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Terminology and Notation

{1, 2, . . . , n} Nn

{(1, v), (2, v) . . . , (n, v)} (Nn, v), v ∈ V (G)

Complement of the set A Ā

Length of a shortest cycle girth

Subgraph of G induced by A ⊆ V (G) 〈A〉G

The smallest integer more than or equal to x, x ∈ R dxe

The greatest integer less than or equal to x, x ∈ R bxc

Complete graph of order n Kn

Complete n-partite graph with partite sizes p1, p2, . . . , pn K(p1, p2, . . . , pn)

Null graph of order n On

Path of order n Pn

n-cube graphs Qn

{(i, v)| (j, u)→ (i, v), i = 1, 2, . . . , sv} in a digraph D Ov
D((j, u))

{(i, v)| (i, v)→ (j, u), i = 1, 2, . . . , sv} in a digraph D IvD((j, u))

Often in graphs, it is more convenient to use the congruence classes of i modulo

n, denoted by [i]n, n ∈ N, where i = 1, 2, . . . , n, instead of the commonly used

i = 0, 1, . . . n− 1. Hence, we adopt this notion throughout this thesis.
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Summary

In Chapter 1, we introduce the fundamentals and applications of optimal ori-

entations. We then survey some results relevant to our research. An extension of

complete n-partite graphs, G vertex-multiplications, will be introduced formally.

Let si ≥ 2 for all 1 ≤ i ≤ n. It is known that the G vertex-multiplications,

G(s1, s2, . . . , sn), can be classified into three classes Cj, where

Cj = {G(s1, s2, . . . , sn)| d̄(G(s1, s2, . . . , sn)) = d(G) + j},

for j = 0, 1, 2.

In Chapter 2, we present our findings on a special case ofG vertex-multiplications,

which is commonly known as complete tripartite graphs. Particularly, we prove

a conjecture by Rajasekaran and Sampathkumar in Section 2.2; for any integers

q ≥ p ≥ 3, if d̄(K(2, p, q)) = 2, then q ≤
(

p
bp/2c

)
. Also, Rajasekaran and Sam-

pathkumar proved d̄(K(p, p, q)) = 2 for p ≥ 4, 4 ≤ q ≤ 2p. In Section 2.3, we

improve the upper bound of q significantly, especially for large p.

In Chapter 3, we focus on the G vertex-multiplications of trees. Precisely, we

investigate some special cases of vertex-multiplications of trees with diameter 4.
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1. Literature Review

1.1. Introduction To Optimal Orientations

1.1.1. Fundamentals

Let G be a graph with vertex set V (G) and edge set E(G). In this thesis, we

consider graphs G with no loops nor parallel edges, unless otherwise stated. For

any vertices v, x ∈ V (G), the distance from v to x, dG(v, x), is defined as the length

of a shortest path from v to x. For v ∈ V (G), its eccentricity eG(v) is defined

as eG(v) := max{dG(v, x)| x ∈ V (G)}. The diameter of G, denoted by d(G), is

defined as d(G) := max{eG(v)| v ∈ V (G)} while the radius of G, denoted by r(G),

is defined as r(G) := min{eG(v)| v ∈ V (G)}.

The above notions are defined similarly for a digraph D. For any vertices v, x ∈

V (D), the distance from v to x, dD(v, x), is defined as the length of a shortest

directed path from v to x. A vertex x is said to be reachable from another vertex

v if dD(v, x) < ∞. For v ∈ V (D), its eccentricity eD(v) is defined as eD(v) :=

max{dD(v, x)| x ∈ V (D)}. The diameter of D, denoted by d(D), is defined as

d(D) := max{eD(v)| v ∈ V (D)} while the radius of D, denoted by r(D), is defined

as r(D) := min{eD(v)| v ∈ V (D)}. The outset and inset of a vertex v ∈ V (D)

are defined to be OD(v) := {x ∈ V (D)| v → x} and ID(v) := {y ∈ V (D)| y → v}

respectively. If there is no danger of confusion, we shall omit the subscript for the

above notations.

An orientation D of a graph G is a digraph obtained from G by assigning a

direction to every edge e ∈ E(G). An orientation D of G is said to be strong if

4
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every two vertices in V (D) are mutually reachable. An edge e ∈ E(G) is a bridge

if G− e is disconnected. Robbins’ well-known One-way Street Theorem [10] states

the following.

Theorem 1.1.1 (Robbins [44])

Let G be a connected graph. Then, G has a strong orientation if and only if G is

bridgeless.

Roberts [45], Boesch and Tindell [3] and Chung et al [8] constructed efficient

algorithms for finding a strong orientation of a bridgeless connected graph. Fur-

thermore, Boesch and Tindell [3] generalised Robbins’ One-way Street Theorem for

mixed multigraphs (which allow edges to be directed or undirected). In the same

article, Boesch and Tindell [3] investigated another extension of Robbins’ Theorem,

using the notion of ρ(G) given below. Independently, Chvátal and Thomassen [9],

and Roberts [46] also considered the same notion ρ(G). Given a connected and

bridgeless graph G, let D(G) be the family of strong orientations of G. Define

ρ(G) := min{d(D)| D ∈ D(G)} − d(G).

The orientation number of G is defined as

d̄(G) := min{d(D)| D ∈ D(G)}.

An orientation D ∈ D(G) is an optimal orientation of G if d(D) = d̄(G).

Clearly, d(G) ≤ d̄(G). Here, we are interested to find the optimal orientation(s)

that minimise the increase in diameter, ρ(G). The general problem of finding the

orientation number of a connected and bridgeless graph is very difficult. Moreover,

Chvátal and Thomassen [9] proved that it is NP-hard to determine if a graph admits

an orientation of diameter 2. Since ρ(G) is easily computed with a given d̄(G), we

will express all following results using only one of the two terms, d̄(G) and ρ(G),

whichever describes the situation better. Noting that every strong orientation of

5
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a cycle is a directed cycle, the following easy example serves to familiarise readers

with the notion of d̄(G).

Example 1.1.2

i) d̄(Cn) = n− 1 for any cycle Cn, n ≥ 3.

ii) d̄(G) ≥ g − 1 for any connected and bridgeless graph G with girth g ≥ 3.

1.1.2. Applications

Diameter problems arise in network optimisation in a natural way. One real-life

application of optimal orientations lies in traffic systems. Robbins [44] provided the

following example. Consider the scenario of a two-way street system, which can

be modeled by a graph G. Each vertex of G correspond to a street intersection

and an edge joins two vertices if and only if travelling from one intersection to

another without going through a third intersection is possible. Now, road repairs

take place on some days, and it is required to transform the two-way street system

into a one-way system. Travelling from one vertex to every other vertex is possible

if and only if a strong orientation F is assigned. For obvious reasons, we seek a

‘best’ orientation F that minimises the additional distance. Roberts and Xu [47–50]

discussed three functions as criterias of optimality for one to minimise.

(i) D(F ) = max{d(u, v)| u, v ∈ V (F )}.

(ii) L(F ) =
∑

u∈V (F )

max{d(u, x)| x ∈ V (F )}.

(iii) A(F ) =
∑

u,v∈V (F )

d(u, v).

Clearly, minimising the first function D(F ) is the same as evaluating d̄(G). In other

words, minimising the diameter of the assigned orientation is a way of optimising

the one-way street system.

Another application of optimal orientations concerns an adaptation of the Gossip

Problem on a graph G. Due to Boyd, the Gossip Problem is stated by Hajnal et

al. [14] as follows.

“There are n ladies, and each one of them knows an item of scandal which is

not known to any of the others. They communicate by telephone, and whenever

6
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two ladies make a call, they pass on to each other, as much scandal as they know

at that time. How many calls are needed before all ladies know all the scandal?”

The problem inspired the study of information broadcast by conference calls,

telephone calls, letters and computer networks. The adaptation of the problem

that relates to our topic of interest is the half-duplex model, where all points si-

multaneously relay information to all other points. Furthermore, information are

consolidated at no cost and all links are concurrently used in only one direction at a

time. In this problem, Fraigniaud and Lazard [10] showed that the time taken for the

gossip to be completed is bounded below by d(G) and above by min{2d(G), d̄(G)}.

Some classes of graphs discussed in [10] include complete graphs, cycles, cartesian

product of cycles and cartesian product of paths. In addition, hypercube graphs

and de Brujin graphs, which are of interest in the area of communication networks,

were also considered.

1.2. Relevant Results

1.2.1. Extremal Problems

In 1966, Goldberg [11] investigated an extremal problem concerning the diameter

of a strong digraph with n vertices and n+ q arcs. As mentioned in Example 1.1.2,

d̄(Cn) = n − 1 for n ≥ 3. Hence, excluding Cn, Goldberg proved the following

theorem.

Theorem 1.2.1 (Goldberg [11])

Suppose G is a bridgeless connected graph with order n and size n+ q, where n ≥ 4

and q ≥ 1. Then, d̄(G) ≥ d2(n−1)
q+1
e.

The bound in Theorem 1.2.1 is sharp for digraphs. However, it is not necessary

that the sharpness follows for orientations of graphs. If q = 1, then cycles with one

chord are examples that hit the bound. Let G(n, q), where q ≥ 2 and n ≥ 3(q+ 1),

be the identification of Cx1 , Cx2 . . . , Cxq+1 at one vertex, such that n =
q+1∑
i=1

xi − q

7
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and the xi’s differ by at most 1. Then, the orientation numbers of G(n, q) are close

to Goldberg’s bound. If n ≡ k (mod(q + 1)), then it can be shown that

d̄(G(n, q)) =

d
2(n−1)
q+1
e+ 1, if 3 ≤ k ≤ q+3

2
,

d2(n−1)
q+1
e, otherwise.

Henceforth, the following were conjectured and posed.

Conjecture 1.2.2 Let G be a bridgeless connected graph with order n and size

n + q, where q ≥ 2 and n ≥ 3(q + 1). If n ≡ k (mod(q + 1)), where 3 ≤ k ≤ q+3
2

,

then d̄(G) ≥ d2(n−1)
q+1
e+ 1.

Problem 1.2.3 If G has higher connectivity, can Goldberg’s bound be improved ?

What if G is hamiltonian?

On a related note, Ng [40] examined the orientation numbers of graphs obtained

by adding exactly n edges between Kn and Cn, adding 2 edges between 2 arbitrary

graphs G1 and G2 with orientation numbers d1 and d2 respectively, adding n edges

between n cycles, adding edges between Kp and Kq, adding edges among Kp, Kq

and Kr, and adding edges between Kp and Oq.

Bondy and Murty (see [9]) suggested to investigate quantitative variations of

Robbins’ theorem. Specifically, they conjectured the existence of a function f , for

which every bridgeless graph G of diameter d admits an orientation of diameter at

most f(d). In 1978, Chvátal and Thomassen [9] obtained bounds on f(d), as stated

below.

1

2
d2 ≤ f(d) ≤ 2d2 + d, for d ≥ 2.

It follows that d̄(G) ≤ 2d2+d. We will see later (from Theorem 1.2.4) that f(1) = 3,

as every graph with diameter 1 is a complete graph. In addition, they showed that

f(2) = 6, with the Petersen graph as an extremal graph. In 2007, Kwok, Liu and

West [32] proved 9 ≤ f(3) ≤ 11.

8

ATTENTION: The Singapore Copyright Act applies to the use of this document. Library and Information Services Centre, National Institute of Education.



1.2.2. Complete Graphs And Complete n-partite Graphs

In the subsequent subsections, we shall share existing results on some special

classes of graphs. Plesnik [41], Boesch and Tindell [3], and Maurer [36] indepen-

dently evaluated the orientation number of complete graphs Kn, n ≥ 3. The orien-

taton number of complete bipartite graphs K(p, q) was obtained by Šoltés [52] and

Gutin [12] independently.

Theorem 1.2.4 (Plesnik [41], Boesch and Tindell [3], Maurer [36])

For n ≥ 3,

d̄(K(n)) =

2, if n 6= 4,

3, if n = 4.

Theorem 1.2.5 (Šoltés [52], Gutin [12])

For q ≥ p ≥ 2,

d̄(K(p, q)) =

3, if q ≤
(

p
bp/2c

)
,

4, if q >
(

p
bp/2c

)
.

In his proof, Gutin made use of Sperner’s Lemma, a celebrated result in com-

binatorics. Let T, S ⊆ Nn := {1, 2, . . . , n}, where n ∈ Z+. T and S are said to

be independent if T 6⊆ S and S 6⊆ T . If S and T are independent, we may say

that S is independent of T or T is independent of S. An antichain A of Nn is a

collection of pairwise independent subsets of Nn, i.e. for all S, T ∈ A , S and T are

independent. If Xi ⊆ Nn for i = 1, 2, . . . , k, and X1 ⊂ X2 ⊂ . . . ⊂ Xk, we say that

X1, X2, . . . , Xk forms a chain. Sperner’s Lemma essentially says that the maximum

size of any antichain of Nn is
(

n
bn/2c

)
. There are several ways to prove Sperner’s

Lemma, each with its unique elegance. We state the lemma formally, with a proof

by Lubell [35] using maximal chains.

9
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Lemma 1.2.6 (Sperner [51]) (Proof adapted from [1], [2])

Let n ∈ Z+ and A be an antichain of Nn. Then,

|A | ≤
(
n

bn
2
c

)

with equality holding if and only if all members in A have the same size, bn
2
c or

dn
2
e. (The two sizes coincide if n is even.)

Proof : Firstly, consider the maximal chains ∅ = X0 ⊂ X1 ⊂ ... ⊂ Xn = Nn, where

Xi ⊆ Nn and |Xi| = i for i = 0, 1, ..., n. There are n! such chains as each chain is

obtained by adding one by one the elements of Nn. Secondly, for each set S ∈ A

where |S| = s, there are exactly s!(n− s)! such chains that contain S, i.e. S = Xi

for some 1 ≤ i ≤ n. Thirdly, each chain contains at most one element of A .

Now, let mk be the number of k-sets in A . Then, |A | =
n∑
k=0

mk. It follows

that the number of chains passing through some member of A is
∑
S∈A

s!(n− s)! =

n∑
k=0

mkk!(n− k)!, which cannot exceed the total number of chains n!. In other

words,

n∑
k=0

mkk!(n− k)! ≤ n!

n∑
k=0

mk(
n
k

) ≤ 1 (1.1)

1(
n
bn/2c

) n∑
k=0

mk ≤ 1

|A |(
n
bn/2c

) ≤ 1

For even n, it is clear from (1.1) that equality holds if and only if mn/2 =
(
n
n/2

)
,

i.e. A =
(Nn

n/2

)
, where

(Nn

k

)
denotes the collection of all k-subsets of Nn. Also, if n

is odd and A =
( Nn

bn/2c

)
or A =

( Nn

dn/2e

)
, then it is clear that |A | =

(
n
bn/2c

)
. Now, let

n be odd and |A | =
(

n
bn/2c

)
. Then, equality must hold at all stages, particularly,

each chain contains exactly one element of A . And, from (1.1), A contains only

10
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sets of size bn
2
c and dn

2
e. We want to prove that either A =

( Nn

bn/2c

)
or A =

( Nn

dn/2e

)
.

