binom{3 x+2}{x+1}-4\binom{3 x+1}{x}>0$.

$$
\begin{aligned}
& \binom{2 p-\frac{p}{d}}{p}-4\binom{3 x+2}{x+1}-4\binom{3 x+1}{x} \\
& =\binom{2 p-\frac{p}{d}}{p}-4\binom{3 x+2}{2 x+1}-4\binom{3 x+1}{2 x+1} \\
& \geq\binom{ 2 p-\frac{p}{3}}{p}-8\binom{3 x+2}{2 x+1} \\
& \geq\binom{\frac{10 x+5}{3}}{2 x+1}-8\binom{3 x+2}{2 x+1} \\
& >0
\end{aligned}
$$

The first inequality is due to $d \geq 3$ and $f(z)$ is an increasing function for $z \geq p$. Since $f(z)$ is also strictly convex for $z \geq p$ and $\binom{\frac{10(8)+5}{2(8)+1}}{2(8)}-8\binom{3(8)+2}{2(8)+1}>0$, the last inequality follows for all $x \geq 8$. Hence, Claim 2 follows.

For each composite and odd integer $p \leq 15$, we verified, using Maple, $\Phi^{*}(p, d) \leq$ $\Phi_{\text {odd }}(p)$ for all divisors $3 \leq d<p$ of p. (See Table 2.1.) Now, consider any composite and odd integer $p \geq 17$. As in Case $1, \sum_{i=1}^{d} \sum_{j=0}^{d} \Phi(p, d,[i, j]) \geq\left(\begin{array}{c}2 p-\frac{p}{p^{d}} \\ p^{2}\end{array}\right.$. It follows for each composite and odd integer $p \geq 17$ and each divisor $3 \leq d<p$ of p that,

$$
\begin{aligned}
&\binom{2 p}{p}-\Phi^{*}(p, d) \\
&=\binom{2 p}{p}-\Phi(p, d,[0,0]) \\
&= \sum_{i=1}^{d} \sum_{j=0}^{d} \Phi(p, d,[i, j])+\sum_{j=1}^{d} \Phi(p, d,[0, j]) \\
& \geq\binom{ 2 p-\frac{p}{d}}{p} \\
&> 4\binom{3 x+2}{x+1}+4\binom{3 x+1}{x} \\
& \geq 4\binom{3 x+2}{x+1}+4\binom{3 x+1}{x}-2\binom{2 x+2}{x+1}-8\binom{2 x+1}{x}-2\binom{2 x}{x}+4 \\
&=\binom{2 p}{p}-\Phi_{o d d}(p),
\end{aligned}
$$

where the second last inequality follows from Claim 2.

p	d	$\begin{cases}\Phi_{\text {even }}(p)-\Phi^{*}(p, d), & \text { if } p \text { is even } \\ \Phi_{\text {odd }}(p)-\Phi^{*}(p, d), & \text { if } p \text { is odd }\end{cases}$
4	2	$16-16=0$
6	2	486-486=0
6	3	$486-64=422$
8	2	9,744-9,744=0
8	4	$9,744-256=9,488$
9	3	$39,400-14,580=24,820$
10	2	163,750-163,750=0
10	5	$163,750-1,024=162,726$
12	2	2,566,726-2,566,726=0
12	3	2,566,726-1,580,096=986,630
12	4	2,566,726-459,270=2,107,456
12	6	2,566,726-4,096=2,562,630
14	2	39,227,538-39,227,538=0
14	7	$39,227,538-16,384=39,211,154$
15	3	152,558,168-121,562,500=30,995,668
15	5	152,558,168-14,880,348=137,677,820
16	2	595,351,056-595,351,056=0
16	4	595,351,056-269,992,192=325,358,864
16	8	$595,351,056-65,536=595,285,520$
18	2	9,038,224,134-9,038,224,134=0
18	3	9,038,224,134-8,120,234,620=917,989,514
18	6	$9,038,224,134-491,051,484=8,547,172,650$
18	9	$9,038,224,134-262,144=9,037,961,990$
20	2	137,608,385,766-137,608,385,766=0
20	4	$137,608,385,766-95,227,343,750=42,381,042,016$
20	5	$137,608,385,766-47,519,843,328=90,088,542,438$
20	10	137,608,385,766-1,048,576=137,607,337,190

Table 2.1: Comparison of $\Phi^{*}(p, d)$ with $\Phi_{\text {even }}(p)$ and $\Phi_{\text {odd }}(p)$ for $4 \leq p \leq 20$.

For clarity, we summarise Propositions 2.3.8 and 2.3.14 as follows.

Theorem 2.3.17 Suppose $p \geq 4$ is an integer. Then,

$$
\bar{d}(K(p, p, q))=2 \text { if } \begin{cases}p+2 \leq q \leq \Phi_{\text {even }}(p)+2, & \text { if } p \text { is even } \\ p+3 \leq q \leq \Phi_{\text {odd }}(p)+2, & \text { if } p \text { is odd }\end{cases}
$$

where $\Phi_{\text {even }}(p)=\binom{2 p}{p}-8\binom{\frac{3 p}{p}}{p}+12\binom{p}{\frac{p}{2}}-6$ and $\Phi_{\text {odd }}(p)=\binom{2 p}{p}-4\binom{3 x+2}{x+1}-4\binom{3 x+1}{x}+$ $2\binom{2 x+2}{x+1}+8\binom{2 x+1}{x}+2\binom{2 x}{x}-4, x=\left\lfloor\frac{p}{2}\right\rfloor$.

For a clearer picture of the 'gap' between Theorems 2.3.17 and 1.2.9, we compare some values of $\Phi_{\text {even }}(p)+2$ and $\Phi_{\text {odd }}(p)+2$ with the bound (1.2) in the following table.
$\left.\begin{array}{|c|c|}\hline \boldsymbol{p} & \left.\begin{array}{c}\binom{2 \boldsymbol{p}}{\boldsymbol{p}}-\left(\mathbf{\Phi}_{\text {even }}(\boldsymbol{p})+\mathbf{2}\right), \quad \text { if } \boldsymbol{p} \text { is even, } \\ \boldsymbol{p}\end{array}\right)-\left(\boldsymbol{\Phi}_{\text {odd }}(\boldsymbol{p})+\mathbf{2}\right), \quad \text { if } \boldsymbol{p} \text { is odd. }\end{array}\right]$

Table 2.2: Comparison of $\binom{2 p}{p}$ with $\Phi_{\text {even }}(p)$ and $\Phi_{\text {odd }}(p)$ for $4 \leq p \leq 20$.

Since complete tripartite graphs can be spanning subgraphs of the complete multipartite graphs, we have the following corollary.

Corollary 2.3.18 Suppose $n \geq 2$ and p_{i} are positive integers for $i=1,2, \ldots, n$ such that $p_{1}+p_{2}+\ldots+p_{r}=p_{r+1}+p_{r+2}+\ldots+p_{n}=p \geq 4$ for some integers r and p. Let $G=K\left(p_{1}, p_{2}, \ldots, p_{n}, q\right)$. Then, $\bar{d}(G)=2$ if

$$
\begin{cases}p+2 \leq q \leq \Phi_{\text {even }}(p)+2, & \text { if } p \text { is even } \\ p+3 \leq q \leq \Phi_{\text {odd }}(p)+2, & \text { if } p \text { is odd. }\end{cases}
$$

Proof: Note that G is a supergraph of $K(p, p, q)$ and $\bar{d}(K(p, p, q))=2$ by Theorem 2.3.17. So, there exists an orientation D for $K(p, p, q)$, where $d(D)=2$. Partition $V(G)$ into three parts $\bigcup_{i=1}^{r} V_{i}, \bigcup_{i=r+1}^{n} V_{i}$ and V_{n+1}, and define an orientation F for G such that D is a subdigraph of F, and edges not in D are oriented arbitrarily. It follows that $d(F)=2$.

3. Tree Vertex-multiplications

3.1. Existing Results

In [30], Koh and Tay studied vertex-multiplications of trees. Since trees of diameter at most 2 are parent graphs to complete bipartite graphs which have a characterisation (see Theorem 1.2.5), they only considered trees of diameter at least 3. Specifically, they proved the following results for trees of diameter 3 or 4. Recall the assumption, $s_{i} \geq 2$ for $i=1,2, \ldots, n$, holds unless otherwise stated.

Theorem 3.1.1 (Koh and Tay [30])
If T is a tree of order n and $d(T)=3$ or 4 , then $T\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0} \cup \mathscr{C}_{1}$.

Theorem 3.1.2 (Koh and Tay [30])
Let T be a tree with diameter 4 and its only central vertex be u.
(i) If $\operatorname{deg}_{T}(u)=2$, then $T\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0}$.
(ii) If $\operatorname{deg}_{T}(u) \geq 3$, then $T^{(2)} \in \mathscr{C}_{1}$.