Suppose A contains some but not all dn
2
e-sets. So, there exist some X ∈ A and

Y 6∈ A and |X| = |Y | = dn
2
e. By a suitable relabelling, if necessary, we may

assume that X = {a1, a2, . . . , adn/2e} and Y = {ai, ai+1, . . . , ai+dn/2e}. Then, there

must exist a largest integer j < i such that X∗ = {aj, aj+1, . . . , aj+dn/2e} ∈ A

and Y ∗ = {aj+1, aj+2, . . . , aj+1+dn/2e} 6∈ A . Now, X∗ ∩ Y ∗ ⊂ X∗ ∈ A implies

X∗ ∩ Y ∗ 6∈ A . Furthermore, note that |X∗ ∩ Y ∗| = bn
2
c and |Y ∗| = dn

2
e. So, the

chain containing X∗ ∩ Y ∗ ⊂ Y ∗ does not have any elements of A , a contradiction.

�

Remark 1.2.7

a) A strength of Lubell’s proof is the inequality (1.1), also known as the Lubell-

Yamamoto-Meshalkin(LYM) Inequality. In fact, this inequality is stronger than

Sperner’s Lemma itself as it tells us that if we aim to construct a large antichain,

then we should choose sets of size about n
2
. It was discovered independently by

Lubell [35], Yamamoto [54] and Meshalkin [38].

b) Sperner’s Lemma launched the remarkable rise of a distinctive and important

area in discrete mathematics and combinatorial optimization, known as Sperner’s

Theory. A number of generalisations of Sperner’s Lemma and LYM Inequality

has been explored. They consist of many natural and fundamental questions about

families of subsets, with emphasis on size, intersection and containment. Though

many of such problems remain unsolved, elegant techniques have since emerged to

be found useful.

For complete n-partite graphs, where n ≥ 3, Plesnik [42] and Gutin [13] proved

independently that the orientation number is either 2 or 3. This result was also

obtained separately by Koh and Tan [18].

Theorem 1.2.8 (Plesnik [42], Gutin [13], Koh and Tan [18])

For all positive integers n ≥ 3 and p1, p2, . . . , pn, 2 ≤ d̄(K(p1, p2, . . . , pn)) ≤ 3.
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In the same paper, Koh and Tan [18] established the following sufficient con-

dition for d̄(K(p1, p2, ..., pn)) = 3. Furthermore, they raised the example that

d̄(K(2, 1, 1)) = 3, highlighing that the condition (1.2) in Theorem 1.2.9 is suffi-

cient but not necessary.

Theorem 1.2.9 (Koh and Tan [18])

Let n ≥ 3 and p1, p2, . . . , pn be positive integers. Denote h =
n∑
k=1

pi. If

pi >

(
h− pi

b(h− pi)/2c

)
(1.2)

for some i = 1, 2, . . . , n, then d̄(K(p1, p2, ..., pn)) = 3.

In another paper, Koh and Tan [19] constructed large families of complete n-

partite graphs, which can be optimally oriented. An idea primarily employed by

them was that of a co-pair. A pair {p, q} of integers is called a co-pair if 1 ≤ p ≤

q ≤
(

p
bp/2c

)
or 1 ≤ q ≤ p ≤

(
q
bq/2c

)
. Specifically, if {p, q} is a co-pair, then p = 1 if

and only if q = 1.

Theorem 1.2.10 (Koh and Tan [19])

Let G = K(p1, q1, p2, q2, . . . , pk, qk), where k ≥ 2 and {pi, qi} is a co-pair for each

i = 1, 2, . . . , k. Then d̄(G) = 2 if (k, p1, p2) 6= (2, 1, 1).

Theorem 1.2.11 (Koh and Tan [19])

Let G = K(p1, q1, p2, q2, . . . , pk, qk, r) where k ≥ 2 and {pi, qi} is a co-pair for each

i = 1, 2, . . . , k. Suppose {r, pj} is a co-pair for each j = 1, 2, . . . , k. Then, d̄(G) = 2.

Though there have been significant results achieved for complete n-partite graphs,

a characterisation of K(p1, p2, . . . , pn) with d̄(K(p1, p2, . . . , pn)) = 2 remains elusive.

Koh and Tan further asserted that it is very difficult to determine whether the ori-

entation number of a given K(p1, p2, ..., pn) is 2 or 3.

Problem 1.2.12 Characterise the complete multipartite graphs G = K(p1, p2, . . . , pn),

where n ≥ 3, according to whether d̄(G) = 2 or 3.

12
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1.2.3. Cartesian Product Of Graphs

Optimal orientations of cartesian product of graphs have received substantial

attention in recent decades. Research on cartesian products was motivated by

the fact that the rectangular grid structure of many city traffic systems could be

modeled by the graph Pm × Pn. Independently, Roberts and Xu [47–50], and Koh

and Tan [17] examined ρ(Pm × Pn). We summarise their results below.

Theorem 1.2.13

ρ(Pm × Pn) =


0, if m ≥ 3, n ≥ 6, (m,n) 6= (3, 6),

1, if m = 2, n 6= 3, 5 or (m,n) = (3, 3), (4, 4),

2, if (m,n) = (2, 3), (2, 5).

A generalisation of the above result is the cartesian product of two trees. Koh

and Tay [28] derived the following result, concerning trees with diameter at least 4.

Koh and Lee [16] further investigated the case, where one of the trees has diameter

2 or 3.

Theorem 1.2.14 (Koh and Tay [28])

Let Ti be a tree, where d(Ti) ≥ 4, for i = 1, 2. Then, ρ(T1 × T2) = 0.

Koh and Tay [24, 26] also worked out ρ(Cm × Cn) for some special cases of m

and n. Separately, Konig et. al. [31] and Chew [7] investigated the same problem.

Their results are summarised as follows.
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Theorem 1.2.15 For m ≥ 3 and n ≥ 3, the values of ρ(Cm × Cn), where (?)

indicates a conjecture, are summarised in the table below.

m

n
3 4 5 0 (mod 4) 1 (mod 4) 2 (mod 4) 3 (mod 4)

3 1 1 2 1 2 1 2

4 - 0 1 0 1 0 1

5 - - 2(?) 1 2(?) 0 1

0 (mod 4) - - - 0 0 0 0

1 (mod 4) - - - - 1 0 1

2 (mod 4) - - - - - 0 0

3 (mod 4) - - - - - - 1

Table 1.1: Summary of ρ(Cm × Cn).

ρ(G×H) was determined by Cai and Xu [5], Koh and Tay [20–23], and Koh and

Lee [15] for the Cartesian products of some other pairs of graphs G and H. These

included C2n×Pk, C2n+1×Pk, Km×Pn, Km×Kn, Km×C2n+1 and Km×C2n

The n-cubes Qn :=

n terms︷ ︸︸ ︷
K2 ×K2 × . . .×K2, n ≥ 2, were the first cartesian products

involving more than two graphs to be studied. Šoltés [52] proved that ρ(Qn) ≤ 1

for n ≥ 4 and McCanna [37] settled the problem completely in 1988.

Theorem 1.2.16 (McCanna [37])

ρ(Qn) =


1, if n = 2,

2, if n = 3,

0, if n ≥ 4.

McCanna invoked the use of the following lemma, due to Thomassen, in his

proof.

Lemma 1.2.17 Suppose G is a bipartite graph which admits an orientation of di-

ameter at most k, where k ≥ 3, and every vertex is in a cycle of length at most k.

14
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Then, the graph G× P2 admits an orientation of diameter at most k + 1 such that

every vertex is in a cycle of length at most k.

This lemma was extended by Koh and Tay [28] and applied to prove results on

cartesian products involving at least three graphs. They derived that ρ(G1 ×G2 ×

. . .×Gs) = 0, where G1 is a bipartite graph with some weak conditions imposed, and

{Gi| 2 ≤ i ≤ s} is some combination of cycles, paths, complete graphs, complete

bipartite graphs, trees, and graphs of diameter 2. We describe their results as

follows.

In [25], four families of graphs were defined. Let G be the set of all bipartite

graphs G with d(G) ≥ 4, and which admit orientations of diameter d(G) where

every vertex is contained in a cycle of length at most d(G).

Let G ∗ be the set of all bipartite graphs G which admit orientations F of diam-

eter d(G), where d(G) ≥ 4, and in F ,

(i) every vertex is contained in a cycle of length at most d(G), and

(ii) if v is adjacent to w, then there exists a v − w walk of length at least 3 and at

most d(G).

Let J be the set of all graphs G which admit an orientation H such that for

all vertices v, w ∈ V (H), one of the following holds:

(i) dH(v, w) ≤ d(G), or

(ii) dH(w, v) ≤ d(G), or

(iii) there exist vertices xvw and yvw such that dH(v, xvw) + dH(w, xvw) ≤ d(G) and

dH(yvw, v) + dH(yvw, w) ≤ d(G).

Let J ∗ be the set of all graphs G which admit an orientation H such that for

all vertices v, w ∈ V (H), one of the following holds:

(i) dH(v, w) ≤ d(G), or

(ii) dH(w, v) ≤ d(G), or

(iii) there exists a vertex xvw such that dH(v, xvw) + dH(w, xvw) ≤ d(G), or

(iv) there exists a vertex yvw such that dH(yvw, v) + dH(yvw, w) ≤ d(G).

It is clear from their definitions that G ∗ ⊆ G and J ⊆J ∗. Koh and Tay [25]
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proved that many graphs belong to at least one of G ,G ∗,J and J ∗. With their

extension of Lemma 1.2.17, they derived the following results.

Theorem 1.2.18 (Koh and Tay [25])

If G ∈ G and Hi ∈J , 1 ≤ i ≤ n, then ρ(G×
n∏
i=1

Hi) = 0.

Theorem 1.2.19 (Koh and Tay [25])

If G ∈ G ∗ and Hi ∈J ∗, 1 ≤ i ≤ n, then ρ(G×
n∏
i=1

Hi) = 0.

Parallel to the study of cartesian products of more than two graphs, Konig [31]

obtained the following result concerning cycles.

Theorem 1.2.20 (Konig [31])

Let r ≥ 3. If there exist p and q such that 1 ≤ p < q ≤ r, ip ≥ 6, iq ≥ 6 and

ρ(Cip × Ciq) = 0, then ρ(Ci1 × Ci2 × . . .× Cir) = 0.

1.2.4. Join Of Graphs

The join of two graphs G1 and G2, denoted by G1 + G2, is defined to be the

graph obtained by adding the set of edges {uv| u ∈ V (G1), v ∈ V (G2)} between

G1 and G2. In other words, V (G1 + G2) = V (G1) ∪ V (G2) and E(G1 + G2) =

E(G1) ∪ E(G2) ∪ {uv| u ∈ V (G1), v ∈ V (G2)}. Note that a wheel of order n is

isomorphic to Cn−1 +O1, while a fan of order n is isomorphic to Pn−1 +O1. Ng [39]

proved the following results on wheels and fans.

Theorem 1.2.21 (Ng [39])

Let Wn be the wheel of order n ≥ 4. Then,

d̄(Wn) =

3, if n = 4, 5,

4, if n ≥ 6.
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Theorem 1.2.22 (Ng [39])

Let Fn be the fan of order n ≥ 4. Then,

d̄(Fn) =

3, if n = 4, 5,

4, if n ≥ 6.

These results were extended by Ng [39] and Lee [33].

Theorem 1.2.23 (Ng [39])

For k ≥ 2 and n ≥ 3,

d̄(Cn +Ok) =

2, if (n, k) = (4, 2),

3, otherwise.

Theorem 1.2.24 (Lee [33])

For k ≥ 2 and n ≥ 3, d̄(Pn +Ok) = 3.

Lee [33] further generalised Theorem 1.2.24 to evaluate the orientation number

of the join of any tree with an empty graph.

Theorem 1.2.25 (Lee [33])

If Tn is a tree of order n, then d̄(Tn +Ok) = 3 for each n ≥ 3 and k ≥ 2.

17

ATTENTION: The Singapore Copyright Act applies to the use of this document. Library and Information Services Centre, National Institute of Education.



1.3. G Vertex-multiplications

1.3.1. A Fundamental Classification

In 2000, Koh and Tay [27] introduced a new family of graphs, G vertex-multiplications,

and extended the results on complete n-partite graphs. Let G be a given connected

graph with vertex set V (G) = {v1, v2, . . . , vn}. For any sequence of n positive inte-

gers (si), a G vertex-multiplication, denoted by G(s1, s2, . . . , sn), is the graph with

vertex set V ∗ =
n⋃
i=1

Vi and edge set E∗, where Vi’s are pairwise disjoint sets with

|Vi| = si, for i = 1, 2, . . . , n and for any u, v ∈ V ∗, uv ∈ E∗ if and only if u ∈ Vi and

v ∈ Vj for some i, j ∈ {1, 2, . . . , n} with i 6= j such that vivj ∈ E(G). For instance,

if G ∼= Kn, then the graph G(s1, s2, . . . , sn) is a complete n-partite graph with par-

tite sizes s1, s2, . . . , sn. Also, we say G is a parent graph of graph G(s1, s2, . . . , sn).

For i = 1, 2, . . . , n, we denote the xth vertex in Vi by (x, vi), or simply (x, i). i.e.

Vi = {(x, i)| x = 1, 2, . . . , si}. Hence, two vertices (x, i) and (y, j) in V ∗ are adjacent

in G(s1, s2, . . . , sn) if and only if i 6= j and vivj ∈ E(G). For convenience, we write

G(s) in place of G(s, s, . . . , s) for any positive integer s, and it is understood that

the number of s’s is equal to the order of G, n. Thus, G(1) is simply the graph G

itself.

Koh and Tay [27] derived the following fundamental classification on G vertex-

multiplication.

Theorem 1.3.1 (Koh and Tay [27])

Let G be a connected graph of order n ≥ 3. If si ≥ 2 for i = 1, 2, . . . , n, then

d(G) ≤ d̄(G(s1, s2, . . . , sn)) ≤ d(G) + 2.

In view of Theorem 1.3.1, all graphs of the form G(s1, s2, . . . , sn), with si ≥ 2
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for all 1 ≤ i ≤ n, can be classified into three classes Cj, where

Cj = {G(s1, s2, . . . , sn)| d̄(G(s1, s2, . . . , sn)) = d(G) + j},

for j = 0, 1, 2. Hence, in this thesis, we shall assume si ≥ 2 for i = 1, 2, . . . , n,

unless otherwise stated. The following results were also proven in the same paper.

Lemma 1.3.2 (Koh and Tay [27])

Let µi, λi be integers such that µi ≤ λi for i = 1, 2, . . . , n. If the graph G(µ1, µ2, . . . , µn)

admits an orientation F in which every vertex v lies on a cycle of length not ex-

ceeding m, then d̄(G(λ1, λ2, . . . , λn)) ≤ max{m, d(F )}.

Theorem 1.3.3 (Koh and Tay [27])

If d(G) ≥ 4 and si ≥ 4 for i = 1, 2, . . . , n, then G(s1, s2, . . . , sn) ∈ C0.

Corollary 1.3.4 (Koh and Tay [27])

If d(G) = 3 and si ≥ 4 for i = 1, 2, . . . , n, then G(s1, s2, . . . , sn) ∈ C0 ∪ C1.

By virtue of Theorem 1.3.3 and Corollary 1.3.4, any search for graphs of the

form G(s1, s2, . . . , sn) ∈ C2 should be confined to graphs G with d(G) ≤ 2 or on the

sequence (si), where sj ≤ 3 for some j. Using graphs G with d(G) = 2, Koh and

Tay [27] constructed G vertex-multiplications, G(s1, s2, . . . , sn), that belong to C2.

However, parent graphs of diameter at least 3 whose vertex-multiplications belong

to C2 have not been found. Hence, Koh and Tay conjectured the following.

Conjecture 1.3.5 (Koh and Tay [27])

If G is a graph such that d(G) ≥ 3 and si ≥ 2 for i = 1, 2, . . . , n, then G(s1, s2, . . . , sn) 6∈

C2.

1.3.2. Tree Vertex-multiplications

Koh and Tay [30] further investigated tree vertex multiplications. Since trees

with diameter at most 2 are parent graphs of complete bipartite graphs and are
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completely solved, they considered trees of diameter at least 3. It was shown that

any tree, with diameter 3 or 4, does not belong to the class C2.

Theorem 1.3.6 (Koh and Tay [30])

If T is a tree of order n and d(T ) = 3 or 4, then T (s1, s2, ..., sn) ∈ C0 ∪ C1.

Theorem 1.3.7 (Koh and Tay [30])

Let T be a tree with diameter 4 and its only central vertex be u.

(a) If degT (u) = 2, then T (s1, s2, . . . , sn) ∈ C0.

(b) If degT (u) ≥ 3, then T (2) ∈ C1.

Furthermore, a vertex-multiplication of a tree with diameter at least 6 belongs

to the class C0.

Theorem 1.3.8 (Koh and Tay [30])

If T is a tree of order n and d(T ) ≥ 6, then T (s1, s2, ..., sn) ∈ C0.

On a related note, Buckley and Lewinter [4] proved the characterisation of graphs

with a diameter-preserving spanning tree (d.p.s.t.) in 1988.

Theorem 1.3.9 (Buckley and Lewinter [4])

A connected graph G has a d.p.s.t. if and only if either

(1) d(G) = 2r(G), or

(2) d(G) = 2r(G) − 1 and G contains a pair of adjacent central vertices u and v

that have no common eccentric vertex.

Together with Theorem 1.3.8, the next proposition follows easily.

Proposition 1.3.10 Let G be a graph, where d(G) ≥ 6. If

(1) d(G) = 2r(G), or

(2) d(G) = 2r(G) − 1 and G contains a pair of adjacent central vertices u and v

that have no common eccentric vertex,

then G(s1, s2, . . . , sn) ∈ C0.
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Proof :

By Theorem 1.3.9, there exists a d.p.s.t. T of G, where d(T ) = d(G) ≥ 6. It fol-

lows from Theorem 1.3.8 that d̄(T (s1, s2, ..., sn)) = d(T ). i.e. there exists an orienta-

tionD of T (s1, s2, ..., sn) such that d(D) = d(T ). Note that T (s1, s2, ..., sn) is a span-

ning subgraph of G(s1, s2, ..., sn). Define an orientation F of G(s1, s2, ..., sn) such

that D is a subdigraph of F , and any unspecified edges may be oriented arbitrarily.

So, d(F ) ≤ d(D) = d(G). Since d(F ) ≥ d(G), we have d̄(G(s1, s2, ..., sn)) = d(G).

�

In a similar line of thought, we can prove the following proposition using Theo-

rem 1.3.6.

Proposition 1.3.11 Let G be a graph. If

(1) r(G) = 2 and d(G) = 4, or

(2) r(G) = 2 and d(G) = 3 and G contains a pair of adjacent central vertices u and

v that have no common eccentric vertex,

then G(s1, s2, . . . , sn) ∈ C0 ∪ C1.
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1.3.3. Cycle Vertex-multiplications

In 2004, Ng [40] examined vertex-multiplications of cycles. In particular, he

considered C
(s)
n for n ≥ 3. We quote a summary of the results in the table below.

n Cases of Cn(s1, s2, . . . , sn) ∈ C 0, C 1, C 2 ?

3 C
(s)
3 , s ≥ 2 C1

4 C4(s1, s2, s3, s4), si ≥ 2
C1 if {s1 + s3, s2 + s4} is a

co-pair, C2 otherwise

5 C
(s)
5 , s = 3, 4 C1

6 C
(s)
6 , s = 3, 4 C1 if s = 3

C0 if s = 4

7 C
(s)
7 , s = 3, 4 C1 if s = 3

C0 if s = 4

8 C
(3)
8 C1

C8(s1, s2, . . . , s8), si ≥ 4 C0

9 C
(3)
9 C1

C9(s1, s2, . . . , s9), si ≥ 4 C0

≥ 10 Cn(s1, s2, . . . , sn), si ≥ 3 C0

Table 1.2: Orientation numbers of Cn(s1, s2, . . . , sn).
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2. Complete Tripartite Graphs

2.1. Existing Results And Motivation

Given any positive integers, n, p1, p2, . . . , pn, let Kn denote the complete graph

of order n and K(p1, p2, . . . , pn) denote the complete n-partite graph having pi

vertices in the ith partite set for i = 1, 2, . . . , n, where p1 ≤ p2 ≤ . . . ≤ pn. The

n partite sets are denoted by Vi, i = 1, 2, . . . , n. i.e. |Vi| = pi for i = 1, 2, . . . , n.

Furthermore, ij denotes the jth vertex in Vi for i = 1, 2, . . . , n, and j = 1, 2, . . . , pi.

Thus, Kn
∼= K(p1, p2, . . . , pn), where p1 = p2 = . . . = pn = 1. Note that complete

n-partite graphs are G vertex-multiplications of complete graphs with order n. In

this chapter, we shall focus on complete n-partite graphs, particularly, complete

tripartite graphs. We start by listing some existing results of concern.

Plesnik [42], Gutin [13], and Koh and Tan [18] independently proved that the

orientation number of a complete multipartite graph is 2 or 3. Some sufficient and

necessary conditions were also established in the same papers. However, a complete

characterisation remains elusive.

Theorem 2.1.1 (Plesnik [42], Gutin [13], Koh and Tan [18])

For all positive integers n ≥ 3 and p1, p2, . . . , pn, 2 ≤ d̄(K(p1, p2, . . . , pn)) ≤ 3.

Theorem 2.1.2 (Gutin [13], Koh and Tan [18])

For all integers n ≥ 3 and p ≥ 2, d̄(K(

n terms︷ ︸︸ ︷
p, p, . . . , p)) = 2.
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Theorem 2.1.3 (Koh and Tan [18])

Let n ≥ 3 and p1, p2, . . . , pn be positive integers. Denote h =
n∑
k=1

pi. If

pi >

(
h− pi

b(h− pi)/2c

)
,

for some i = 1, 2, . . . , n, then d̄(K(p1, p2, ..., pn)) = 3.

Along a similar line of research, Rajasekaran and Sampathkumar investigated

special cases of complete tripartite graphs.

Theorem 2.1.4 (Rajasekaran and Sampathkumar [43])

For q ≥ p ≥ 2, d̄(K(1, p, q)) = 3.

Theorem 2.1.5 (Koh and Tan [19])

For q ≥ p ≥ 2, if q ≤
(

p
bp/2c

)
, then d̄(K(2, p, q)) = 2.

Theorem 2.1.6 (Rajasekaran and Sampathkumar [43])

For q ≥ 3, d̄(K(2, 2, q)) = 3.

Theorem 2.1.7 (Rajasekaran and Sampathkumar [43])

For q ≥ 4, d̄(K(2, 3, q)) = 3.

2.2. A Conjecture On K(2, p, q)

Based on Theorems 2.1.6, 2.1.7, and and an unpublished paper “The orientation

number of the complete tripartite graph K(2, 4, p)”, Rajasekaran and Sampathku-

mar conjectured that the converse of Theorem 2.1.5 holds for complete tripartite

graphs K(2, p, q), q ≥ p ≥ 5. Ng [40] showed for q ≥ p, d̄(K(1, 1, p, q)) = 2 implies

q ≤
(

p
bp/2c

)
. Since an orientation D of K(2, p, q), with d(D) = 2, is a spanning sub-

digraph of K(1, 1, p, q), the conjecture follows from Ng’s assertion. In this section,

we provide an independent proof of the conjecture. The following two lemmas will

be found useful in our proof.
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Lemma 2.2.1 (Duality)

Let D be an orientation of a graph G. Let D̃ be the orientation of G such that

uv ∈ E(D̃) if and only if vu ∈ E(D). Then, d(D̃) = d(D).

Proof : Suppose not. Then, there exist some vertices u, v ∈ V (D̃) such that

dD̃(u, v) > d(D). By definition of D̃, dD(v, u) = dD̃(u, v). It follows that dD(v, u) >

d(D), a contradiction.

�

Lemma 2.2.2 Let G = K(p1, p2, . . . , pn), n ≥ 3, and D be an orientation of G.

Suppose there exist vertices is and jt for some i, j, s and t, where i 6= j, 1 ≤ i, j ≤ n,

1 ≤ s ≤ pi and 1 ≤ t ≤ pj, such that

(i) O(is) ∩ (V (G)− Vj) = O(jt) ∩ (V (G)− Vi), or

(ii) I(is) ∩ (V (G)− Vj) = I(jt) ∩ (V (G)− Vi).

Then, d(D) ≥ 3.

Proof : Suppose (i). W.l.o.g., we assume jt → is. It follows that dD(is, jt) > 2 and

d(D) ≥ 3. (ii) follows now from the Duality Lemma.

�

Theorem 2.2.3 For any integers q ≥ p ≥ 3, if d̄(K(2, p, q)) = 2, then q ≤
(

p
bp/2c

)
.

Proof :

Since d̄(K(2, p, q)) = 2, there exists an orientation D of K(2, p, q) such that

d(D) = 2.

Case 1. V1 → V2.

It follows from dD(3i, 1j) ≤ 2, for every i = 1, 2, . . . , q, and j = 1, 2, that

V3 → V1. Also, since dD(2i, 3j) ≤ 2 for every i = 1, 2, . . . , p, and j = 1, 2, . . . , q, we

have V2 → V3. However, dD(3i, 3j) ≥ 3 for any 1 ≤ i, j ≤ q, i 6= j, which contradicts

d(D) = 2.

Similarly, by the Duality Lemma, we cannot have V2 → V1.
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Case 2. 1i → V2 → 13−i for exactly one of i = 1, 2.

W.l.o.g., we may assume that 11 → V2 → 12. It follows from dD(12, 3i) ≤ 2 and

dD(3i, 11) ≤ 2 for every i = 1, 2, . . . , q that 12 → V3 → 11. Now, for any i 6= j,

1 ≤ i, j ≤ q, dD(3i, 3j) ≤ 2 and thus, O(3i) ∩ V2 and O(3j) ∩ V2 are independent.

By Sperner’s Lemma, q ≤
(

p
bp/2c

)
.

Case 3. 1i → V2 for exactly one of i = 1, 2.

W.l.o.g., let i = 1. Furthermore, we assume that ∅ 6= O(12)∩V2 ⊂ V2 in view of

Cases 1 and 2. Hence, let |O(12) ∩ V2| = k, where 0 < k < p. Since dD(u, 3j) ≤ 2

for every u ∈ O(12) ∩ V2 and every j = 1, 2, . . . , q, it follows that O(12) ∩ V2 → V3.

It also follows from dD(3j, 11) ≤ 2 for every j = 1, 2, . . . , q, that V3 → 11.

Partition V3 into L1 and L2 such that L1 := {v ∈ V3| v → 12} and L2 := {v ∈

V3| 12 → v}. Note that L1 → V1. Since for each v ∈ L1, dD(2j, v) ≤ 2 for all

j = 1, 2, . . . , p, we have V2 → L1. Thus, |L1| ≤ 1, otherwise if u, v ∈ L1, then

dD(u, v) ≥ 3. Also, |L2| ≤
(

p−k
b(p−k)/2c

)
. Otherwise, by Sperner’s Lemma, there exist

3i, 3j ∈ L2 such that O(3i) ∩ V2 ⊆ O(3j) ∩ V2 for some i 6= j and 1 ≤ i, j ≤ q,

which implies dD(3i, 3j) > 2. Hence, q = |V3| = |L1| + |L2| ≤ 1 +
(

p−k
b(p−k)/2c

)
≤

1 +
(

p−1
b(p−1)/2c

)
≤
(

p
bp/2c

)
.

Similarly, the case where V2 → 1i for exactly one of i = 1, 2, follows from the

Duality Lemma.

Case 4. ∅ 6= O(1i) ∩ V2 ⊂ V2 for i = 1, 2.

Partition V2 into the sets KA := {v ∈ V2| A → v → (V1 − A)}, where A ⊆ V1.

Similarly, partition V3 into the sets LA := {v ∈ V3| A → v → (V1 − A)}, where

A ⊆ V1.

Since dD(u, 2j) ≤ 2 for any u ∈ V3 and j = 1, 2, . . . , p, it follows that L∅ → K∅,

L{11} → K{11}∪K∅, L{12} → K{12}∪K∅ and LV1 → V2. Similarly, since dD(u, 3j) ≤ 2

for any u ∈ V2 and j = 1, 2, . . . , q, it follows that K∅ → L∅, K{11} → L{11} ∪ L∅,
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K{12} → L{12} ∪ L∅ and KV1 → V2.

Invoking Sperner’s Lemma on each LA, A ⊆ V1, we have |L∅| ≤ 1, |L{11}| ≤( |K{12}|
b|K{12}|/2c

)
, |L{12}| ≤

( |K{11}|
b|K{11}|/2c

)
and |LV1| ≤ 1. Otherwise, there would exist

3i, 3j ∈ LA such that O(3i) ∩ V2 ⊆ O(3j) ∩ V2 for some i 6= j and 1 ≤ i, j ≤ q,

implying dD(3i, 3j) > 2.

Subcase 4.1. |KV1| = 0.

For i = 1, 2, K{1i} 6= ∅, since O(1i)∩V2 6= ∅ by assumption. From Lemma 2.2.2,

it follows that L{11} = L{12} = ∅. So, q = |V3| = |L∅|+ |LV1| ≤ 1 + 1 <
(

p
bp/2c

)
.

Subcase 4.2. |KV1| > 0.

Then, LV1 = ∅ by Lemma 2.2.2. Recall that |K∅|+ |K{11}|+ |K{12}|+ |KV1| = p.

By Lemma 2.2.2, for each i = 1, 2, if K{1i} 6= ∅, then L{1i} = ∅. Hence, if K{11} 6= ∅

and K{12} 6= ∅, then q = |V3| = |L∅| ≤ 1. If K{11} = ∅ and K{12} 6= ∅ , then

q = |L∅| + |L{11}| ≤ 1 +
( |K{12}|
b|K{12}|/2c

)
≤ 1 +

(
p−1

b(p−1)/2c

)
. By symmetry, if K{11} 6= ∅

and K{12} = ∅, it also follows that q ≤ 1 +
(

p−1
b(p−1)/2c

)
. Lastly, if K{11} = K{12} = ∅,

it follows that q = |L∅| + |L{11}| + |L{12}| ≤ 1 + 1 + 1. Therefore, q ≤ max
{

1 +(
p−1

b(p−1)/2c

)
, 3
}
≤
(

p
bp/2c

)
.

�

In the proof of Theorem 2.2.3, we can be more conscientious and make deduc-

tions about the optimal orientations of K(2, p, q) if 1 +
(

p−1
b(p−1)/2c

)
< q ≤

(
p
bp/2c

)
.