3.2. New Results On Trees With Diameter 4

In light of the above theorems, we are interested in determining conditions in which $T\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0}$ or \mathscr{C}_{1}. Particularly, Theorem 3.2.8 generalises Theorem 3.1.2.

For convenience, we shall introduce some notations. Let D be an orientation of $G\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with $s_{i} \geq 2$ for $1 \leq i \leq n$. If v_{p} and $v_{q}, 1 \leq p, q \leq n$ and $p \neq q$, are adjacent vertices in G, then for each $i, 1 \leq i \leq s_{p}$, we denote $O_{D}^{v_{q}}((i, p)):=$ $\left\{(j, q) \mid(i, p) \rightarrow(j, q), 1 \leq j \leq s_{q}\right\}$ and $I_{D}^{v_{q}}((i, p)):=\{(j, q) \mid(j, q) \rightarrow(i, p), 1 \leq j \leq$
$\left.s_{q}\right\}$. If there is no danger of confusion, we shall omit the subscript D for the above notations.

Let T be a tree of diameter 4 with vertex set $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We further denote by u, the unique central vertex of T, i.e. $e_{T}(u)=2$, and the neighbours of u by $[i]$. i.e. $N_{T}(u)=\left\{[i] \mid i=1,2 \ldots, d e g_{T}(u)\right\}$. For each $i=1,2, \ldots, d e g_{T}(u)$, we further denote the neighbours of $[i]$, excluding u, by $[\alpha, i]$. i.e. $N_{T}([i])-$ $\{u\}=\left\{[\alpha, i] \mid \alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1\right\}$. In the vertex-multiplication graph $G:=T\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of T, the integer s_{i} corresponds to the vertex $v_{i}, i \neq n$, while $s_{n}:=s$ corresponds to u. We will loosely use the two denotations of a vertex, for example, if $v_{i}=[j]$, then $s_{i}=s_{[j]}$. Also, we set $\left(\mathbb{N}_{s}, u\right):=\{(1, u),(2, u) \ldots,(s, u)\}$. Since each shortest $v-w$ path is unique for all $v, w \in V(T)$, the above notation is well-defined. Example 3.2.1 illustrates the use of this notation.

Example 3.2.1 Let u be the unique central vertex in T, a tree of diameter 4.

Figure 3.2.1: Labelling vertices in T

Also, we set $G\left(A_{j}\right):=\left\{i \mid s_{[i]}=j, 1 \leq i \leq \operatorname{deg}_{T}(u)\right.$ and $[i]$ is not an end-vertex in $T\}$, where j is a positive integer. If there is no ambiguity, we will use A_{j} instead of $G\left(A_{j}\right)$. Similarly, $A_{\leq j}$ and $A_{\geq j}$ denote the corresponding sets, when the condition $s_{[i]}=j$ is replaced by $s_{[i]} \leq j$ and $s_{[i]} \geq j$ respectively. If T is as given in Example 3.2.1 and $G:=T^{(2)}$, then $G\left(A_{2}\right)=\{1,2,4\}$ since none of the vertices $[1],[2],[4]$ is an end-vertex in T.

Now, we will see that tree vertex-multiplications of a tree T with diameter 4 lies in \mathscr{C}_{0} whenever the vertex-multiplication of $[i]$ is not too small, i.e. $s_{[i]} \geq 4$, for all $i=1,2, \ldots, \operatorname{deg}_{T}(u)$.

Theorem 3.2.2 Let T be a tree of diameter 4 and u be its unique central vertex. If $A_{\geq 4} \neq \emptyset$ and $A_{2}=A_{3}=\emptyset$, then $G:=T\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0}$.

Proof:
Let $H:=T\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be the subgraph of G, where $t_{n}=2, t_{[i]}=4$ and $t_{[\alpha, i]}=2$ for all $i \in G\left(A_{\geq 4}\right)$ and $\alpha=1,2, \ldots, d e g_{T}([i])-1$, while $t_{[j]}=2$ for all $j \in N_{T}(u)-G\left(A_{\geq 4}\right)$ (These [j]'s are end-vertices in T). Note that we will use A_{j} for $H\left(A_{j}\right)$ from here onwards. So, $H\left(A_{j}\right) \neq \emptyset$ if and only if $j=4$. Define an orientation D for H as follows.
(I) $\{(2,[i]),(3,[i])\} \rightarrow(1,[\alpha, i]) \rightarrow\{(1,[i]),(4,[i])\} \rightarrow(2,[\alpha, i]) \rightarrow\{(2,[i]),(3,[i])\}$, and
(II) $\{(1,[i]),(2,[i])\} \rightarrow(1, u) \rightarrow\{(3,[i]),(4,[i])\} \rightarrow(2, u) \rightarrow\{(1,[i]),(2,[i])\}$,
for all $i \in A_{4}$ and $\alpha=1,2, \ldots, d e g_{T}([i])-1$.
(III) $(2, u) \rightarrow\{(1,[j]),(2,[j])\} \rightarrow(1, u)$
for all $j \in N_{T}(u)-A_{4}$.
(See Figure 3.2.2.)

Claim: For all $v, w \in V(D), d_{D}(v, w) \leq 4$.

Case 1.1. $v, w \in\left\{(1,[\alpha, i]),(2,[\alpha, i]) \mid \alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1\right\}$ for each $i \in A_{4}$.

This is clear since, by $(\mathrm{I}),(2,[i]) \rightarrow\left(1,\left[\alpha_{1}, i\right]\right) \rightarrow(1,[i]) \rightarrow\left(2,\left[\alpha_{2}, i\right]\right) \rightarrow(2,[i])$ is a directed C_{4} for all $1 \leq \alpha_{1} \leq \alpha_{2} \leq \operatorname{deg}_{T}([i])-1$.

Case 1.2. $v \in\{(1,[\alpha, i]),(2,[\alpha, i])\}$ and $w \in\{(1,[i]),(2,[i]),(3,[i]),(4,[i])\}$ for all $i \in A_{4}$ and $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1$.

By symmetry, it suffices to show for the case $v=(1,[\alpha, i]) . \quad(1,[\alpha, i]) \rightarrow$ $\{(1,[i]),(4,[i])\} \rightarrow(2,[\alpha, i]) \rightarrow\{(2,[i]),(3,[i])\}$ by (I).

Case 1.3. $v \in\{(1,[\alpha, i]),(2,[\alpha, i])\}$ and $w \in\{(1, u),(2, u)\}$ for all $i \in A_{4}$ and $\alpha=1,2, \ldots, d e g_{T}([i])-1$.

By symmetry, it suffices to show for the case $v=(1,[\alpha, i])$. Note that $(1,[\alpha, i]) \rightarrow$ $(1,[i]) \rightarrow(1, u)$ and $(1,[\alpha, i]) \rightarrow(4,[i]) \rightarrow(2, u)$ by (I) and (II).

Case 1.4. $v \in\{(1,[\alpha, i]),(2,[\alpha, i])\}$ and $w \in\{(1,[j]),(2,[j]),(3,[j]),(4,[j])\}$ for all $i, j \in A_{4}, i \neq j$, and all $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1$.

By symmetry, it suffices to show for the case $v=(1,[\alpha, i])$. Note that $(1,[\alpha, i]) \rightarrow$ $(1,[i]) \rightarrow(1, u) \rightarrow\{(3,[j]),(4,[j])\}$ and $(1,[\alpha, i]) \rightarrow(4,[i]) \rightarrow(2, u) \rightarrow\{(1,[j]),(2,[j])\}$ by (I) and (II).

Case 1.5. $v \in\{(1,[\alpha, i]),(2,[\alpha, i])\}$ and $w \in\{(1,[\beta, j]),(2,[\beta, j])\}$ for all $i, j \in A_{4}$, $i \neq j$, all $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1$ and $\beta=1,2, \ldots, \operatorname{deg}_{T}([j])-1$.

By symmetry, it suffices to show for the case $v=(1,[\alpha, i])$. Note that $(1,[\alpha, i]) \rightarrow$ $(1,[i]) \rightarrow(1, u) \rightarrow\{(3,[j]),(4,[j])\}$ and while $(3,[j]) \rightarrow(1,[\beta, j])$ and $(4,[j]) \rightarrow$ (2, $[\beta, j])$ by (I) and (II).

Case 2.1. $v \in\{(1,[i]),(2,[i]),(3,[i]),(4,[i])\}$ and $w \in\{(1,[\alpha, i]),(2,[\alpha, i])\}$ for all $i \in A_{4}$ and $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1$.

By symmetry, it suffices to show for the case $v=(1,[i])$. Note that $(1,[i]) \rightarrow$ $(2,[\alpha, i]) \rightarrow(2,[i]) \rightarrow(1,[\alpha, i])$ by (I).

Case 2.2. $v, w \in\{(1,[i]),(2,[i]),(3,[i]),(4,[i])\}$ for all $i \in A_{4}$ and $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-$ 1.

By symmetry, it suffices to show for the case $v=(1,[i])$. Note that $(1,[i]) \rightarrow$ $(1, u) \rightarrow\{(3,[i]),(4,[i])\} \rightarrow(2, u) \rightarrow\{(1,[i]),(2,[i])\}$ by (II).

Case 2.3. $v \in\{(1,[i]),(2,[i]),(3,[i]),(4,[i])\}$ and $w \in\{(1, u),(2, u)\}$ for all $i \in A_{4}$.

By symmetry, it suffices to show for the case $v \in\{(1,[i]),(2,[i])\}$. Note that $\{(1,[i]),(2,[i])\} \rightarrow(1, u) \rightarrow\{(3,[i]),(4,[i])\} \rightarrow(2, u)$ by $(I I)$.

Case 2.4. $v \in\{(1,[i]),(2,[i]),(3,[i]),(4,[i])\}$ and $w \in\{(1,[j]),(2,[j]),(3,[j]),(4,[j])\}$ for $i, j \in A_{4}$ and $i \neq j$.

By symmetry, it suffices to show for the case $v \in\{(1,[i]),(2,[i])\}$. Note that $\{(1,[i]),(2,[i])\} \rightarrow(1, u) \rightarrow\{(3,[j]),(4,[j])\} \rightarrow(2, u) \rightarrow\{(1,[j]),(2,[j])\}$ by (II).

Case 2.5. $v \in\{(1,[i]),(2,[i]),(3,[i]),(4,[i])\}$ and $w \in\{(1,[\beta, j]),(2,[\beta, j])\}$ for $i, j \in A_{4}, i \neq j$, and $\beta=1,2, \ldots, \operatorname{deg}_{T}([j])-1$.

By symmetry, it suffices to show for the case $v \in\{(1,[i]),(2,[i])\}$. Note that $\{(1,[i]),(2,[i])\} \rightarrow(1, u) \rightarrow\{(3,[j]),(4,[j])\}$, while $(3,[j]) \rightarrow(1,[\beta, j])$ and $(4,[j]) \rightarrow$ (2, $[\beta, j])$ by (I) and (II).

Case 3.1. $v, w \in\{(1, u),(2, u)\}$.
Note that $(1, u) \rightarrow\{(3,[i]),(4,[i])\} \rightarrow(2, u) \rightarrow\{(1,[i]),(2,[i])\} \rightarrow(1, u)$ for all i by (II).

Case 3.2. $v \in\{(1, u),(2, u)\}, w \in\{(1,[i]),(2,[i]),(3,[i]),(4,[i])\}$ for all $i \in A_{4}$.

Note that $(1, u) \rightarrow\{(3,[i]),(4,[i])\} \rightarrow(2, u) \rightarrow\{(1,[i]),(2,[i])\} \rightarrow(1, u)$ by (II).

Case 3.3. $v \in\{(1, u),(2, u)\}, w \in\{(1,[\alpha, i]),(2,[\alpha, i])\}$ for all $i \in A_{4}$ and $\alpha=$ $1,2, \ldots, \operatorname{deg}_{T}([i])-1$.

By symmetry, it suffices to show for the case $v=(1, u)$. Note that $(1, u) \rightarrow$ $\{(3,[i]),(4,[i])\}$, while $(3,[i]) \rightarrow(1,[\alpha, i])$ and $(4,[i]) \rightarrow(2,[\alpha, i])$ by (I) and (II).

Case 4.1. $v \in\{(1,[\alpha, i]),(2,[\alpha, i])\}$ and $w \in\{(1,[j]),(2,[j])\}$ for all $i \in A_{4}$, $\alpha=1,2, \ldots, d e g_{T}([i])-1$ and $j \in N_{T}(u)-A_{4}$.

Note that $(1,[\alpha, i]) \rightarrow(4,[i]) \rightarrow(2, u),(2,[\alpha, i]) \rightarrow(3,[i]) \rightarrow(2, u)$, and $(2, u) \rightarrow\{(1,[j]),(2,[j])\}$ by (I)-(III).

Case 4.2. $v \in\{(1,[j]),(2,[j])\}$ and $w \in\{(1,[\alpha, i]),(2,[\alpha, i])\}$ for all $i \in A_{4}$, $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1$ and $j \in N_{T}(u)-A_{4}$.

Note that $\{(1,[j]),(2,[j])\} \rightarrow(1, u) \rightarrow\{(3,[i]),(4,[i])\},(3,[i]) \rightarrow(1,[\alpha, i])$, and $(4,[i]) \rightarrow(2,[\alpha, i])$ by (I)-(III).

Case 4.3. $v \in\{(1,[i]),(2,[i]),(3,[i]),(4,[i])\}$ and $w \in\{(1,[j]),(2,[j])\}$ for all $i \in A_{4}$, $\alpha=1,2, \ldots, d e g_{T}([i])-1$ and $j \in N_{T}(u)-A_{4}$.

Note that $\{(1,[i]),(2,[i])\} \rightarrow(1, u) \rightarrow\{(3,[i]),(4,[i])\} \rightarrow(2, u) \rightarrow\{(1,[j]),(2,[j])\}$ by (II) and (III).

Case 4.4. $v \in\{(1,[j]),(2,[j])\}$ and $w \in\{(1,[i]),(2,[i]),(3,[i]),(4,[i])\}$ for all $i \in A_{4}$, $\alpha=1,2, \ldots, d e g_{T}([i])-1$ and $j \in N_{T}(u)-A_{4}$.

$$
\{(1,[j]),(2,[j])\} \rightarrow(1, u) \rightarrow\{(3,[i]),(4,[i])\} \rightarrow(2, u) \rightarrow\{(1,[i]),(2,[i])\} \text { by (II) }
$$ and (III).

Case 4.5.

(i) $v \in\{(1, u),(2, u)\}$ and $w \in\{(1,[j]),(2,[j])\}$ for all $j \in N_{T}(u)-A_{4}$, or
(ii) $v \in\{(1,[j]),(2,[j])\}$ and $w \in\{(1, u),(2, u)\}$ for all $j \in N_{T}(u)-A_{4}$.

Note that $\{(1,[j]),(2,[j])\} \rightarrow(1, u) \rightarrow(3,[k]) \rightarrow(2, u) \rightarrow\{(1,[j]),(2,[j])\}$ is a
directed C_{4} for any $k \in A_{4}$.

Case 4.6. $v \in\{(1,[i]),(2,[i])\}$ and $w \in\{(1,[j]),(2,[j])\}$ for all $i, j \in N_{T}(u)-A_{4}$.

Note that $\{(1,[i]),(2,[i])\} \rightarrow(1, u) \rightarrow(3,[k]) \rightarrow(2, u) \rightarrow\{(1,[j]),(2,[j])\}$ is a directed C_{4} for any $k \in A_{4}$ by (II) and (III).

Hence, $d(D) \leq 4$. Notice that every vertex in D lies in a directed C_{4}. So, by Lemma 1.3.2, $4=d(T) \leq \bar{d}(G) \leq \max \{4, d(D)\}=4$. Therefore, $\bar{d}(G)=4$.

Figure 3.2.2: Orientation D, where $A_{4}=\{1,2\}$ and $N_{T}(u)-A_{4}=\{3,4\}$.
For clarity, the arcs directed from (p, u) to $(q,[i])$ and $(q,[i])$ to $(r,[\alpha, i])$ are omitted.

Next, we consider the smallest possible size $s_{[i]}$ of our concern. Given $s_{[i]}=$ 2 for all $i=1,2, \ldots, \operatorname{deg}_{T}(u)$, we seek a necessary and sufficient condition for $T\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0}$, where T is a tree of diameter 4 . We start by introducing some lemmas.

Remark 3.2.3 Note that it is not necessarily true that $A_{2}=N_{T}(u)$ in a $T^{(2)}$. Consider $T^{(2)}$, where T is as given in Example 3.2.1. Then, $A_{2}=\{1,2,4\} \neq$ $N_{T}(u)=\{1,2,3,4\}$ since [3] is an end-vertex in T.