Corollary 2.2.4 For any integers p ≥ 4 and 1 +
(

p−1
b(p−1)/2c

)
< q ≤

(
p
bp/2c

)
, let D be

an optimal orientation of K(2, p, q), where d(D) = 2. Then, in D,

(i) 1i → V2 → 13−i → V3 → 1i for exactly one of i = 1, 2.

(ii) {O(3i)∩V2| i = 1, 2, . . . , q} is a family of independent subsets of {21, 22, . . . , 2p}.

In particular, there are at most two optimal orientations (up to isomorphism) in

the case where q =
(

p
bp/2c

)
.
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Proof :

Case 1 of the proof of Theorem 2.2.3 shows that it is impossible for V1 → V2 or

V2 → V1. Since q > 1 +
(

p−1
b(p−1)/2c

)
and p ≥ 4, Cases 3 and 4 are also impossible.

This leaves us with the result of Case 2, i.e. 1i → V2 → 13−i → V3 → 1i for exactly

one of i = 1, 2.

Now, for any i, j where i 6= j and 1 ≤ i, j ≤ q, 3i, 3j ∈ V3, d(3i, 3j) = 2 if and

only if O(3i) ∩ V2 6⊆ O(3j) ∩ V2. Thus, (ii) follows.

Furthermore, if q =
(

p
bp/2c

)
, then |O(3i)∩ V2| = bp2c or dp

2
e by Sperner’s Lemma.

Thus, there are at most two optimal orientations (up to isomorphism) D.

�

Theorem 2.2.3 completes the characterisation of complete tripartite graphsK(2, p, q)

with d̄(K(2, p, q)) = 2. Together with Theorems 2.1.5 and 2.1.6, we have the fol-

lowing theorem. Interestingly, this characterisation has the same bounds for q as

the general bipartite graph K(p, q). (See Theorem 1.2.5)

Theorem 2.2.5 For any integers q ≥ p ≥ 2, d̄(K(2, p, q)) = 2 if and only if

q ≤
(

p
bp/2c

)
.

In the remainder of this section, we describe our attempt to generalise the tech-

nique used in Theorem 2.2.3 for complete tripartite graphs K(p, q, r), 3 ≤ p ≤ q ≤ r.

To this end, we first investigate optimal orientations of complete multipartite graphs

with at least 3 partite sets. Proposition 2.2.6 and Corollary 2.2.7 are two commonly

known results.

Proposition 2.2.6 Suppose T is a multipartite tournament, with partite sets Vi,

i = 1, 2, . . . , n, where n ≥ 3. Then, d(T ) = 2 if and only if the following two

conditions are satisfied in T .

(i) If u, v ∈ Vi for some i = 1, 2, . . . , n, then u and v lie on a directed C4.

(ii) If u ∈ Vi, v ∈ Vj for some 1 ≤ i < j ≤ n, then u and v lie on a directed C3.
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Proof :

(⇒)

(i) Since d(T ) = 2, it follows that d(u, v) = 2 for any u, v ∈ Vi, for some

i = 1, 2, . . . , n. Thus, there exist a u − v path and v − u path, each of length 2,

which form a directed C4.

(ii) Now, let u ∈ Vi, v ∈ Vj for some 1 ≤ i < j ≤ n. W.l.o.g., assume v → u.

Since d(u, v) ≤ 2, it follows that there exists a u− v path of length 2. Hence, u and

v lie on a directed C3.

(⇐)

It follows from (i) and (ii) that d(u, v) ≤ 2 for any two vertices u and v in V (T ).

�

Corollary 2.2.7 Suppose T is a multipartite tournament, with partite sets Vi, i =

1, 2, . . . , n, where n ≥ 3. If d(T ) = 2, then every arc in T lies on a directed C3.

The next lemma counts the number of subsets independent of a given set S.

Lemma 2.2.8 Let ∅ 6= S ⊂ Np. If I(S) = {T ⊂ Np| T 6⊆ S and S 6⊆ T}, then

|I(S)| = 2p−2|S|−2p−|S|+1. Furthermore, the maximum is attained when |S| = bp
2
c

or |S| = dp
2
e.

Proof :

Case 1. |S| = 1.

Let S 6= T ⊂ Np. If |T | = 1, then T and S are independent. There are(
p
1

)
− 1 such subsets. Suppose 2 ≤ |T | ≤ p − 1, then T and S are independent if

and only if S 6⊆ T . There are
(
p
|T |

)
−
(
p−|S|
|T |−|S|

)
such subsets. Therefore, |I(S)| =(

p
1

)
− 1 +

p−1∑
i=2

[
(
p
i

)
−
(
p−1
i−1

)
] =

p−1∑
i=1

(
p
i

)
−

p−1∑
i=1

(
p−1
i−1

)
= 2p −

(
p
0

)
−
(
p
p

)
− [2(p−1) −

(
p−1
p−1

)
] =

2p − 2− 2(p−1) + 1.

Case 2. |S| = p− 1.

Let S 6= T ⊂ Np. If |T | = p − 1, then T and S are independent. There are(
p
p−1

)
− 1 such subsets. Suppose 1 ≤ |T | ≤ p − 2, then T and S are independent
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if and only if T 6⊆ S. There are
(
p
|T |

)
−
(|S|
|T |

)
such subsets. Therefore, |I(S)| =(

p
p−1

)
− 1 +

p−2∑
i=1

[
(
p
i

)
−
(
p−1
i

)
] =

p−1∑
i=1

(
p
i

)
−

p−1∑
i=1

(
p−1
i

)
= 2p−

(
p
0

)
−
(
p
p

)
− [2(p−1)−

(
p−1

0

)
] =

2p − 2(p−1) − 2 + 1.

Case 3. 1 < |S| < p− 1.

Let S 6= T ⊂ Np. If |T | = |S|, then T and S are independent. There are(
p
|S|

)
− 1 such subsets. If 1 ≤ |T | ≤ |S| − 1, then T and S are independent if and

only if T 6⊆ S. There are
(
p
|T |

)
−
(|S|
|T |

)
such subsets. If |S| + 1 ≤ |T | ≤ p − 1, then

T and S are independent if and only if S 6⊆ T . There are
(
p
|T |

)
−
(
p−|S|
|T |−|S|

)
such

subsets. Therefore, |I(S)| =
(
p
|S|

)
− 1 +

|S|−1∑
i=1

[
(
p
i

)
−
(|S|
i

)
] +

p−1∑
i=|S|+1

[
(
p
i

)
−
(
p−|S|
i−|S|

)
] =

p−1∑
i=1

(
p
i

)
−
|S|−1∑
i=1

(|S|
i

)
−

p−1∑
i=|S|+1

(
p−|S|
i−|S|

)
−1 = 2p−

(
p
0

)
−
(
p
p

)
− [2|S|−

(|S|
0

)
−
(|S|
|S|

)
]− [2p−|S|−(

p−|S|
0

)
−
(
p−|S|
p−|S|

)
]− 1 = 2p − 2|S| − 2p−|S| + 1.

Lastly, let f(x) := 2x + 2p−x. Since f ′(x) = (2x − 2p−x)(ln 2), it is easy to see

that f(x) has only one minimum point for all x ∈ R. Furthermore, f(x) attains

its minimum value of 2
p
2 + 2

p
2 , when x = p

2
. Therefore, the function g(|S|) =

2p − 2|S| − 2p−|S| + 1 attains its maximum value when |S| = bp
2
c or |S| = dp

2
e.

�

Discussion 2.2.9

Suppose p, q, r are integers where 3 ≤ p ≤ q ≤ r and d̄(K(p, q, r)) = 2. Our

objective is an upper bound of r, in terms of p and q.

Let D be an orientation of K(p, q, r), where d(D) = 2. Partition V2 into the sets

KA := {v ∈ V2| A→ v → (V1−A)}, where A ⊆ V1. Similarly, partition V3 into the

sets LA := {v ∈ V3| A→ v → (V1 − A)}, where A ⊆ V1.

Let A,B ⊆ V1. Suppose there exist u ∈ LA and v ∈ KB. If B ⊆ A, then

O(u) ∩ V1 = V1 − A ⊆ V1 − B = O(v) ∩ V1. Since dD(u, v) ≤ 2, it follows that

u → v. This holds for each u ∈ LA and each v ∈ KB. Hence, we have LA → KB.
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In particular, LV1 → KB for every B ⊆ V1 and LA → K∅ for every A ⊆ V1. i.e.

LV1 → V2 and V3 → K∅.

On the other hand, if A ⊆ B, then O(v) ∩ V1 = V1 − B ⊆ V1 − A = O(u) ∩ V1.

Since dD(v, u) ≤ 2, it follows that v → u, thus, KB → LA. In particular, KV1 → V3

and V2 → L∅. Furthermore, for any C ⊆ V1, at least one of LC and KC is empty

by Lemma 2.2.2.

Let A ⊆ V1 and consider two vertices v and w in LA. Then, v and w have

common in-vertices and out-vertices except possibly the vertices in the sets KB,

where B ⊆ V1 and, A and B are independent. Since dD(v, w) ≤ 2 and dD(w, v) ≤ 2,

it follows that O(v) and O(w) are independent. Therefore, |LA| ≤
(

LA

bLA/2c

)
, where

LA :=
∑

A6⊆B, B 6⊆A
|KB|. In particular, |L∅| ≤ 1 and |LV1| ≤ 1.

Now, r = |V3| =
∑
A⊆V1

|LA| ≤ |L∅|+ |LV1|+
∑

∅6=A⊂V1
|LA| ≤ 2 +

∑
∅6=A⊂V1

(
LA

bLA/2c

)
.

Case 1. Exactly one element KB0 of {KB| B ⊆ V1} is nonempty.

Then, |KB0 | = q. Let |B0| = b. Thus,

r ≤ 2 +
∑
∅6=A⊂V1

(
LA

bLA/2c

)
= 2 +

∑
∅6=A⊂V1

A⊆B0 or B0⊆A

1 +
∑
∅6=A⊂V1

A6⊆B0, B0 6⊆A

(
|KB0 |
b|KB0 |/2c

)

= 2 + 2p − 2− (2p − 2b − 2p−b + 1) + (2p − 2b − 2p−b + 1)

(
q

bq/2c

)
= (2p + 1)

(
q

bq/2c

)
− 1 + (2b + 2p−b)

[
1−

(
q

bq/2c

)]
≤ (2p + 1)

(
q

bq/2c

)
− 1 + (2bp/2c + 2p−bp/2c)

[
1−

(
q

bq/2c

)]
= (2p − 2bp/2c − 2dp/2e + 1)

(
q

bq/2c

)
+ 2bp/2c + 2dp/2e − 1.

By Lemma 2.2.8, the number of subsets of V1 independent of B0 is 2p − 2b −

2p−b + 1. Since the number of elements in 2V1 − {∅, V1} not independent of B0 is

2p− 2− (2p− 2b− 2p−b + 1), the second equality follows. The last inequality follows
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from the fact that f(x) (as defined in Lemma 2.2.8) attains the minimum value of

2
p
2 + 2

p
2 , when x = p

2
.

Case 2. At least two elements of {KB| B ⊆ V1} are nonempty.

Suppose |KB1| + |KB2| + . . . + |KBt | = q, where |Bi| = bi for i = 1, 2, . . . , t, for

some t ≥ 2. For j = 0, 1, 2, . . . , t, denote the number of elements in 2V1 − {∅, V1}

that are independent of exactly j elements of {Bi| i = 1, 2, . . . , t} by E(j). For

j = 1, 2, . . . , t, let ω(Bi1Bi2 . . . Bij) denote the number of elements in 2V1 − {∅, V1}

that are independent of exactly the sets Bi1 , Bi2 , . . . , Bij . Then,

r ≤2 +
∑
∅6=A⊂V1

(
LA

bLA/2c

)

≤2 + E(0) +
t∑
i=1

ω(Bi)

(
|KBi
|

b|KBi
|/2c

)
+
∑
i1<i2

ω(Bi1Bi2)

(
|KBi1

|+ |KBi2
|

b(|KBi1
|+ |KBi2

|)/2c

)
+ . . .+

∑
i1<i2<...<it

ω(Bi1Bi2 . . . Bit)

(
|KBi1

|+ |KBi2
|+ . . .+ |KBit

|
b(|KBi1

|+ |KBi2
|+ . . .+ |KBit

|)/2c

)
.

(2.1)

It will be ideal if we can simplify (2.1) and derive an upper bound in terms of p and

q, as in Case 1. The difficulty here can be broken down into two issues.

1. Does there exist a general expression (or good upper bound) for ω(Bi1Bi2 . . . Bij)

for j ≥ 2? From Lemma 2.2.8, we have ω(Bi) = 2p− 2bi− 2p−bi + 1. Since the num-

ber of elements in 2V1 − {∅, V1} that are independent of Bi1 , Bi2 , . . . , Bij is at most

the number of elements that are independent of any one of them, it follows that

ω(Bi1Bi2 . . . Bij) ≤ ω(Bi∗), where i∗ be such that bi∗ = min
1≤i≤t
{|bi − p

2
|}. However, to

evaluate ω(Bi1Bi2 . . . Bij) accurately, we need an analogue of Lemma 2.2.8. This is

formally phrased as follows.

Problem 2.2.10 If ∅ 6= Bi ⊂ Np for i = 1, 2, . . . , j, where j ≥ 2, determine the

number of elements in 2V1 − {∅, V1} that are independent of each Bi1 , Bi2 , . . . , Bij .

It is important to note that for 1 ≤ x < y ≤ j, Bix and Biy may or may not

be independent. Though there is extensive literature available on generalisation of
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Sperner families, we did not find any paper which tackles Problem 2.2.10 directly.

2. The other significant group of terms in (2.1) are the terms
( |KBi1

|+|KBi2
|+...+|KBij

|

b(|KBi1
|+|KBi2

|+...+|KBij
|)/2c

)
,

where j ≥ 2. Since |KB1|+ |KB2 |+ . . .+ |KBt| = q, where each KBi
6= ∅, it follows

easily that
( |KBi1

|+|KBi2
|+...+|KBij

|

b(|KBi1
|+|KBi2

|+...+|KBij
|)/2c

)
≤
( q−(t−j)⌊

[q−(t−j)]/2
⌋) for j = 1, 2, . . . , t. However,

this is not a good bound for large q. Hence, for fixed B1, B2, . . . , Bt, we need to

optimally allocate q vertices to KBi
, i = 1, 2, . . . , t such that the maximum value of

(2.1) is attained. This required optimal allocation is the second difficult issue.
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2.3. Sufficient Conditions For d̄(K(p, p, q)) = 2

Apart from K(2, p, q), Rajasekaran and Sampathkumar also studied complete

tripartite graphs of the form K(p, p, q).

Theorem 2.3.1 (Rajasekaran and Sampathkumar [43])

For p ≥ 4, 4 ≤ q ≤ 2p, d̄(K(p, p, q)) = 2.

In this section, we provide some sufficient conditions on p and q so that d̄(K(p, p, q)) =

2. Our result (see Theorem 2.3.17) improves significantly the upper bound 2p of q

given in Theorem 2.3.1, especially when p increases. We begin by solving a combi-

natorics problem, which will be of assistance later.