Lemma 3.2.4 Let T be a tree of diameter $4, G:=T\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ and D be an orientation of G where $d(D)=4$. If $s_{[i]}=2$ for some $1 \leq i \leq \operatorname{deg}_{T}(u)$, then for all $1 \leq j \leq s_{[\alpha, i]}$ and $1 \leq \alpha \leq \operatorname{deg}_{T}([i])-1$, either $(2,[i]) \rightarrow(j,[\alpha, i]) \rightarrow(1,[i])$ or $(1,[i]) \rightarrow(j,[\alpha, i]) \rightarrow(2,[i])$.

Proof: This follow from the fact that $\operatorname{deg}^{+}((j,[\alpha, i]))>0$ and $\operatorname{deg}^{-}((j,[\alpha, i]))>0$ for all $j=1,2, \ldots, s_{[\alpha, i]}$ so that D is a strong orientation.

Lemma 3.2.5 Let T be a tree of diameter $4, G:=T\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ and D be an orientation of G where $d(D)=4$. Then, $d_{D}((p,[\alpha, i]),(q,[j]))=d_{D}((q,[j]),(p,[\alpha, i]))=$ 3 for all $1 \leq i, j \leq \operatorname{deg}_{T}(u), i \neq j, 1 \leq \alpha \leq \operatorname{deg}_{T}([i])-1,1 \leq p \leq s_{[\alpha, i]}$ and $1 \leq q \leq s_{[j]}$.

Proof: Note that $3=d_{T}([\alpha, i],[j]) \leq d_{D}((p,[\alpha, i]),(q,[j])) \leq d(D)=4$. Since there is no $[\alpha, i]-[j]$ path of even length in T, there is no $(p,[\alpha, i])-(q,[j])$ path of even length in G, in particular, no path of length 4 . Hence, $d_{D}((p,[\alpha, i]),(q,[j]))=3$. Similarly, $d_{D}((q,[j]),(p,[\alpha, i]))=3$ may be proved.

Lemma 3.2.6 Let T be a tree of diameter 4, $G:=T\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ and D be an orientation of G where $d(D)=4$. For some $1 \leq i<j \leq \operatorname{deg}_{T}(u), 1 \leq \alpha \leq$ $\operatorname{deg}_{T}([i])-1$, and $1 \leq \beta \leq \operatorname{deg}_{T}([j])-1$,
(i) if $O((1,[\alpha, i]))=\{(1,[i])\}$ and $O((1,[\beta, j]))=\{(1,[j])\}$, then $O^{u}((1,[i]))$ and $O^{u}((1,[j]))$ are independent.
(ii) if $I((1,[\alpha, i]))=\{(1,[j])\}$ and $I((1,[\beta, j]))=\{(1,[j])\}$, then $I^{u}((1,[i]))$ and $I^{u}((1,[j]))$ are independent.

Proof:
(i) By Lemma 3.2.5, $d_{D}((1,[\alpha, i]),(1,[j]))=3$. Now, $d_{D}((1,[\alpha, i]),(1,[j]))=3$ implies $d_{D}((1,[i]),(1,[j]))=2$. Hence, it follows that $O^{u}((1,[i])) \nsubseteq O^{u}((1,[j]))$. A similar argument shows $O^{u}((1,[j])) \nsubseteq O^{u}((1,[i]))$.
(ii) This part follows from (i) and the Duality Lemma.

The next theorem by Lih will be useful in shortening our proof, as we will explain in a moment.

Theorem 3.2.7 (Lih [34])
Let $n \in \mathbb{Z}^{+}$and $Y \subseteq \mathbb{N}_{n}$. If \mathscr{A} is an antichain of \mathbb{N}_{n} such that $X \cap Y \neq \emptyset$ for all $X \in \mathscr{A}$, then

$$
|\mathscr{A}| \leq\binom{ n}{\lceil n / 2\rceil}-\binom{n-|Y|}{\lceil n / 2\rceil} .
$$

We return to our aim of seeking a necessary and sufficient condition for $T\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in$ \mathscr{C}_{0}, where T is a tree with diameter 4 . The condition $d_{D}((1,[1, i]),(1,[j]))=3=$ $d_{D}((1,[1, j]),(1,[i]))$ for all $i \neq j$ is fundamental to our proof for the "necessary" direction. As in Lemma 3.2.6, it is consequent that $\left\{O^{u}((1,[i])) \mid i \in A_{2}\right\}$ is an antichain, assuming $O((1,[1, i]))=\{(1,[i])\}$ for each $i \in A_{2}$. Hence, $\left|A_{2}\right| \leq\binom{ s}{[s / 2\rceil}$ by Sperner's Lemma. This bound is tight if $A_{2}=N_{T}(u)$. And, if $A_{2} \subset N_{T}(u)$, we invoke Lih's Theorem to obtain a tighter bound $\left|A_{2}\right| \leq\binom{ s}{\lceil s / 2\rceil}-1$.

Theorem 3.2.8 Let T be a tree of diameter 4 and u be its unique central vertex. Suppose $A_{2} \neq \emptyset$, and $A_{\geq 3}=\emptyset$. Then,

$$
G:=T\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathscr{C}_{0} \Longleftrightarrow \begin{cases}\left|A_{2}\right| \leq\binom{ s}{\lceil s / 2\rceil}, & \text { if }\left|A_{2}\right|=\operatorname{deg}_{T}(u), \\ \left|A_{2}\right| \leq\binom{ s}{\lceil s / 2\rceil}-1, & \text { if }\left|A_{2}\right|<\operatorname{deg}_{T}(u) .\end{cases}
$$

Proof:
(\Rightarrow)
Let D be an orientation of G such that $d(D)=4$. By Lemma 3.2.4, we may assume w.l.o.g. for each $i \in A_{2}$ that, $(2,[i]) \rightarrow(1,[1, i]) \rightarrow(1,[i])$. Then, $\left\{O^{u}((1,[i])) \mid i \in A_{2}\right\}$ is an antichain of $\left(\mathbb{N}_{s}, u\right)$ by Lemma 3.2.6. It follows from Sperner's Lemma that $\left|A_{2}\right|=\left|\left\{O^{u}((1,[i])) \mid i \in A_{2}\right\}\right| \leq\binom{ s}{[s / 2\rceil}$. Now, we are done if $A_{2}=N_{T}(u)$.

Assume $A_{2} \subset N_{T}(u)$ and let $i^{*} \in N_{T}(u)-A_{2}$. By a similar argument as in the previous paragraph, $\left\{I^{u}((2,[i])) \mid i \in A_{2}\right\}$ is also an antichain of $\left(\mathbb{N}_{s}, u\right)$. If $\left|O^{u}\left(\left(1,\left[i^{*}\right]\right)\right)\right| \geq\left\lceil\frac{s}{2}\right\rceil$, then $d_{D}\left((1,[1, i]),\left(1,\left[i^{*}\right]\right)\right)=3$ implies $O^{u}((1,[i])) \cap I^{u}\left(\left(1,\left[i^{*}\right]\right)\right) \neq$ \emptyset for all $i \in A_{2}$. It follows from Theorem 3.2.7 that $\left|A_{2}\right|=\mid\left\{O^{u}((1,[i])) \mid i \in\right.$ $\left.A_{2}\right\} \left\lvert\, \leq\binom{ s}{[s / 2\rceil}-\binom{s-\left|I^{u}\left(\left(1,\left[i i^{*}\right]\right)\right)\right|}{\lceil s / 2\rceil} \leq\binom{ s}{[s / 2\rceil}-\binom{[s / 2\rceil}{[s / 2\rceil}=\binom{s}{[s / 2\rceil}-1\right.$. If $\left|O^{u}\left(\left(1,\left[i^{*}\right]\right)\right)\right| \leq$ $\left\lfloor\frac{s}{2}\right\rfloor$, then $d_{D}\left(\left(1,\left[i^{*}\right]\right),(1,[1, i])\right)=3$ implies $I^{u}((2,[i])) \cap O^{u}\left(\left(1,\left[i^{*}\right]\right)\right) \neq \emptyset$ for all $i \in A_{2}$. It follows from Theorem 3.2.7 that $\left|A_{2}\right|=\left|\left\{I^{u}((2,[i])) \mid i \in A_{2}\right\}\right| \leq$ $\binom{s}{[s / 2\rceil}-\binom{s-\left|O^{u}\left(\left(1,\left[i^{*}\right]\right)\right)\right|}{\lceil s / 2\rceil} \leq\binom{ s}{\lceil s / 2\rceil}-\binom{[s / 2\rceil}{[s / 2\rceil}=\binom{s}{\lceil s / 2\rceil}-1$.