Suppose p ≥ 4 is a composite integer, say p = kd for some k, d ∈ Z+, 1 < k, d <

p, i.e. k and d are non-trivial divisors of p. Let there be 2d groups of k distinct

elements each. Now, what is the number of ways to select p elements, such that

some but not all are chosen from each group?

Definition 2.3.2 Suppose p ≥ 4 is an integer such that p = kd for some non-trivial

divisors k, d ∈ Z+. Denote a solution (x1, x2, . . . , x2d)
∗ if x1, x2, . . . , x2d satisfies

x1 + x2 + . . .+ x2d = p, and (2.2)

1 ≤ xi ≤ k − 1, for i = 1, 2, . . . , 2d.

Define Φ∗(p, d) :=
∑

(x1,x2,...,x2d)∗

(
k
x1

)(
k
x2

)
. . .
(
k
x2d

)
.

Definition 2.3.3 Suppose p ≥ 4 is an integer such that p = kd for some non-trivial

divisors k, d ∈ Z+. For any non-negative integers i, j, define [i, j] to be the set of

solutions (x1, x2, . . . , x2d) satisfying
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x1 + x2 + . . .+ x2d = p,

xsm = 0, for m = 1, 2, . . . , i, where {s1, s2, . . . , si} ⊆ {1, 2, . . . , 2d},

xtn = k, for n = 1, 2, . . . , j, where {t1, t2, . . . , tj} ⊆ {1, 2, . . . , 2d}, and

1 ≤ xr ≤ k − 1, for r ∈ {1, 2, . . . , 2d} − ({s1, s2, . . . , si} ∪ {t1, t2, . . . , tj}).

Furthermore, we denote Φ(p, d, [i, j]) :=
∑

(x1,x2,...,x2d)∈[i,j]

(
k
x1

)(
k
x2

)
. . .
(
k
x2d

)
.

Observation 2.3.4

(a) Φ(p, d, [i, j]) ≥ 0 for 0 ≤ i, j ≤ d.

(b) For each [i, j] defined above, 0 ≤ i, j ≤ d.

(c) Φ(p, d, [d, d]) =
(

2d
d

)
.

(d) Φ(p, d, [i, d]) = Φ(p, d, [d, i]) = 0 for 0 ≤ i ≤ d− 1.

(e) If p is even, then Φ∗(p, p
2
) = 2p.

Proof :

(a) This follows directly from the definition of Φ(p, d, [i, j]).

(b) Suppose i > d. Hence,
2d∑
h=1

xh =
i∑

m=1

xsm +
∑
h6=sm

xh ≤ 0 + (2d − i)k < dk = p,

a contradiction. Similarly, if j > d, then
2d∑
h=1

xh ≥
j∑

n=1

xtn = jk > dk = p, a

contradiction.

(c) Φ(p, d, [d, d]) =
(

2d
d,d,0

)(
k
0

)d(k
k

)d
=
(

2d
d

)
.

(d) Observe that [i, d] = ∅ for every i, 0 ≤ i ≤ d − 1. For if xtn = k, for n =

1, 2, . . . , d, then
2d∑
h=1

xh = p implies xr = 0 for all r 6= tn, i.e. i = d, a contradiction.

Similarly, [d, i] = ∅ for every i, 0 ≤ i ≤ d − 1. For if xsm = 0, for m = 1, 2, . . . , d,

then
2d∑
h=1

xh = p implies xr = k for all r 6= sm, i.e. i = d, a contradiction. Hence,

Φ(p, d, [i, d]) = Φ(p, d, [d, i]) = 0 for all i, 0 ≤ i ≤ d− 1.

(e) Let p = 2d. Then, k = 2 and (x1, x2, . . . , x2d) = (1, 1, . . . , 1) is the only solution

satisfying (2.2). Hence, Φ∗(p, p
2
) =

(
k
1

)2d
= 2p.

�
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Now, our aim is to determine Φ∗(p, d), which can be seen as Φ∗(p, d) = Φ(p, d, [0, 0]).

In the proof of our next result, we make use of the following combinatorial identities

which we state without proof.

Lemma 2.3.5 For non-negative integers xi, ni, n, k, r, n ≥ 1, r ≤ k ≤ n and

xi ≤ ni for i = 1, 2 . . . , r ,

(a)
(
n
k

)(
k
r

)
=
(
n
r

)(
n−r
k−r

)
.

(b)
(
n
0

)
−
(
n
1

)
+
(
n
2

)
− . . .+ (−1)n

(
n
n

)
= 0.

(c)
∑

x1+x2+...xr=p

(
n1

x1

)(
n2

x2

)
. . .
(
nr

xr

)
=
(
n1+n2+...+nr

p

)
. (Generalised Vandermonde’s iden-

tity)

Lemma 2.3.6 Suppose p ≥ 4 is an integer such that p = kd for some non-trivial

divisors k, d ∈ Z+. Then, for 0 ≤ i, j ≤ d,

Φ(p, d, [i, j]) =
d∑
s=i

d∑
t=j

[
(−1)(s−i)+(t−j)

(
2d

s, t, 2d− (s+ t)

)(
(2d− (s+ t))k

(d− t)k

)(
s

i

)(
t

j

)]
.

Proof : Let µ, λ be any two integers such that i ≤ µ ≤ d and j ≤ λ ≤ d. We

proceed using a double counting method. Suppose α :=
(
k
x̄1

)(
k
x̄2

)
. . .
(
k
x̄2d

)
, where

(x̄1, x̄2, . . . , x̄2d) is an element of [µ, λ]. We shall show that each α contributes the

same count to both sides of the equality.

Case 1. µ = i and λ = j.

On the left side, α is counted exactly once. The expression
(

2d
s,t,2d−(s+t)

)(
k
0

)s(k
k

)t((2d−(s+t))k
(d−t)k

)
represents choosing s and t groups from all 2d groups of k elements to select 0 and

k elements, respectively, from each group, after which (d− t)k elements are selected

from the remaining (2d − (s + t))k elements to form a total of p = dk selected

elements.

Thus, on the right, α is counted exactly once in the first term (−1)(i−i)+(j−j)( 2d
i,j,2d−(i+j)

)
(

(2d−(i+j))k
(d−j)k

)(
i
i

)(
j
j

)
=
(

2d
i,j,2d−(i+j)

)(
k
0

)i(k
k

)j((2d−(i+j))k
(d−j)k

)
and contributes a zero count in

the subsequent terms
(

2d
s,t,2d−(s+t)

)(
(2d−(s+t))k

(d−t)k

)
if s > i or t > j. Thus, α is counted

once on each side.
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By definition of α, α is counted by the term, Φ(p, d, [i, j]), on the left if and only

if [µ, λ] = [i, j]. Therefore, α has a zero count on the left side for the following three

cases. It suffices to show that α contributes to a count of zero on the right in each

of the following cases as well.

Case 2. µ = i and λ > j.

The λ groups of k in α could be assembled with j groups of k from
(

2d
i,j,2d−(i+j)

)
and λ− j groups of k that are possible from

(
(2d−(i+j))k

(d−j)k

)
, i.e. α is counted

(
λ
j

)
times

in
(

2d
i,j,2d−(i+j)

)(
(2d−(i+j))k

(d−j)k

)
. So, on the right, α is counted

(
λ

j

)
times in

(
2d

i, j, 2d− (i+ j)

)(
(2d− (i+ j))k

(d− j)k

)
,(

λ

j + 1

)
times in

(
2d

i, j + 1, 2d− (i+ j + 1)

)(
(2d− (i+ j + 1))k

(d− (j + 1))k

)
,

...(
λ

λ

)
times in

(
2d

i, λ, 2d− (i+ λ)

)(
(2d− (i+ λ))k

(d− λ)k

)
.

and none in the subsequent terms
(

2d
s,t,2d−(s+t)

)(
(2d−(s+t))k

(d−t)k

)
if s > i or t > λ. So, α

has a total count of
i∑
s=i

λ∑
t=j

[(−1)(s−i)+(t−j)(λ
t

)(
s
i

)(
t
j

)
] = (−1)(i−i)(i

i

) λ∑
t=j

(−1)(t−j)(λ
t

)(
t
j

)
=

λ∑
t=j

(−1)(t−j)(λ
j

)(
λ−j
t−j

)
=
(
λ
j

) λ∑
t=j

(−1)(t−j)(λ−j
t−j

)
=
(
λ
j

)
(0) = 0, where Lemmas 2.3.5(a)

and 2.3.5(b) were invoked in the second and fourth equalities respectively. Thus, α

has a zero count on each side.

Case 3. µ > i and λ = j.

Similar to Case 2.

Case 4. µ > i and λ > j.

On the right, α is counted
(
µ
s

)(
λ
t

)
times in the term

(
2d

s,t,2d−(s+t)

)(
(2d−(s+t))k

(d−t)k

)
,

i ≤ s ≤ µ and j ≤ t ≤ λ and 0 times if µ < s ≤ d or λ < t ≤ d. In other words, on

the right, α is counted
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µ∑
s=i

λ∑
t=j

[(−1)(s−i)+(t−j)
(
µ

s

)(
λ

t

)(
s

i

)(
t

j

)

=

µ∑
s=i

{
(−1)(s−i)

(
µ

s

)(
s

i

) λ∑
t=j

[(−1)(t−j)
(
λ

t

)(
t

j

)
]
}

=

µ∑
s=i

{
(−1)(s−i)

(
µ

s

)(
s

i

) λ∑
t=j

[(−1)(t−j)
(
λ

j

)(
λ− j
t− j

)
]
}

=

µ∑
s=i

{
(−1)(s−i)

(
µ

s

)(
s

i

)(
λ

j

) λ∑
t=j

[(−1)(t−j)
(
λ− j
t− j

)
]
}

=

µ∑
s=i

{
(−1)(s−i)

(
µ

s

)(
s

i

)(
λ

j

)
(0)
}

= 0.

times, where Lemmas 2.3.5(a) and 2.3.5(b) were invoked in the second and fourth

equalities above respectively. Thus, α contributes a count of zero on each side.

�

Corollary 2.3.7 Suppose p ≥ 4 is an integer such that p = kd for some non-trivial

divisors k, d ∈ Z+. Then,

(i) Φ∗(p, d) =
d∑
s=0

d∑
t=0

[(−1)(s+t)
(

2d
s,t,2d−(s+t)

)(
(2d−(s+t))k

(d−t)k

)
].

(ii)
(

2p
p

)
=

d∑
i=0

d∑
j=0

d∑
s=i

d∑
t=j

[(−1)(s−i)+(t−j)( 2d
s,t,2d−(s+t)

)(
(2d−(s+t))k

(d−t)k

)(
s
i

)(
t
j

)
].

(iii) Φ(p, d, [i, j]) = Φ(p, d, [j, i]) for 0 ≤ i, j ≤ d.

Proof :

(i) This follows from the fact that Φ∗(p, d) = Φ(p, d, [0, 0]).

(ii) By generalised Vandermonde’s identity,
(

2p
p

)
=

d∑
i=0

d∑
j=0

Φ(p, d, [i, j]).

(iii) Since
(

2d
s,t,2d−(s+t)

)
=
(

2d
t,s,2d−(s+t)

)
and

(
(2d−(s+t))k

(d−t)k

)
=
(

(2d−(s+t))k
(d−s)k

)
, it follows that

Φ(p, d, [j, i]) =
d∑
s=j

d∑
t=i

[(−1)(s−j)+(t−i)( 2d
s,t,2d−(s+t)

)(
(2d−(s+t))k

(d−t)k

)(
s
j

)(
t
i

)
]

=
d∑
t=i

d∑
s=j

[(−1)(t−i)+(s−j)( 2d
t,s,2d−(s+t)

)(
(2d−(s+t))k

(d−s)k

)(
t
i

)(
s
j

)
] = Φ(p, d, [i, j]).

�
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Now, we are ready to construct an orientation F of K(p, p, q), which resembles

the definition of Φ∗(p, d) (see (2.2)). We divide each of V1 and V2 into d groups

of size k. Then, orientate F such that for all 1 ≤ i ≤ q, |O(3i)| = p and O(3i)

contains some but not all vertices of each group. This distinctive property will aid

in ensuring d(F ) = 2.

Proposition 2.3.8 Suppose p ≥ 4 is an integer such that p = kd for some non-

trivial divisors k, d ∈ Z+. Then, d̄(K(p, p, q)) = 2, if 2k+ 2 ≤ q ≤ max
d
{Φ∗(p, d)}+

2, where the maximum is taken over all positive divisors d of p satisfying 1 < d < p.

Proof : Partition V1 ∪ V2 into X1, X2, . . . , X2d where

Xs = {1j| j ≡ s (mod d)}, and

Xd+s = {2(s−1)k+1, 2(s−1)k+2, . . . , 2(s−1)k+k},

for s = 1, 2, . . . , d. Observe that |Xr| = k for all r = 1, 2, . . . , 2d. First, we define

an orientation F for K(p, p, 2k + 2) as follows.

(I) (V2 −Xd+s)→ Xs → Xd+s → (V1 −Xs), for s = 1, 2, . . . , d.

(II) V1 → 32k+1 → V2 → 32k+2 → V1.

(III) For t = 1, 2, . . . , k,

(a) {2k, 22k, . . . , 2dk} ∪ (V1 − {1(t−1)d+1, 1(t−1)d+2, . . . , 1(t−1)d+d})→ 3t →

{1(t−1)d+1, 1(t−1)d+2, . . . , 1(t−1)d+d} ∪ (V2 − {2k, 22k, . . . , 2dk}), and

(b) {11, 12, . . . , 1d} ∪ (V2 − {2t, 2t+k, . . . , 2t+(d−1)k})→ 3t+k →

{2t, 2t+k, . . . , 2t+(d−1)k} ∪ (V1 − {11, 12, . . . , 1d}).

Now, consider the case where q > p + 2. Let xi = |O(3j) ∩ Xi| for some j,

where 2k+ 2 < j ≤ q, and i = 1, 2, . . . , 2d. So, for each solution (x1, x2, . . . , x2d)
∗ of

(2.2), there are
(
k
x1

)(
k
x2

)
. . .
(
k
x2d

)
ways to choose p vertices (as the outset of a vertex
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3j), where xi vertices are selected from the set Xi, satisfying 1 ≤ xi ≤ k − 1, for

i = 1, 2, . . . , 2d, and x1 + x2 + . . . + x2d = p. Summing over all possible solutions

(x1, x2, . . . , x2d)
∗, there is a total of Φ∗(p, d) :=

∑
(x1,x2,...,x2d)∗

(
k
x1

)(
k
x2

)
. . .
(
k
x2d

)
of such

combinations of p vertices of V1 ∪ V2. Denote this set of combinations as Ψ.

Note that the 2k outsets of 31, 32, . . . , 32k from (III) are elements of Ψ. That

leaves |Ψ| − 2k = Φ∗(p, d)− 2k combinations of p vertices of V1 ∪ V2. Note however

that O(32k+1) and O(33k+2) from (II) are not elements of Ψ. Hence, for 2k + 2 <

j ≤ q ≤ max
d
{Φ∗(p, d)} + 2, we extend the definition of the above orientation so

that the outset of vertices 32k+3, 32k+4, . . . , 3q are these remaining elements of Ψ.

(See Figure 2.3.1 for F when d = 3, and k = 2.)