On account of the last proof, it is intuitive to assign $\left\lfloor\frac{s}{2}\right\rfloor$-element subsets of $\left(\mathbb{N}_{s}, u\right)$ as $O^{u}((1,[i]))=O^{u}((2,[i]))$ in constructing an orientation D of G. Indeed, this is our plan if $\left|A_{2}\right|$ is big enough (i.e. $\left|A_{2}\right| \geq s$). However, there are some potential drawbacks of this approach if $\left|A_{2}\right|$ is small (i.e. $\left|A_{2}\right|<s$). For instance, consider $s=5$ and $\operatorname{deg}_{T}(u)=\left|A_{2}\right|=2$. Should we have assigned $O^{u}((p,[1]))=\{(1, u),(2, u)\}$ and $O^{u}((p,[2]))=\{(1, u),(3, u)\}$ for $p=1,2$, then $\operatorname{deg}^{+}((1, u))=0$ and $\operatorname{deg}^{-}((j, u))=0$ for $j=4,5$. Consequently, D will not be a strong orientation. Hence, we consider cases dependent on $\left|A_{2}\right|$ to circumvent this problem; namely, they are Cases 1 and 3 if $A_{2}=N_{T}(u)$, and Cases 2 and 4 if
$A_{2} \subset N_{T}(u)$.
(\Leftarrow)
W.l.o.g., assume $A_{2}=\mathbb{N}_{\left|A_{2}\right|}$. Thus, it is taken that $N_{T}(u)-A_{2}=\left\{\left|A_{2}\right|+\right.$ $\left.1,\left|A_{2}\right|+2, \ldots, \operatorname{deg}_{T}(u)\right\}$, if $A_{2} \subset N_{T}(u)$.

Case 1. $A_{2}=N_{T}(u)$ and $\left|A_{2}\right|<s$.
Define an orientation D_{1} for G as follows.
(I) $(2,[i]) \rightarrow(1,[\alpha, i]) \rightarrow(1,[i]) \rightarrow(2,[\alpha, i]) \rightarrow(2,[i])$ for $i \in A_{2}$ and $\alpha=$ $1,2, \ldots, \operatorname{deg}_{T}([i])-1$.
(II) $\left(\mathbb{N}_{s}, u\right)-\{(i, u)\} \rightarrow\{(1,[i]),(2,[i])\} \rightarrow(i, u)$ for $i=1,2, \ldots,\left|A_{2}\right|-1$.
(III) $\left(\mathbb{N}_{s}, u\right)-\left\{(k, u)| | A_{2} \mid \leq k \leq s\right\} \rightarrow\left\{\left(1,\left[\left|A_{2}\right|\right]\right),\left(2,\left[\left|A_{2}\right|\right]\right)\right\} \rightarrow\left\{(k, u)| | A_{2} \mid \leq\right.$ $k \leq s\}$. (See Figure 3.2.3 for D_{1} when $s=5$.)

Claim 1: For all $v, w \in V\left(D_{1}\right), d_{D_{1}}(v, w) \leq 4$.

Subcase 1.1. $v, w \in\{(1,[\alpha, i]),(2,[\alpha, i]),(1,[i]),(2,[i])\}$ for each $i \in A_{2}$ and $\alpha=$ $1,2, \ldots, \operatorname{deg}_{T}([i])-1$.

This is clear since, by $(\mathrm{I}),(2,[i]) \rightarrow(1,[\alpha, i]) \rightarrow(1,[i]) \rightarrow(2,[\alpha, i]) \rightarrow(2,[i])$ is a directed C_{4}.

Subcase 1.2. For each $i, j \in A_{2}, i \neq j$, each $\alpha=1,2, \ldots, d e g_{T}([i])-1$, and each $\beta=1,2, \ldots, \operatorname{deg}_{T}([j])-1$,
(i) $v=(p,[\alpha, i]), w=(q,[\beta, j])$ for $p, q=1,2$, or
(ii) $v=(p,[\alpha, i]), w=(q,[i])$ for $p, q=1,2$, or
(iii) $v=(p,[i]), w=(q,[\beta, j])$ for $p, q=1,2$.

If $i \neq j$, then, by (I)-(III), $(p,[\alpha, i]) \rightarrow(p,[i]) \rightarrow(i, u) \rightarrow(1,[j]) \rightarrow(2,[\beta, j])$ and $(p,[\alpha, i]) \rightarrow(p,[i]) \rightarrow(i, u) \rightarrow(2,[j]) \rightarrow(1,[\beta, j])$ for all α, β and $p=1,2$.

Subcase 1.3. $v=\left(x_{1}, u\right)$ and $w=\left(x_{2}, u\right)$ for $x_{1} \neq x_{2}$ and $1 \leq x_{1}, x_{2} \leq s$.
If $x_{2}<\left|A_{2}\right|$, then $\left(x_{1}, u\right) \rightarrow\left(1,\left[x_{2}\right]\right) \rightarrow\left(x_{2}, u\right)$ by (II). If $x_{1}<\left|A_{2}\right| \leq x_{2} \leq s$, then $\left(x_{1}, u\right) \rightarrow\left(1,\left[\left|A_{2}\right|\right]\right) \rightarrow\left(x_{2}, u\right)$ by (III). If $\left|A_{2}\right| \leq x_{1}, x_{2} \leq s$, then $\left(x_{1}, u\right) \rightarrow$ $(1,[1]) \rightarrow(1, u) \rightarrow\left(1,\left[\left|A_{2}\right|\right]\right) \rightarrow\left(x_{2}, u\right)$ by (II) and (III).

Subcase 1.4. $v \in\{(1,[i]),(2,[i]),(1,[\alpha, i]),(2,[\alpha, i])\}$ for each $i \in A_{2}, \alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-$ 1 , and $w=(j, u)$ for $j=1,2, \ldots, s$.

If $j=i$, then $(p,[\alpha, i]) \rightarrow(p,[i]) \rightarrow(j, u)$ for $p=1,2$, by (I) and (II). If $j \neq i$ and $j<\left|A_{2}\right|$, then $(p,[\alpha, i]) \rightarrow(p,[i]) \rightarrow(i, u) \rightarrow(1,[j]) \rightarrow(j, u)$ for $p=1,2$, by (I) and (II). If $j \neq i$ and $\left|A_{2}\right| \leq j \leq s$, then $(p,[\alpha, i]) \rightarrow(p,[i]) \rightarrow(i, u) \rightarrow\left(1,\left[\left|A_{2}\right|\right]\right) \rightarrow$ (j, u) for $p=1,2$, by (I)-(III).

Subcase 1.5.
$v=(j, u)$ for each $j=1,2, \ldots, s$, and $w \in\{(1,[i]),(2,[i]),(1,[\alpha, i]),(2,[\alpha, i])\}$ for each $i \in A_{2}$ and $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1$.

If $j<\left|A_{2}\right|$ and $j \neq i$, or $i<\left|A_{2}\right| \leq j \leq s$, then $(j, u) \rightarrow(p,[i]) \rightarrow(3-p,[\alpha, i])$ for $p=1,2$, by (I)-(III). If $i=j<\left|A_{2}\right|$, then $(j, u) \rightarrow\left(1,\left[\left|A_{2}\right|\right]\right) \rightarrow\left(\left|A_{2}\right|, u\right) \rightarrow$ $(p,[i]) \rightarrow(3-p,[\alpha, i])$ for $p=1,2$ by (I) and (III). If $i=\left|A_{2}\right| \leq j \leq s$, then $(j, u) \rightarrow(1,[1]) \rightarrow(1, u) \rightarrow\left(p,\left[\left|A_{2}\right|\right]\right) \rightarrow\left(3-p,\left[\alpha,\left|A_{2}\right|\right]\right)$, for $p=1,2$ by (I)-(III).

Subcase 1.6. $v=(p,[i])$ and $w=(q,[j])$, where $1 \leq p, q \leq 2, i \neq j$, and $i, j \in A_{2}$.

This follows from the fact that $\left|O^{u}((p,[i]))\right|>0,\left|I^{u}((q,[j]))\right|>0$, and $d_{D_{1}}\left(\left(r_{1}, u\right),\left(r_{2}, u\right)\right)=$ 2 for any $r_{1} \neq r_{2}$ and $1 \leq r_{1}, r_{2} \leq\left|A_{2}\right|$ by Subcase 1.3.

Case 2. $A_{2} \subset N_{T}(u)$ and $\left|A_{2}\right|<s$.
We define an orientation D_{2} for G such that $\left\langle V\left(D_{2}\right)-\left\{\left(1,\left[\left|A_{2}\right|\right]\right),\left(2,\left[\left|A_{2}\right|\right]\right)\right\}\right\rangle_{D_{2}} \cong$ $\left\langle V\left(D_{2}\right)-\left\{\left(1,\left[\left|A_{2}\right|\right]\right),\left(2,\left[\left|A_{2}\right|\right]\right)\right\}\right\rangle_{D_{1}}$.