11

14

12

15

13

16

X1

X2

X3

V1

26

25

24

23

22

21

X4

X5

X6

V2 31

32

33

34

35

36

37

38

V3

Figure 2.3.1: Orientation F for d = 3, and k = 2.
For clarity, only the arcs from (1) V1 to V2 and (2) V3 to V1 and V2 are shown.
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Claim: For all u, v ∈ V (K(p, p, q)), dF (u, v) ≤ 2.

Case 1. u = 1a, v = 1b, a 6= b.

Since 1 ≤ a, b ≤ p = kd, let a = (α1 − 1)d + α2 and b = (β1 − 1)d + β2 for

some αi, βi, i = 1, 2, satisfying 1 ≤ α1, β1 ≤ k and 1 ≤ α2, β2 ≤ d. If α2 = β2,

then α1 6= β1. Note that 1a and 1b are in the same Xi and by (III)(a) of orientation

F , 1a → 3β1 → 1b. If α2 6= β2, then 1a and 1b are in different Xi’s and by (I) of

orientation F , 1a → Xd+α2 → 1b.

Case 2. u = 2a, v = 2b, a 6= b.

Since 1 ≤ a, b ≤ p = kd, let a = (α1 − 1)k + α2 and b = (β1 − 1)k + β2 for

some αi, βi, i = 1, 2, satisfying 1 ≤ α1, β1 ≤ d and 1 ≤ α2, β2 ≤ k. If α1 = β1, then

α2 6= β2. Note that 2a and 2b are in the same Xi and by (III)(b) of orientation F ,

2a → 3β2+k → 2b. If α1 6= β1, then 2a and 2b are in different Xi’s and by (I) of

orientation F , 2a → Xβ1 → 2b.

Case 3. u = 1a, v = 2b.

By (II), 1a → 32k+1 → 2b.

Case 4. u = 2a, v = 1b.

By (II), 2a → 32k+2 → 1b.

Case 5. u = 1a, v = 3b.

Subcase 5a. b = 2k + 1.

By (II), V1 → 32k+1.

Subcase 5b. b 6= 2k + 1.

Suppose 1a ∈ Xi∗ for some i∗ = 1, 2, . . . , d. Then, 1a → Xd+i∗ by (I). Since

for each 3b, I(3b) ∩ Xd+i 6= ∅ for each i = 1, 2, . . . , d, by (II) and (III), let w ∈
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I(3b) ∩Xd+i∗ . It follows that 1a → w → 3b.

Case 6. u = 2a, v = 3b.

Subcase 6a. b = 2k + 2.

By (II), V2 → 32k+2.

Subcase 6b. b 6= 2k + 2.

Suppose 2a ∈ Xd+i∗ for some i∗ = 1, 2, . . . , d. Then, 2a → V1−Xi∗ by (I). Since

for each 3b, I(3b)∩Xi 6= ∅ for each i = 1, 2, . . . , d, by (II) and (III), let w ∈ I(3b)∩Xj

for some j = 1, 2, . . . , d and j 6= i∗. It follows that 2a → w → 3b.

Case 7. u = 3a, v = 1b.

Subcase 7a. a = 2k + 2.

By (II), 32k+2 → V1.

Subcase 7b. a 6= 2k + 2.

Suppose 1b ∈ Xi∗ for some i∗ = 1, 2, . . . , d. Then, Xd+j → 1b for all j =

1, 2, . . . , d and j 6= i∗ by (I). Since for each 3a, O(3a) ∩ Xd+i 6= ∅ for each i =

1, 2, . . . , d, by (II) and (III), let w ∈ O(3a) ∩ Xd+j for some j = 1, 2, . . . , d, and

j 6= i∗. It follows that 3a → w → 1b.

Case 8. u = 3a, v = 2b.

Subcase 8a. a = 2k + 1.

By (II), 32k+1 → V2.

Subcase 8b. a 6= 2k + 1.

Suppose 2b ∈ Xd+i∗ for some i∗ = 1, 2, . . . , d. Then, Xi∗ → 2b. Since for each

3a, O(3a)∩Xi 6= ∅ for each i = 1, 2, . . . , d, by (II) and (III), let w ∈ O(3a)∩Xi∗ . It

follows that 3a → w → 2b.
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Case 9. u = 3a, v = 3b.

Subcase 9a. a 6= 2k + 1, 2k + 2 and b 6= 2k + 1, 2k + 2.

Observe from (III) that |O(3x) ∩ (V1 ∪ V2)| = p for x = a, b. Furthermore,

O(3a)∩(V1∪V2) 6⊆ O(3b)∩(V1∪V2) if b 6= a. Thus, there exists a vertex w ∈ V1∪V2

such that 3a → w → 3b.

Subcase 9b. a = 2k + 1 and b 6= 2k + 1, 2k + 2.

32k+1 → V2 by (II), and I(3b) ∩ Xd+i 6= ∅ for every i = 1, 2, . . . , d, imply the

existence of w ∈ I(3b) ∩ V2. Hence, 3a → w → 3b.

Subcase 9c. a = 2k + 2 and b 6= 2k + 1, 2k + 2.

32k+2 → V1 by (II), and I(3b) ∩ Xi 6= ∅ for every i = 1, 2, . . . , d, imply the

existence of w ∈ I(3b) ∩ V1. Hence, 3a → w → 3b.

Subcase 9d. a 6= 2k + 1, 2k + 2 and b = 2k + 1.

V1 → 32k+1 by (II), and O(3a) ∩ Xi 6= ∅ for every i = 1, 2, . . . , d, imply the

existence of w ∈ O(3a) ∩ V1. Hence, 3a → w → 3b.

Subcase 9e. a 6= 2k + 1, 2k + 2 and b = 2k + 2.

V2 → 32k+2 by (II), and O(3a) ∩ Xd+i 6= ∅ for every i = 1, 2, . . . , d, imply the

existence of w ∈ O(3a) ∩ V2. Hence, 3a → w → 3b.

Subcase 9f. a = 2k + 1 and b = 2k + 2.

By (II), 32k+1 → V2 → 32k+2.

Subcase 9g. a = 2k + 2 and b = 2k + 1.

By (II), 32k+2 → V1 → 32k+1.

�
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Example 2.3.9 If 8 ≤ q ≤ 488, then d̄(K(6, 6, q)) = 2.

Proof : Observe that the only non-trivial divisors of 6 are 2 and 3. By Corollary

2.3.7(i), Φ∗(6, 2) = 486 and Φ∗(6, 3) = 64. Hence, by Proposition 2.3.8, if 8 ≤ q ≤

max{486, 64}+ 2, then d̄(K(6, 6, q)) = 2.

Alternatively, we may verify the computation of Φ∗(6, 2) and Φ∗(6, 3) as follows.

Case 1. d = 2, k = 3.

Any solution (x1, x2, x3, x4) satisfying (2.2) is a permutation of (1, 1, 2, 2). Thus,∑
(x1,x2,...,x2d)

(
k
x1

)(
k
x2

)
. . .
(
k
x2d

)
=
(

4
2

)(
3
1

)2(3
2

)2
= 486.

Case 2. d = 3, k = 2.

The only solution of (2.2) is (x1, x2, x3, x4, x5, x6) = (1, 1, 1, 1, 1, 1). Thus,∑
(x1,x2,...,x2d)

(
k
x1

)(
k
x2

)
. . .
(
k
x2d

)
=
(

2
1

)6
= 64.

�

Discussion 2.3.10

Since p may have different factorisations, the natural question to ask is which

non-trivial divisor(s) d of p gives the best bound. Verification, using Maple [55], for

all non-trivial divisors d of each composite integer p ≤ 100 shows that max
d
{Φ∗(p, d)} =

Φ∗(p, d0) with d0 being the smallest non-trivial divisor of each p. Therefore, if p is

even, we define

Φeven(p) := Φ∗(p, 2)

=
2∑
s=0

2∑
t=0

[
(−1)(s+t)

(
4

s, t, 4− (s+ t)

)(
(4− (s+ t))p

2

(2− t)p
2

)]
=

(
2p

p

)
− 8

(3p
2

p

)
+ 12

(
p
p
2

)
− 6.

Furthermore, we wish to extend Definition 2.3.2 and Proposition 2.3.8 for prime

numbers and d = 2 seems to be the best candidate. Hence, we have the following
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generalisation, Φodd(p), for odd integers p ≥ 5, which also provides a better bound

than Φ(p, d0) in cases where p is odd and composite.

Definition 2.3.11 Suppose p ≥ 5 is an odd integer. Denote a solution (x1, x2, x3, x4)∗∗

if x1, x2, x3, x4 satisfies

x1 + x2 + x3 + x4 = p, (2.3)

1 ≤ xi ≤ b
p

2
c, for i = 1, 2, and

1 ≤ xi ≤ b
p

2
c − 1, for i = 3, 4.

Define Φodd(p) :=
∑

(x1,x2,x3,x4)∗∗

(b p
2
c+1
x1

)(b p
2
c+1
x2

)(b p
2
c

x3

)(b p
2
c

x4

)
.

Definition 2.3.12

For each i = 1, 2, 3, 4, denote the upper bound of xi in (2.3) to be ai, where

a1 = a2 = bp
2
c and a3 = a4 = bp

2
c − 1. Then, for any non-negative integers i, j,

define [i, j] to be the set of solutions (x1, x2, x3, x4) satisfying

x1 + x2 + x3 + x4 = p,

xsm = 0, for m = 1, 2, . . . , i, where {s1, s2, . . . , si} ⊆ {1, 2, 3, 4},

xtn = atn + 1, for n = 1, 2, . . . , j, where {t1, t2, . . . , tj} ⊆ {1, 2, 3, 4}, and

1 ≤ xr ≤ ar, for r ∈ {1, 2, 3, 4} − ({s1, s2, . . . , si} ∪ {t1, t2, . . . , tj}).

Furthermore, we denote Φodd(p, [i, j]) :=
∑

(x1,x2,x3,x4)∈[i,j]

(b p
2
c+1
x1

)(b p
2
c+1
x2

)(b p
2
c

x3

)(b p
2
c

x4

)
.

We may find an expression of Φodd(p) by exhausting all possible values of i and

j in Φodd(p, [i, j]).
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Lemma 2.3.13 If p ≥ 5 is an odd integer, then Φodd(p) =
(

2p
p

)
−4
(

3x+2
x+1

)
−4
(

3x+1
x

)
+

2
(

2x+2
x+1

)
+ 8
(

2x+1
x

)
+ 2
(

2x
x

)
− 4, where x = bp

2
c.

Proof : By generalised Vandermonde’s identity,

(
2p

p

)
=

∑
x1+x2+x3+x4=p

(
x+ 1

x1

)(
x+ 1

x2

)(
x

x3

)(
x

x4

)
(2.4)

=
2∑
i=0

2∑
j=0

Φodd(p, [i, j]).

By definition, Φodd(p) = Φodd(p, [0, 0]). For i ≥ 1 or j ≥ 1, we shall count and

subtract the contribution Φodd(p, [i, j]) of each case from (2.4).

Claim 1: Φodd(p, [2, 2]) = 4.

Case 1.1. {x1, x2} = {x+ 1, 0} and {x3, x4} = {x, 0}.

Then,
∑

x1+x2+x3+x4=p
Case 1.1

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(

2
1

)(
2
1

)(
x+1
x+1

)(
x+1

0

)(
x
x

)(
x
0

)
= 4.

Case 1.2. x1 = x2 = 0 and x3 = x4 = x.

Then, x1 + x2 + x3 + x4 = 2x < p. Thus, this case is not possible.

Case 1.3. x1 = x2 = x+ 1 and x3 = x4 = 0.

Then, x1 + x2 + x3 + x4 = 2x+ 2 > p. Thus, this case is not possible.

Claim 2: Φodd(p, [2, 1]) = 2x+ 2.

Case 2.1. Exactly one of x1, x2 equals x+ 1 and x3 = x4 = 0.

Since x1 +x2 +x3 +x4 = p, it follows that either x1 = x+1, x2 = x, x3 = x4 = 0

or x1 = x, x2 = x + 1, x3 = x4 = 0. Thus,
∑

x1+x2+x3+x4=p
Case 2.1

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=(

2
1

)(
x+1
x+1

)(
x+1
x

)(
x
0

)(
x
0

)
= 2x+ 2.
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Case 2.2. x1 = x2 = 0 and exactly one of x3, x4 equals x.

Similar to Case 1.2, this case is not possible.

Case 2.3. Exactly one of x1, x2 is zero, exactly one of x3, x4 is zero and exactly

one xi equals ai + 1.

W.l.o.g., suppose x1 = x3 = 0. Since x1 + x2 + x3 + x4 = p, it follows that

x2 + x4 = p, which implies x2 = x + 1 and x4 = x. This contradicts the condition

of having exactly one xi equals ai + 1. Thus, this case is not possible.

Claim 3: Φodd(p, [2, 0]) = 0.

This means exactly two of xi’s, i = 1, 2, 3, 4, equals zero and none of the xi’s

equals ai + 1. This is not possible since x1 + x2 + x3 + x4 = p.

Claim 4: Φodd(p, [1, 2]) = 2x+ 2.

Since x1 + x2 + x3 + x4 = p, thus, we have the following.

Case 4. x3 = x4 = x and either x1 = 1, x2 = 0 or x1 = 0, x2 = 1.∑
x1+x2+x3+x4=p

Case 4

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(

2
1

)(
x+1

1

)(
x+1

0

)(
x
x

)(
x
x

)
= 2x+ 2.

Claim 5: Φodd(p, [1, 1]) = 2
(

2x+2
x+1

)
+ 8
(

2x+1
x

)
+ 2
(

2x
x

)
− 8x− 24.

Case 5.1. 1 ≤ x3, x4 ≤ x − 1 and either x1 = 0, x2 = x + 1 or x1 = x + 1, x2 = 0.

W.l.o.g., assume x1 = 0, x2 = x + 1. Then, x1 + x2 + x3 + x4 = p implies that

x3 + x4 = x. For 1 ≤ x3, x4 ≤ x − 1,
∑

x3+x4=x

(
x
x3

)(
x
x4

)
=
(

2x
x

)
−
(
x
0

)(
x
x

)
−
(
x
x

)(
x
0

)
=(

2x
x

)
− 2 by generalised Vandermonde’s identity. A similar expression is obtained if

x1 = x+1, x2 = 0. Thus,
∑

x1+x2+x3+x4=p
Case 5.1

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(

2
1

)
[
(

2x
x

)
−2] = 2

(
2x
x

)
−4.

Case 5.2. 1 ≤ x1, x2 ≤ x and either x3 = 0, x4 = x or x3 = x, x4 = 0.

W.l.o.g., assume x3 = 0, x4 = x. Then, x1 + x2 + x3 + x4 = p implies that

x1 + x2 = x + 1. For 1 ≤ x1, x2 ≤ x,
∑

x1+x2=x+1

(
x+1
x1

)(
x+1
x2

)
=
(

2x+2
x+1

)
−
(
x+1

0

)(
x+1
x+1

)
−
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(
x+1
x+1

)(
x+1

0

)
=
(

2x+2
x+1

)
− 2 by generalised Vandermonde’s identity. A similar ex-

pression is obtained if x3 = x, x4 = 0. Thus,
∑

x1+x2+x3+x4=p
Case 5.2

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=(

2
1

)
[
(

2x+2
x+1

)
− 2] = 2

(
2x+2
x+1

)
− 4.