Furthermore, in D_{2}, we have
(IV) $\left(2,\left[\left|A_{2}\right|\right) \rightarrow\left(1,\left[\alpha,\left|A_{2}\right|\right]\right) \rightarrow\left(1,\left[\left|A_{2}\right|\right]\right) \rightarrow\left(2,\left[\alpha,\left|A_{2}\right|\right]\right) \rightarrow\left(2,\left[\left|A_{2}\right|\right]\right)\right.$ for $\alpha=$ $1,2, \ldots, \operatorname{deg}_{T}\left(\left[\left|A_{2}\right|\right]\right)-1$,
(V) $\left(\mathbb{N}_{s}, u\right)-\left\{(k, u)| | A_{2} \mid \leq k \leq s-1\right\} \rightarrow\left\{\left(1,\left[\left|A_{2}\right|\right]\right),\left(2,\left[\left|A_{2}\right|\right]\right)\right\} \rightarrow\left\{(k, u)| | A_{2} \mid \leq\right.$ $k \leq s-1\}$, and
(VI) $\left(\mathbb{N}_{s}, u\right)-\{(s, u)\} \rightarrow\{(1,[i]),(2,[i])\} \rightarrow(s, u)$ for all $i \in N_{T}(u)-A_{2}$.
(See Figure 3.2.4 for D_{2} when $s=5$.)

Claim 2: For all $v, w \in V\left(D_{2}\right), d_{D_{2}}(v, w) \leq 4$.
In view of the similarity between D_{1} and D_{2}, it suffices to check the following subcases.

Subcase 2.1. For each $i \in A_{2}$, each $j \in N_{T}(u)-A_{2}$, and each $\alpha=1,2, \ldots, d e g_{T}([i])-$ 1 ,
(i) $v=(p,[\alpha, i]), w=(q,[j])$ for $p, q=1,2$, or
(ii) $v=(p,[i]), w=(q,[j])$ for $p, q=1,2$, or
(iii) $v=(q,[j]), w=(p,[\alpha, i])$ for $p, q=1,2$.
(i) and (ii) follow from $(p,[\alpha, i]) \rightarrow(p,[i]) \rightarrow(i, u) \rightarrow\{(1,[j]),(2,[j])\}$ for all $p=1,2$, by (I), (II) and (IV)-(VI). Similarly, for (iii), $\{(1,[j]),(2,[j])\} \rightarrow(s, u) \rightarrow$ $(3-p,[i]) \rightarrow(p,[\alpha, i])$ for $p=1,2$ by (I), (II) and (IV)-(VI).

Subcase 2.2. $v=\left(x_{1}, u\right)$ and $w=\left(x_{2}, u\right)$ for $x_{1} \neq x_{2}$ and $1 \leq x_{1}, x_{2} \leq s$.
If $x_{2} \in A_{2}$, then $\left(x_{1}, u\right) \rightarrow\left(1,\left[x_{2}\right]\right) \rightarrow\left(x_{2}, u\right)$ by (II) and (V). If $x_{1} \in A_{2} \cup\{s\}-$ $\left\{\left|A_{2}\right|\right\}$ and $\left|A_{2}\right| \leq x_{2} \leq s-1$, then $\left(x_{1}, u\right) \rightarrow\left(1,\left[\left|A_{2}\right|\right]\right) \rightarrow\left(x_{2}, u\right)$ by (II) and (V). If $\left|A_{2}\right| \leq x_{1}, x_{2} \leq s-1$, then $\left(x_{1}, u\right) \rightarrow(1,[1]) \rightarrow(1, u) \rightarrow\left(1,\left[\left|A_{2}\right|\right]\right) \rightarrow\left(x_{2}, u\right)$ by (II) and (V). If $x_{2}=s$, then $\left(x_{1}, u\right) \rightarrow(1,[w]) \rightarrow\left(x_{2}, u\right)$ by (II), (V) and (VI), where w can be any element of $N_{T}(u)-A_{2}$.

Subcase 2.3. $v \in\{(1,[i]),(2,[i])\}$ for each $i \in N_{T}(u)-A_{2}$, and $w=(j, u)$ for $j=1,2, \ldots, s$.

For $1 \leq j<\left|A_{2}\right|,\{(1,[i]),(2,[i])\} \rightarrow(s, u) \rightarrow(1,[j]) \rightarrow(j, u)$ by (II) and (VI). For $\left|A_{2}\right| \leq j \leq s-1,\{(1,[i]),(2,[i])\} \rightarrow(s, u) \rightarrow\left(1,\left[\left|A_{2}\right|\right]\right) \rightarrow(j, u)$ by (V) and (VI). And, of course, $\{(1,[i]),(2,[i])\} \rightarrow(j, u)$ if $j=s$ by (VI).

Subcase 2.4.
$v=(j, u)$ for each $j=1,2, \ldots, s$, and $w \in\{(1,[i]),(2,[i])\}$ for each $i \in N_{T}(u)-A_{2}$.

By (VI), for any $1 \leq j \leq s-1,(j, u) \rightarrow\{(1,[i]),(2,[i])\}$. Furthermore, $(s, u) \rightarrow(1,[1]) \rightarrow(1, u) \rightarrow\{(1,[j]),(1,[j])\}$ by (II) and (VI).

Subcase 2.5. $v=(p,[i])$ and $w=(q,[j])$, where $1 \leq p, q \leq 2$, and $i, j \in N_{T}(u)-A_{2}$.

Here, it is possible that $i=j$. Note that $\{(1,[i]),(2,[i])\} \rightarrow(s, u) \rightarrow(1,[1]) \rightarrow$ $(1, u) \rightarrow\{(1,[j]),(1,[j])\}$ by (II) and (VI).

Case 3. $A_{2}=N_{T}(u)$ and $s \leq\left|A_{2}\right| \leq\binom{ s}{\Gamma s / 2\rceil}$.
Let Ψ_{s} be the set containing all $\left\lfloor\frac{s}{2}\right\rfloor$-element subsets of $\left(\mathbb{N}_{s}, u\right)$. In particular, denote $\psi_{j} \in \Psi_{s}$ where $\psi_{j}:=\left\{(j, u), \ldots,\left(j+\left\lfloor\frac{s}{2}\right\rfloor-1, u\right)\right\}$ for $j=1,2, \ldots, s$, where the addition is taken modulo s. For $j>s$, the denotation of ψ_{j} is arbitrary. Define an orientation D_{3} for G as follows.
(VII) $(2,[i]) \rightarrow(1,[\alpha, i]) \rightarrow(1,[i]) \rightarrow(2,[\alpha, i]) \rightarrow(2,[i])$, and
(VIII) $\bar{\psi}_{i} \rightarrow\{(1,[i]),(2,[i])\} \rightarrow \psi_{i}$,
for $i \in A_{2}$ and $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1$.
(See Figure 3.2.5 for D_{3} when $s=5$.)

Claim 3: For all $v, w \in V\left(D_{3}\right), d_{D_{3}}(v, w) \leq 4$.

Subcase 3.1. $v, w \in\{(1,[\alpha, i]),(2,[\alpha, i]),(1,[i]),(2,[i])\}$ for each $i \in A_{2}$ and $\alpha=$ $1,2, \ldots, \operatorname{deg}_{T}([i])-1$.

This is clear since, by (VII), $(2,[i]) \rightarrow(1,[\alpha, i]) \rightarrow(1,[i]) \rightarrow(2,[\alpha, i]) \rightarrow(2,[i])$ is a directed C_{4}.

Subcase 3.2. For each $i, j \in A_{2}, i \neq j$, each $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1$, and each $\beta=1,2, \ldots, \operatorname{deg}_{T}([j])-1$,
(i) $v=(p,[\alpha, i]), w=(q,[\beta, j])$ for $p, q=1,2$, or
(ii) $v=(p,[\alpha, i]), w=(q,[j])$ for $p, q=1,2$, or
(iii) $v=(p,[i]), w=(q,[\beta, j])$ for $p, q=1,2$.

By (VII) and (VIII), since $O^{u}((p,[i]))=\psi_{i} \nsubseteq \psi_{j}=O^{u}((q,[j]))$, there exists a vertex $(x, u) \in \psi_{i} \cap \bar{\psi}_{j}$ such that $(p,[\alpha, i]) \rightarrow(p,[i]) \rightarrow(x, u) \rightarrow(q,[j]) \rightarrow$ $(3-q,[\beta, j])$ for $p, q=1,2$.

Subcase 3.3. $v=\left(r_{1}, u\right)$ and $w=\left(r_{2}, u\right)$ for $r_{1} \neq r_{2}$ and $1 \leq r_{1}, r_{2} \leq s$.
Let $t=r_{1}-\left\lfloor\frac{s}{2}\right\rfloor(\bmod s)$. Since $\left(r_{1}, u\right) \notin \psi_{r_{1}+1} \cup \psi_{t}$, it follows that $\left(r_{1}, u\right) \rightarrow$ $\left\{\left(1,\left[r_{1}+1\right]\right),(1,[t])\right\}$. Taking addition modulo $s,\left(1,\left[r_{1}+1\right]\right) \rightarrow \psi_{r_{1}+1}=\left\{\left(r_{1}+\right.\right.$ $\left.1, u),\left(r_{1}+2, u\right), \ldots,\left(r_{1}+\left\lfloor\frac{s}{2}\right\rfloor, u\right)\right\}$ and $(1,[t]) \rightarrow \psi_{t}=\left\{(t, u),(t+1, u), \ldots,\left(r_{1}-1, u\right)\right\}$ since $t+\left\lfloor\frac{s}{2}\right\rfloor-1=r_{1}-1(\bmod s)$. Noting that $\psi_{r_{1}+1} \cup \psi_{t}=\left(\mathbb{N}_{n}, u\right)-\left\{\left(r_{1}, u\right)\right\}$, it follows w.l.o.g. that $d_{D_{3}}(v, w)=2$.

Subcase 3.4. $v \in\{(1,[i]),(2,[i]),(1,[\alpha, i]),(2,[\alpha, i])\}$ for each $i \in A_{2}$ and $\alpha=$ $1,2, \ldots, \operatorname{deg}_{T}([i])-1$, and $w=(r, u)$ for $r=1,2, \ldots, s$.

Note that there exists some $1 \leq k \leq s$ such that $d_{D_{3}}(v,(k, u)) \leq 2$ by (VII) and (VIII). If $k=r$, we are done. If $k \neq r$, then $d_{D_{3}}((k, u),(r, u))=2$ by Subcase 3.3. Hence, it follows that $d_{D_{3}}(v, w) \leq d_{D_{3}}(v,(k, u))+d_{D_{3}}((k, u), w)=4$.

Subcase 3.5.
$v=(r, u)$ for $r=1,2, \ldots, s$ and $w \in\{(1,[i]),(2,[i]),(1,[\alpha, i]),(2,[\alpha, i])\}$ for each $i \in A_{2}$ and $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1$.

Note that there exists some $1 \leq k \leq s$ such that $d_{D_{3}}((k, u), v) \leq 2$ by (VII) and (VIII). If $k=r$, we are done. If $k \neq r$, then $d_{D_{3}}((r, u),(k, u))=2$ by Subcase 3.3. Hence, it follows that $d_{D_{3}}(v, w) \leq d_{D_{3}}(v,(k, u))+d_{D_{3}}((k, u), w)=4$.

Subcase 3.6. $v=(p,[i])$ and $w=(q,[j])$, where $1 \leq p, q \leq 2$ and $i, j \in A_{2}$.

This follows from the fact that $\left|O^{u}((p,[i]))\right|>0,\left|I^{u}((q,[j]))\right|>0$, and $d_{D_{3}}\left(\left(r_{1}, u\right),\left(r_{2}, u\right)\right)=$ 2 for any $r_{1} \neq r_{2}$ and $1 \leq r_{1}, r_{2} \leq s$ by Subcase 3.3.

Case 4. $A_{2} \subset N_{T}(u)$ and $s \leq\left|A_{2}\right| \leq\binom{ s}{[s / 2\rceil}-1$. (If $s=3$, this case does not apply, and we refer to Case 2 instead.)

Using the notations in Case 3, we define an orientation D_{4} for G by making a slight modification to D_{3}. Noting that $\left|A_{2}\right| \leq\binom{ s}{\lceil s / 2\rceil}-1$, define D_{4} as follows.
$(\mathrm{VII})^{\prime}(2,[i]) \rightarrow(1,[\alpha, i]) \rightarrow(1,[i]) \rightarrow(2,[\alpha, i]) \rightarrow(2,[i])$.
$(\mathrm{VIII})^{\prime} \bar{\psi}_{i} \rightarrow\{(1,[i]),(2,[i])\} \rightarrow \psi_{i}$ for $i \in A_{2}$ and $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1$.
$(\mathrm{IX})^{\prime} \bar{\psi}_{\left(\mathrm{rs}_{s / 2 \mathrm{~s}} \mathrm{~s}\right)} \rightarrow\{(1,[j]),(2,[j])\} \rightarrow \psi_{\left(\Gamma_{s / 27}^{s}\right)}$ for $j \in N_{T}(u)-A_{2}$.
(See Figure 3.2.6 for D_{4} when $s=5$.)

Claim 4: For all $v, w \in V\left(D_{4}\right), d_{D_{4}}(v, w) \leq 4$.
In view of the similarity between D_{3} and D_{4}, it suffices to check the following subcases.

Subcase 4.1. $v \in\{(1,[i]),(2,[i])\}$ for each $i \in N_{T}(u)-A_{2}$ and $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-$ 1 , and $w=(r, u)$ for $r=1,2, \ldots, s$.

This follows from the fact that $\left|O^{u}((p,[i]))\right|>0$ for $p=1,2$, and $d_{D_{4}}\left(\left(r_{1}, u\right),\left(r_{2}, u\right)\right)=$ 2 for any $r_{1} \neq r_{2}$ and $1 \leq r_{1}, r_{2} \leq s$ by Subcase 3.3.

Subcase 4.2.
$v=(r, u)$ for $r=1,2, \ldots, s$ and $w \in\{(1,[i]),(2,[i])\}$ for each $i \in N_{T}(u)-A_{2}$ and $\alpha=1,2, \ldots, \operatorname{deg}_{T}([i])-1$.

This follows from the fact that $\left|I^{u}((p,[i]))\right|>0$ for $p=1,2$, and $d_{D_{4}}\left(\left(r_{1}, u\right),\left(r_{2}, u\right)\right)=$ 2 for any $r_{1} \neq r_{2}$ and $1 \leq r_{1}, r_{2} \leq s$ by Subcase 3.3.

Subcase 4.3. $v=(p,[i])$ and $w=(q,[j])$, where $1 \leq p, q \leq 2$ and $i, j \in N_{T}(u)-A_{2}$.

This follows from the fact that $\left|O^{u}((p,[i]))\right|>0,\left|I^{u}((q,[j]))\right|>0$, and $d_{D_{4}}\left(\left(r_{1}, u\right),\left(r_{2}, u\right)\right)=$ 2 for any $r_{1} \neq r_{2}$ and $1 \leq r_{1}, r_{2} \leq s$ by Subcase 3.3.

Hence, $d\left(D_{i}\right) \leq 4$ for $i=1,2,3,4$. Notice that every vertex in D lies in a directed C_{4}. So, by Lemma 1.3.2, $4=d(T) \leq \bar{d}(G) \leq \max \{4, d(D)\}=4$. Therefore, $\bar{d}(G)=4$.

Figure 3.2.3: D_{1} for Case 1. $s=5$ and $A_{2}=\{1,2,3,4\}$.
For clarity, the arcs directed from (p, u) to $(q,[i])$ are omitted.

Figure 3.2.4: D_{2} for Case 2. $s=5, d e g_{T}(u)=6, A_{2}=\{1,2,3,4\}$ and

$$
N_{T}(u)-A_{2}=\{5,6\} .
$$

For clarity, the arcs directed from (p, u) to $(q,[i])$ are omitted.

Figure 3.2.5: D_{3} for Case 3. $s=5$, and $A_{2}=\{1,2,3,4,5\}$.
For clarity, we only show the vertices $[\alpha, i]$ and $[i]$ for $i=1,2,3$, and the arcs directed from (p, u) to $(q,[i])$ are omitted.

Figure 3.2.6: D_{4} for Case 4. $s=5, \operatorname{deg}_{T}(u)=11, A_{2}=\{1,2, \ldots, 9\}$ and

$$
N_{T}(u)-A_{2}=\{10,11\} .
$$

Here, assume we define $\psi_{\left(\begin{array}{c}s, 27\end{array}\right)}=\{(3, u),(5, u)\}$.
For clarity, we only show the vertices $[\alpha, i]$ and $[i]$ for $i=1,2,3,10,11$, and the arcs directed from (p, u) to $(q,[i])$ are omitted.

Corollary 3.2.9 Let T be a tree of diameter 4 and u be its unique central vertex. If
(i) $\left|A_{\geq 2}\right| \leq\binom{ s}{[s / 2\rceil}$ and $\left|A_{2}\right|=\operatorname{deg}_{T}(u)$, or
(ii) $\left|A_{\geq 2}\right| \leq\binom{ s}{\lceil s / 2\rceil}-1$,
then $G:=T\left(s_{1}, s_{2}, \ldots, s\right) \in \mathscr{C}_{0}$.