Case 5.3. Exactly one of x1, x2 equals zero and exactly one of x3, x4 equals x.

W.l.o.g., assume x1 = 0 and x3 = x. Then, x1 + x2 + x3 + x4 = p implies that

x2 +x4 = x+ 1. For 1 ≤ x2 ≤ x and 1 ≤ x4 ≤ x− 1,
∑

x2+x4=x+1

(
x+1
x2

)(
x
x4

)
=
(

2x+1
x+1

)
−(

x+1
x+1

)(
x
0

)
−
(
x+1

1

)(
x
x

)
=
(

2x+1
x+1

)
−x−2 by generalised Vandermonde’s identity. A similar

expression is obtained for the other three subcases. Thus,
∑

x1+x2+x3+x4=p
Case 5.3

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=

(
2
1

)2
[
(

2x+1
x+1

)
− x− 2] = 4

(
2x+1
x+1

)
− 4x− 8.

Case 5.4. Exactly one of x1, x2 equals x + 1 and exactly one of x3, x4 equals zero.

W.l.o.g., assume x1 = x + 1 and x3 = 0. Then, x1 + x2 + x3 + x4 = p implies

that x2 + x4 = x. For 1 ≤ x2 ≤ x and 1 ≤ x4 ≤ x− 1,
∑

x2+x4=x

(
x+1
x2

)(
x
x4

)
=
(

2x+1
x

)
−(

x+1
0

)(
x
x

)
−
(
x+1
x

)(
x
0

)
=
(

2x+1
x

)
−x−2 by generalised Vandermonde’s identity. A similar

expression is obtained for the other three subcases. Thus,
∑

x1+x2+x3+x4=p
Case 5.4

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=

(
2
1

)2
[
(

2x+1
x

)
− x− 2] = 4

(
2x+1
x

)
− 4x− 8.

Summing all Cases 5.1-5.4, we have Φodd(p, [1, 1]) as claimed.

Claim 6: Φodd(p, [1, 0]) = 2
(

3x+2
2x+1

)
+ 2
(

3x+1
2x+1

)
− 2
(

2x+2
x+1

)
− 8
(

2x+1
x

)
− 2
(

2x
x

)
+ 2x+ 10.

Case 6.1. Exactly one of x1, x2 equals 0.

Subcase 6.1.1. x1 = 0 (and 1 ≤ x2 ≤ x and 1 ≤ x3, x4 ≤ x− 1).

Then, x2 + x3 + x4 = p. Now, we want to count and exclude the following

subcases.
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Subcase 6.1.1.1. x2 = x + 1 and either x3 = x, x4 = 0 or x3 = 0, x4 = x.

∑
x2+x3+x4=p
Subcase 6.1.1.1

(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(
x+1
x+1

)(
x
x

)(
x
0

)
+
(
x+1
x+1

)(
x
0

)(
x
x

)
= 2.

Subcase 6.1.1.2. x2 = 1 and x3 = x4 = x.∑
x2+x3+x4=p
Subcase 6.1.1.2

(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(
x+1

1

)(
x
x

)(
x
x

)
= x+ 1.

Subcase 6.1.1.3. x2 = x+ 1 and 1 ≤ x3, x4 ≤ x− 1.

Then, x3 + x4 = x. It follows from the generalised Vandermonde’s identity that∑
x3+x4=x

(
x
x3

)(
x
x4

)
=
(

2x
x

)
. So,

∑
x2+x3+x4=p
Subcase 6.1.1.3

(
x+1
x2

)(
x
x3

)(
x
x4

)
=

∑
x3+x4=x

(
x
x3

)(
x
x4

)
−
(
x
x

)(
x
0

)
−(

x
0

)(
x
x

)
=
(

2x
x

)
− 2.

Subcase 6.1.1.4. x3 = x, 1 ≤ x2 ≤ x and 1 ≤ x4 ≤ x− 1.

Then, x2 + x4 = x + 1. It follows from the generalised Vandermonde’s identity

that
∑

x2+x4=x+1

(
x+1
x2

)(
x
x4

)
=
(

2x+1
x+1

)
. So,

∑
x2+x3+x4=p
Subcase 6.1.1.4

(
x+1
x2

)(
x
x3

)(
x
x4

)
=

∑
x2+x4=x+1

(
x+1
x2

)(
x
x4

)
−(

x+1
x+1

)(
x
0

)
−
(
x+1

1

)(
x
x

)
=
(

2x+1
x+1

)
− x− 2.

Subcase 6.1.1.5. x4 = x, 1 ≤ x2 ≤ x and 1 ≤ x3 ≤ x− 1.

By symmetry to Subcase 6.1.1.4,
∑

x2+x3+x4=p
Subcase 6.1.1.5

(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(

2x+1
x+1

)
− x− 2.

Now, by generalised Vandermonde’s identity,
∑

x2+x3+x4=p

(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(

3x+1
2x+1

)
.

So,
∑

x1+x2+x3+x4=p
Subcase 6.1.1

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=

∑
x2+x3+x4=p

(
x+1
x2

)(
x
x3

)(
x
x4

)
−

5∑
i=1

∑
x2+x3+x4=p
Subcase 6.1.1.i

(
x+1
x2

)(
x
x3

)(
x
x4

)
=(

3x+1
2x+1

)
− 2
(

2x+1
x+1

)
−
(

2x
x

)
+ x+ 3.

Subcase 6.1.2. x2 = 0 (and 1 ≤ x1 ≤ x and 1 ≤ x3, x4 ≤ x− 1).

By symmetry to Subcase 6.1.1,
∑

x1+x2+x3+x4=p
Subcase 6.1.2

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(

3x+1
2x+1

)
−

2
(

2x+1
x+1

)
−
(

2x
x

)
+ x+ 3.
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Hence,
∑

x1+x2+x3+x4=p
Case 6.1

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
= 2
(

3x+1
2x+1

)
− 4
(

2x+1
x+1

)
− 2
(

2x
x

)
+ 2x+ 6.

Case 6.2. Exactly one of x3, x4 equals 0.

Subcase 6.2.1. x3 = 0 (with 1 ≤ x1, x2 ≤ x and 1 ≤ x4 ≤ x− 1).

Then, x1 + x2 + x4 = p. Now, we want to count and exclude the following

subcases.

Subcase 6.2.1.1. x4 = x and either x1 = x + 1, x2 = 0 or x1 = 0, x2 = x + 1.

∑
x1+x2+x4=p
Subcase 6.2.1.1

(
x+1
x1

)(
x
x2

)(
x
x4

)
=
(
x+1
x+1

)(
x+1

0

)(
x
x

)
+
(
x+1

0

)(
x+1
x+1

)(
x
x

)
= 2.

Subcase 6.2.1.2. x4 = 0 and either x1 = x + 1, x2 = x or x1 = x, x2 = x + 1.

∑
x1+x2+x4=p
Subcase 6.2.1.2

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=
(
x+1
x+1

)(
x+1
x

)(
x
0

)
+
(
x+1
x

)(
x+1
x+1

)(
x
0

)
= 2x+ 2.

Subcase 6.2.1.3. x1 = x+ 1, 1 ≤ x2 ≤ x and 1 ≤ x4 ≤ x− 1.

Then, x2 + x4 = x. It follows from the generalised Vandermonde’s identity that∑
x2+x4=x

(
x+1
x2

)(
x
x4

)
=
(

2x+1
x

)
. So,

∑
x1+x2+x4=p
Subcase 6.2.1.3

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=

∑
x2+x4=x

(
x+1
x2

)(
x
x4

)
−(

x+1
x

)(
x
0

)
−
(
x+1

0

)(
x
x

)
=
(

2x+1
x

)
− x− 2.

Subcase 6.2.1.4. x2 = x+ 1, 1 ≤ x1 ≤ x and 1 ≤ x4 ≤ x− 1.

By symmetry to Subcase 6.2.1.3,
∑

x1+x2+x4=p
Subcase 6.2.1.4

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=
(

2x+1
x

)
− x− 2.

Subcase 6.2.1.5. x4 = x and 1 ≤ x1, x2 ≤ x.

Then, x1 + x2 = x + 1. It follows from the generalised Vandermonde’s identity

that
∑

x1+x2=x+1

(
x+1
x1

)(
x+1
x2

)
=
(

2x+2
x+1

)
. So,

∑
x1+x2+x4=p
Subcase 6.2.1.5

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=

∑
x1+x2=x+1

(
x+1
x1

)(
x+1
x2

)
−(

x+1
x+1

)(
x+1

0

)
−
(
x+1

0

)(
x+1
x+1

)
=
(

2x+2
x+1

)
− 2.
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Now, by generalised Vandermonde’s identity,
∑

x1+x2+x4=p

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=
(

3x+2
2x+1

)
.

So,
∑

x1+x2+x3+x4=p
Subcase 6.2.1

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=

∑
x1+x2+x4=p

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
−

5∑
i=1

∑
x1+x2+x4=p
Subcase 6.2.1.i

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=(

3x+2
2x+1

)
−
(

2x+2
x+1

)
− 2
(

2x+1
x

)
+ 2.

Subcase 6.2.2. x4 = 0 (with 1 ≤ x1, x2 ≤ x and 1 ≤ x3 ≤ x− 1).

By symmetry to Subcase 6.2.1,
∑

x1+x2+x3+x4=p
Subcase 6.2.2

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(

3x+2
2x+1

)
−(

2x+2
x+1

)
− 2
(

2x+1
x

)
+ 2.

Hence,
∑

x1+x2+x3+x4=p
Case 6.2

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
= 2
(

3x+2
2x+1

)
− 2
(

2x+2
x+1

)
− 4
(

2x+1
x

)
+ 4.

So, Φodd(p, [1, 0]) =
2∑
i=1

∑
x1+x2+x3+x4=p

Case 6.i

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
= 2

(
3x+2
2x+1

)
+ 2
(

3x+1
2x+1

)
−

2
(

2x+2
x+1

)
− 8
(

2x+1
x

)
− 2
(

2x
x

)
+ 2x+ 10.

Claim 7: Φodd(p, [0, 2]) = 0.

If there are exactly two xi’s such that xi = ai+1 and since x1 +x2 +x3 +x4 = p,

it either results in Cases 1.1 or 4. i.e. Thus, this case is not possible.

Claim 8: Φodd(p, [0, 1]) = 2
(

3x+2
x+1

)
+ 2
(

3x+1
x

)
− 2
(

2x+2
x+1

)
− 8
(

2x+1
x

)
− 2
(

2x
x

)
+ 2x+ 10.

Case 8.1. Exactly one of x1, x2 equals x+ 1.

Subcase 8.1.1. x1 = x+ 1 (with 1 ≤ x2 ≤ x and 1 ≤ x3, x4 ≤ x− 1).

Then, x2 + x3 + x4 = x. Now, we want to count and exclude the following

subcases.

Subcase 8.1.1.1. x2 = 0 and either x3 = x, x4 = 0 or x3 = 0, x4 = x.∑
x2+x3+x4=x
Subcase 8.1.1.1

(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(
x+1

0

)(
x
x

)(
x
0

)
+
(
x+1

0

)(
x
0

)(
x
x

)
= 2.

Subcase 8.1.1.2. x2 = x and x3 = x4 = 0.∑
x2+x3+x4=x
Subcase 8.1.1.2

(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(
x+1
x

)(
x
0

)(
x
0

)
= x+ 1.
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Subcase 8.1.1.3. x2 = 0 and 1 ≤ x3, x4 ≤ x− 1.

Then, x3 + x4 = x. It follows from the generalised Vandermonde’s identity that∑
x3+x4=x

(
x
x3

)(
x
x4

)
=
(

2x
x

)
. So,

∑
x2+x3+x4=x
Subcase 8.1.1.3

(
x+1
x2

)(
x
x3

)(
x
x4

)
=

∑
x3+x4=x

(
x
x3

)(
x
x4

)
−
(
x
x

)(
x
0

)
−(

x
0

)(
x
x

)
=
(

2x
x

)
− 2.

Subcase 8.1.1.4. x3 = 0, 1 ≤ x2 ≤ x and 1 ≤ x4 ≤ x− 1.

Then, x2 + x4 = x. It follows from the generalised Vandermonde’s identity

that
∑

x2+x4=x

(
x+1
x2

)(
x
x4

)
=
(

2x+1
x

)
. So,

∑
x2+x3+x4=x
Subcase 8.1.1.4

(
x+1
x2

)(
x
x3

)(
x
x4

)
=

∑
x2+x4=x

(
x+1
x2

)(
x
x4

)
−(

x+1
x

)(
x
0

)
−
(
x+1

0

)(
x
x

)
=
(

2x+1
x

)
− x− 2.

Subcase 8.1.1.5. x4 = 0, 1 ≤ x2 ≤ x and 1 ≤ x3 ≤ x− 1.

By symmetry to Subcase 8.1.1.4,
∑

x2+x3+x4=x
Subcase 8.1.1.5

(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(

2x+1
x

)
− x− 2.

Now, by generalised Vandermonde’s identity,
∑

x2+x3+x4=x

(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(

3x+1
x

)
.

So,
∑

x1+x2+x3+x4=p
Subcase 8.1.1

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=

∑
x2+x3+x4=x

(
x+1
x2

)(
x
x3

)(
x
x4

)
−

5∑
i=1

∑
x2+x3+x4=x
Subcase 8.1.1.i

(
x+1
x2

)(
x
x3

)(
x
x4

)
=(

3x+1
x

)
− 2
(

2x+1
x

)
−
(

2x
x

)
+ x+ 3.

Subcase 8.1.2. x2 = x+ 1 (and 1 ≤ x1 ≤ x and 1 ≤ x3, x4 ≤ x− 1).

By symmetry to Subcase 8.1.1,
∑

x1+x2+x3+x4=p
Subcase 8.1.2

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(

3x+1
x

)
−

2
(

2x+1
x

)
−
(

2x
x

)
+ x+ 3.

Hence,
∑

x1+x2+x3+x4=p
Case 8.1

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
= 2
(

3x+1
x

)
− 4
(

2x+1
x

)
− 2
(

2x
x

)
+ 2x+ 6.

Case 8.2. Exactly one of x3, x4 equals x.

Subcase 8.2.1. x3 = x (and 1 ≤ x1, x2 ≤ x and 1 ≤ x4 ≤ x− 1).

Then, x1 + x2 + x4 = x + 1. Now, we want to count and exclude the following

subcases.
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Subcase 8.2.1.1. x4 = 0 and either x1 = x + 1, x2 = 0 or x1 = 0, x2 = x + 1.

∑
x1+x2+x4=x+1
Subcase 8.2.1.1

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=
(
x+1
x+1

)(
x+1

0

)(
x
0

)
+
(
x+1

0

)(
x+1
x+1

)(
x
0

)
= 2.

Subcase 8.2.1.2. x4 = x and either x1 = 0, x2 = 1 or x1 = 1, x2 = 0.∑
x1+x2+x4=x+1
Subcase 8.2.1.2

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=
(
x+1

0

)(
x+1

1

)(
x
x

)
+
(
x+1

1

)(
x+1

0

)(
x
x

)
= 2x+ 2.

Subcase 8.2.1.3. x1 = 0, 1 ≤ x2 ≤ x and 1 ≤ x4 ≤ x− 1.