Proof:
Note that every vertex lies in a directed C_{4} for each orientation D_{i} and $d\left(D_{i}\right) \leq 4$, for $i=1,2,3,4$. Thus, $\bar{d}(G) \leq \max \left\{4, d\left(D_{i}\right)\right\}$ for $i=1,2,3,4$, by Lemma 1.3.2. Since $\bar{d}(G) \geq d(T)=4$, it follows that $\bar{d}(G)=4$.

Further research may be done to characterise the tree vertex-multiplications $T_{4}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ which belong to \mathscr{C}_{0}.

Bibliography

[1] Aigner M., Ziegler G.M., Proofs from the book, Springer, (2014), 199-200.
[2] Anderson I., Combinatorics of Finite Sets, Dover Publications, (1987), 2-4.
[3] Boesch F., Tindell R., Robbins's Theorem for Mixed Multigraphs, The American Mathematical Monthly, 87, (1980), 716-719.
[4] Buckley F., Lewinter M., A note on graphs with diameter-preserving spanning trees, Journal of Graph Theory, 12, (1988), 525-528.
[5] Cai J., Xu Y., On the optimal strongly connected orientations of city annular street graphs $H_{n_{1} \times n_{2}}, I: n_{1}=2, n_{2} \equiv 0(\bmod 2)$, Combinatorics and Graph Theory' 95, (Hefei) River Edge, NJ: World Scientific, 1, (1995), 39-49.
[6] Chen C.C., Koh K.M., Principles and Techniques in Combinatorics, World Scientific, (1992), 148-153.
[7] Chew K.Y., Optimal orientations of the torus, Honours thesis, Nanyang Technological University, National Institute of Education, (2004).
[8] Chung F.R.K., Garey M.R., Tarjan R.E., Strongly connected orientations of mixed multigraphs, Networks, 15, (1985), 477-484.
[9] Chvátal V., Thomassen C., Distances in orientations of graphs, Journal of Combinatorial Theory B, 24, (1978), 61-75.
[10] Fraigniaud P., Lazard E., Methods and problems of communication in usual networks, Discrete Applied Mathematics, 53, (1994), 79-133.
[11] Goldberg M.K., The diameter of a strong connected graph, Dokl. Akad. Nauk SSSR, 170, (1966), 767-769 (in Russian).
[12] Gutin G., m-sources in complete multipartite digraphs, Vestsi Acad. Navuk BSSR Ser. Fiz-Mat, 5, (1989), 101-106 (in Russian).
[13] Gutin G., Minimizing and maximizing the diameter in orientations of graphs, Graphs and Combinatorics, 10, (1994), 225-230.
[14] Hajnal A., Milner E.C., Szemeredi E., A cure for the telephone disease, Canadian Mathematics Bulletin, 15, (1972), 447-450.
[15] Koh K.M., Lee K.T., Optimal orientations of products of odd cycles and paths, preprint, (1998).
[16] Koh K.M., Lee K.T., Optimal orientations of products of a tree of small diameter with another tree, preprint, (1998).
[17] Koh K.M., Tan B.P., The diameters of a graph and its orientations, Res. Rep, National University of Singapore, (1992).
[18] Koh K.M., Tan B.P., The diameter of an orientation of a complete multipartite graph, Discrete Mathematics, 149, (1996), 131-139.
[19] Koh K.M., Tan B.P., The minimum diameter of orientations of complete multipartite graphs, Graphs and Combinatorics, 12, (1996), 333-339.
[20] Koh K.M., Tay E.G., Optimal orientations of products of paths and cycles, Discrete Applied Mathematics, 78, (1997), 163-174.
[21] Koh K.M., Tay E.G., On optimal orientations of cartesian products of even cycles and paths, Networks, 30, (1997), 1-7.
[22] Koh K.M., Tay E.G., On optimal orientations of cartesian products of graphs (I), Discrete Mathematics, 190, (1998), 115-136.
[23] Koh K.M., Tay E.G., On optimal orientations of cartesian products of graphs (II): complete graphs and even cycles, Discrete Mathematics, 211, (2000), 75102.
[24] Koh K.M., Tay E.G., On optimal orientations of cartesian products of even cycles, Networks, 32, (1998), 299-306.
[25] Koh K.M., Tay E.G., On optimal orientations of cartesian products with a bipartite graph, Discrete Applied Mathematics, 98, (1999), 103-120.
[26] Koh K.M., Tay E.G., On a conjecture concerning optimal orientations of the cartesian product of a triangle and an odd cycle, Discrete Mathematics, 232, (2001), 153-161.
[27] Koh K.M., Tay E.G., On optimal orientations of G vertex-multiplications, Discrete Mathematics, 219, (2000), 153-171.
[28] Koh K.M., Tay E.G., On optimal orientations of cartesian products of trees, Graphs and Combinatorics, 17, (2001), 79-97.
[29] Koh K.M., Tay E.G., On optimal orientations of graphs and digraphs: A survey, Graphs and Combinatorics, 18, (2002), 745-756.
[30] Koh K.M., Tay E.G., On optimal orientations of tree vertex-multiplications, Australasian Journal of Combinatorics, 34, (2006), 69-87.
[31] Konig J.C., Krumme D.W., Lazard E., Diameter-preserving orientations of the torus, Networks, 32, (1998), 1-11.
[32] Kwok P.K., Liu Q., West D.B., Oriented diameter of graphs with diameter 3, Journal of Combinatorial Theory B, 100, (2010), 265-274.
[33] Lee S.L., On the orientation number of graphs, MSc thesis, National University of Singapore, Department of Mathematics (2002).
[34] Lih K.-W., Sperner families over a subset, Journal of Combinatorial Theory A, 29, (1980), 182-185.
[35] Lubell D., A short proof of Sperner's lemma, Journal of Combinatorial Theory, 1, (1966), 299.
[36] Maurer S.B., The king chicken theorems, Mathematics Magazine, 53, (1980), 67-80.
[37] McCanna J.E., Orientations of the n-cube with minimum diameter, Discrete Mathematics, 68, (1988), 309-310.
[38] Meshalkin L.D., Generalization of Sperner's Theorem on the Number of Subsets of a Finite Set, Theory of Probability \& Its Applications, 8, (1963), 203-204.
[39] Ng K.L., Orientations of graphs with minimum diameter, MSc thesis, National University of Singapore, Department of Mathematics (1999).
[40] Ng K.L., A new direction in the study of the orientation number of a graph, PhD thesis, National University of Singapore, Department of Mathematics (2004).
[41] Plesnik J., Diametrically critical tournaments, Časopis pro pěstovánái matematiky, 100, (1975), 361-370.
[42] Plesnik J., Remarks on diameters of orientations of graphs, Acta Mathematica Universitatis Comenianae, 46/47, (1985), 225-236.
[43] Rajasekaran G., Sampathkumar R., Optimal orientations of some complete tripartite graphs, FILOMAT, 29, (2015), 1681-1687.
[44] Robbins H.E., A Theorem on Graphs, with an Application to a Problem of Traffic Control, The American Mathematical Monthly, 46, (1939), 281-283.
[45] Roberts F.S., Discrete Mathematical Models, with applications to Social, Biological and Environmental Problems, Englewood Cliff, NJ: Prentice-Hall (1976).
[46] Roberts F.S., Graph Theory and its applications to Problems of Society, NSFCBMS Monograph 29, Philadelphia, PA: SIAM, (1978).
[47] Roberts F.S., Xu Y., On the optimal strongly connected orientations of city street graphs I: Large grids, SIAM J. Discrete Mathematics, 1, (1988), 199-222.
[48] Roberts F.S., Xu Y., On the optimal strongly connected orientations of city street graphs II: Two east-west avenues or north-south streets, Networks, 19, (1989), 221-233.
[49] Roberts F.S., Xu Y., On the optimal strongly connected orientations of city street graphs III: Three east-west avenues or north-south streets, Networks, 22, (1992), 109-143.
[50] Roberts F.S., Xu Y., On the optimal strongly connected orientations of city street graphs IV: Four east-west avenues or north-south streets, Discrete Applied Mathematics, 49, (1994), 331-356.
[51] Sperner E., Ein satz über Untermengen einer endlichen Menge, Math. Z., 27, (1928), 544-548.
[52] Šoltés L., Orientations of graphs minimizing the radius or the diameter, Math. Slovaca, 36, (1986), 289-296.
[53] Tay E.G., Optimal orientations of graphs, PhD thesis, National University of Singapore, Department of Mathematics (1999).
[54] Yamamoto K., Logarithmic order of free distributive lattice, Journal of the Mathematical Society of Japan, 6, (1954), 343-353.
[55] Maple (2017), Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.