Then, x2 + x4 = x + 1. It follows from the generalised Vandermonde’s identity

that
∑

x2+x4=x+1

(
x+1
x2

)(
x
x4

)
=
(

2x+1
x+1

)
. So,

∑
x1+x2+x4=x+1
Subcase 8.2.1.3

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=

∑
x2+x4=x+1

(
x+1
x2

)(
x
x4

)
−(

x+1
x+1

)(
x
0

)
−
(
x+1

1

)(
x
x

)
=
(

2x+1
x+1

)
− x− 2.

Subcase 8.2.1.4. x2 = 0, 1 ≤ x1 ≤ x and 1 ≤ x4 ≤ x− 1.

By symmetry to Subcase 8.2.1.3,
∑

x1+x2+x4=x+1
Subcase 8.2.1.4

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=
(

2x+1
x+1

)
− x− 2.

Subcase 8.2.1.5. x4 = 0 and 1 ≤ x1, x2 ≤ x.

Then, x1 + x2 = x + 1. It follows from the generalised Vandermonde’s identity

that
∑

x1+x2=x+1

(
x+1
x1

)(
x+1
x2

)
=
(

2x+2
x+1

)
. So,

∑
x1+x2+x4=x+1
Subcase 8.2.1.5

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=

∑
x1+x2=x+1

(
x+1
x1

)(
x+1
x2

)
−(

x+1
x+1

)(
x+1

0

)
−
(
x+1

0

)(
x+1
x+1

)
=
(

2x+2
x+1

)
− 2.

Now, by generalised Vandermonde’s identity,
∑

x1+x2+x4=x+1

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=
(

3x+2
x+1

)
.

So,
∑

x1+x2+x3+x4=p
Subcase 8.2.1

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=

∑
x1+x2+x4=x+1

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
−

5∑
i=1

∑
x1+x2+x4=x
Subcase 8.2.1.i

(
x+1
x1

)(
x+1
x2

)(
x
x4

)
=(

3x+2
x+1

)
−
(

2x+2
x+1

)
− 2
(

2x+1
x+1

)
+ 2.

Subcase 8.2.2. x4 = x (and 1 ≤ x1, x2 ≤ x and 1 ≤ x3 ≤ x− 1).

By symmetry to Subcase 8.2.1,
∑

x1+x2+x3+x4=p
Subcase 8.2.2

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
=
(

3x+2
x+1

)
−(

2x+2
x+1

)
− 2
(

2x+1
x+1

)
+ 2.
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Hence,
∑

x1+x2+x3+x4=p
Case 8.2

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
= 2
(

3x+2
x+1

)
− 2
(

2x+2
x+1

)
− 4
(

2x+1
x+1

)
+ 4.

So, Φodd(p, [0, 1]) =
2∑
i=1

∑
x1+x2+x3+x4=p

Case 8.i

(
x+1
x1

)(
x+1
x2

)(
x
x3

)(
x
x4

)
= 2

(
3x+2
x+1

)
+ 2
(

3x+1
x

)
−

2
(

2x+2
x+1

)
− 8
(

2x+1
x

)
− 2
(

2x
x

)
+ 2x+ 10.

Finally, by (2.4), Φodd(p) = Φodd(p, [0, 0]) =
(

2p
p

)
−Φodd(p, [1, 0])−Φodd(p, [0, 1])−

2∑
i=1

2∑
j=1

Φodd(p, [i, j]) =
(

2p
p

)
− 4
(

3x+2
x+1

)
− 4
(

3x+1
x

)
+ 2
(

2x+2
x+1

)
+ 8
(

2x+1
x

)
+ 2
(

2x
x

)
− 4.

�

With an expression for Φodd(p) now, we will use its special property to construct

an orientation F of K(p, p, q) for odd p ≥ 5. Similar to Proposition 2.3.8, we divide

each of V1 and V2 into 2 groups, with sizes bp
2
c and dp

2
e. Then, orientate F such

that for all 1 ≤ i ≤ q, |O(3i)| = p and O(3i) contains some but not all vertices of

each group. As before, this design will aid in ensuring d(F ) = 2.

Proposition 2.3.14 Suppose p ≥ 5 is an odd integer. If p + 3 ≤ q ≤ Φodd(p) + 2,

then d̄(K(p, p, q)) = 2.

Proof : Partition V1 ∪ V2 into Xi, i = 1, 2, 3, 4.

X1 = {1j| j ≡ 1 (mod 2)}, X3 = {1j| j ≡ 0 (mod 2)}, and

X4 = {21, 22, . . . , 2bp/2c}, and X2 = {2bp/2c+1, 2bp/2c+2, . . . , 2p}.

Observe that |X1| = |X2| = bp
2
c + 1 and |X3| = |X4| = bp

2
c. First, we shall define

an orientation F for K(p, p, p+ 3) as follows.

(I) X1 → X4 → X3 → X2 → X1.

(II) V1 → 3p+2 → V2 → 3p+3 → V1.

(III) For i = 1, . . . , bp
2
c,

(a) {21, 2bp/2c+1} ∪ (V1 − {12i−1, 12i})→ 3i → {12i−1, 12i} ∪ (V2 − {21, 2bp/2c+1}),

(b) {11, 12} ∪ (V2 − {2i, 2i+bp/2c})→ 3i+bp/2c+1 → {2i, 2i+bp/2c} ∪ (V1 − {11, 12});
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and

(c) {21, 2bp/2c+1} ∪ (V1 − {1p−1, 1p})→ 3bp/2c+1 → {1p−1, 1p} ∪ (V2 − {21, 2bp/2c+1}),

(d) {11, 12} ∪ (V2 − {2bp/2c, 2p})→ 3p+1 → {2bp/2c, 2p} ∪ (V1 − {11, 12}).

Now, consider the case where q > p + 3. Let xi = |O(3j) ∩ Xi| for some j,

where p + 3 < j ≤ q, and i = 1, 2, 3, 4. So, for each solution (x1, x2, x3, x4)∗∗

of (2.3), there are
(bp/2c+1

x1

)(bp/2c+1
x2

)(bp/2c
x3

)(bp/2c
x4

)
ways to choose p vertices (as the

outset of a vertex 3j), where xi vertices are selected from the set Xi, satisfying

1 ≤ x1, x2 ≤ bp2c, 1 ≤ x3, x4 ≤ bp2c − 1 and x1 + x2 + x3 + x4 = p. Summing

over all possible solutions (x1, x2, x3, x4)∗∗ of (2.3), there is a total of Φodd(p) :=∑
(x1,x2,x3,x4)

(b p
2
c+1
x1

)(b p
2
c+1
x2

)(b p
2
c

x3

)(b p
2
c

x4

)
of such combinations of p vertices of V1 ∪ V2.

Denote this set of combinations as Ψodd.

Note from (III) that the p + 1 outsets of 31, 32, . . . , 3p+1 are elements of Ψodd.

That leaves |Ψodd|− (p+1) = Φodd(p)− (p+1) combinations of p vertices of V1∪V2.

Note however that O(3p+2) and O(3p+3) from (II) are not elements of Ψodd. Hence,

for p + 1 + 2 < j ≤ q ≤ max
d
{Φodd(p)} + 2, we extend the definition of the above

orientation so that the outsets of vertices 3p+3, 3p+4, . . . , 3q are these remaining el-

ements of Ψodd. (See Figure 2.3.2 for F for p = 5 and q = 9.)
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11

13

15

12

14

X1

X3

V1

25

24

23

22

21

X2

X4

V2

31

32

33

34

35

36

37

38

39

V3

Figure 2.3.2: Orientation F for p = 5 and q = 9.
For clarity, only the arcs from (1) V1 to V2 and (2) V3 to V1 and V2 are shown.

Claim: For all u, v ∈ V (K(p, p, q)), dF (u, v) ≤ 2.

Case 1. u = 1a, v = 1b, a 6= b.

If 1a ∈ X1 and 1b ∈ X3, then we have 1a → 21 → 1b by (I). If 1a ∈ X3 and

1b ∈ X1, then we have 1a → 2p → 1b by (I). If 1a, 1b ∈ X1 (X3, respectively), and

b = 2i − 1 (2i, respectively) for some 1 ≤ i ≤ bp
2
c + 1 (1 ≤ i ≤ bp

2
c, respectively),

then 1a → 3i → 1b by (III)(a) and (c).
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Case 2. u = 2a, v = 2b, a 6= b.

If 2a ∈ X4 and 2b ∈ X2, then we have 2a → 12 → 2b by (I). If 2a ∈ X2 and

2b ∈ X4, then we have 2a → 11 → 2b by (I). If 2a, 2b ∈ X4, and 1 ≤ b ≤ bp
2
c,

then 2a → 3b+b p
2
c+1 → 2b by (III)(b). If 2a, 2b ∈ X2, and b = i + bp

2
c for some i,

1 ≤ i ≤ bp
2
c+ 1, then 2a → 3i+b p

2
c+1 → 2b by (III)(b) and (d).

Case 3. u = 1a, v = 2b.

By (II), 1a → 3p+2 → 2b.

Case 4. u = 2a, v = 1b.

By (II), 2a → 3p+3 → 1b.

Case 5. u = 1a, v = 3b.

Subcase 5a. b = p+ 2.

By (II), V1 → 3p+2.

Subcase 5b. b 6= p+ 2.

Suppose 1a ∈ X1. Then, 1a → X4 by (I). Since for each 3b ∈ V3, I(3b) ∩X4 6= ∅

by (II) and (III), let w ∈ I(3b) ∩ X4. It follows that 1a → w → 3b. A similar

argument follows if 1a ∈ X3.

Case 6. u = 2a, v = 3b.

Subcase 6a. b = p+ 3.

By (II), V2 → 3p+3.

Subcase 6b. b 6= p+ 3.

Suppose 2a ∈ X4. Then, 2a → X3 by (I). Since for each 3b ∈ V3, I(3b) ∩X3 6= ∅

by (II) and (III), let w ∈ I(3b) ∩ X3. It follows that 2a → w → 3b. A similar

argument follows if 2a ∈ X2.
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Case 7. u = 3a, v = 1b.

Subcase 7a. a = p+ 3.

By (II), 3p+3 → V1.

Subcase 7b. a 6= p+ 3.

Suppose 1b ∈ X1. Recall that X2 → X1 by (I). Since for each 3a ∈ V3,

O(3a)∩X2 6= ∅ by (II) and (III), let w ∈ O(3a)∩X2. It follows that 3a → w → 1b.

A similar argument follows if 1b ∈ X3.

Case 8. u = 3a, v = 2b.

Subcase 8a. a = p+ 2.

By (II), 3p+2 → V2.

Subcase 8b. a 6= p+ 2.

Suppose 2b ∈ X4. Then, X1 → 2b by (I). Since for each 3a ∈ V3, O(3a)∩X1 6= ∅

by (II) and (III), let w ∈ O(3a) ∩ X1. It follows that 3a → w → 2b. A similar

argument follows if 2b ∈ X2.

Case 9. u = 3a, v = 3b.

Subcase 9a. a 6= p+ 2, p+ 3 and b 6= p+ 2, p+ 3.

Observe from (III) that |O(3x) ∩ (V1 ∪ V2)| = p for x = a, b. Furthermore,

O(3a)∩(V1∪V2) 6⊆ O(3b)∩(V1∪V2) if b 6= a. Thus, there exists a vertex w ∈ V1∪V2

such that 3a → w → 3b.

Subcase 9b. a = p+ 2 and b 6= p+ 2, p+ 3.

3p+2 → V2 by (II) and I(3b) ∩ Xi 6= ∅ for all i = 2, 4, imply the existence of

w ∈ I(3b) ∩ V2. Hence, 3a → w → 3b.
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Subcase 9c. a = p+ 3 and b 6= p+ 2, p+ 3.

3p+3 → V1 by (II) and I(3b) ∩ Xi 6= ∅ for all i = 1, 3, imply the existence of

w ∈ I(3b) ∩ V1. Hence, 3a → w → 3b.

Subcase 9d. a 6= p+ 2, p+ 3 and b = p+ 2.

V1 → 3p+2 and O(3a) ∩ Xi 6= ∅ for all i = 1, 3, imply the existence of w ∈

O(3a) ∩ V1. Hence, 3a → w → 3b.

Subcase 9e. a 6= p+ 2, p+ 3 and b = p+ 3.

V2 → 3p+3 by (II) and O(3a) ∩ Xi 6= ∅ for all i = 2, 4, imply the existence of

w ∈ O(3a) ∩ V2. Hence, 3a → w → 3b.

Subcase 9f. a = p+ 2 and b = p+ 3.

By (II), 3p+2 → V2 → 3p+3.

Subcase 9g. a = p+ 3 and b = p+ 2.

By (II), 3p+3 → V1 → 3p+2.

�

Example 2.3.15 If 10 ≤ q ≤ 2090, then d̄(K(7, 7, q)) = 2.

Proof : By Lemma 2.3.13 and Proposition 2.3.14 , if 10 ≤ q ≤ Φodd(7) + 2 = 2090,

then d̄(K(7, 7, q)) = 2.

Alternatively, we may verify the computation of Φodd(7) as follows. A solution

(x1, x2, x3, x4)∗∗ of (2.3) is either a permutation of (1, 1, 2, 3) or a permutation of

(1, 2, 2, 2). Hence, by enumerating all solutions, we have Φodd(7) = 4
(

3
1

)(
3
2

)(
4
3

)(
4
1

)
+

2
(

3
1

)(
3
1

)(
4
3

)(
4
2

)
+ 2
(

3
1

)(
3
2

)(
4
2

)(
4
2

)
+ 2
(

3
2

)(
3
2

)(
4
2

)(
4
1

)
= 2088.

�
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In Discussion 2.3.10, we claimed that Φeven(p) is the best possible bound of

Φ∗(p, d) amidst all non-trivial divisors d of p when p ≥ 4 is even, and Φodd(p) is a

better bound than Φ∗(p, d) when p ≥ 5 is odd and composite. Now, we shall prove

it, i.e. Φeven(p) (Φodd(p), respectively) is greater than max
3≤d<p

{Φ∗(p, d)} for each even

(odd and composite, respectively) p ≥ 4.

Proposition 2.3.16 Suppose p ≥ 4 is a composite integer and d is a divisor of p,

where 3 ≤ d < p.

max
3≤d<p

{Φ∗(p, d)} <

Φeven(p), if p is even,

Φodd(p), if p is odd.

Proof :

Case 1. p is even.

Claim 1: For any even integer p ≥ 14 and any divisor 3 ≤ d < p of p,
(

2p− p
d

p

)
−

8
( 3p

2
p

)
+ 12

(
p
p
2

)
− 6 > 0.

(
2p− p

d

p

)
− 8

(3p
2

p

)
+ 12

(
p
p
2

)
− 6 ≥

(
2p− p

d

p

)
− 8

(3p
2

p

)
≥
(5p

3

p

)
− 8

(3p
2

p

)
> 0.

The first inequality is due to 12
(
p
p
2

)
≥ 6, while the second inequality follows as

d ≥ 3 and f(z) :=
(
z
p

)
is an increasing function for z ≥ p. Since f(z) is also strictly

convex for z ≥ p and
( 5(13)

3
13

)
− 8
( 3(13)

2
13

)
> 0, the last inequality follows for all p ≥ 13.

So, Claim 1 follows.

Now, for each even integer p ≤ 12, we verified, using Maple, Φ∗(p, d) < Φeven(p)

for all divisors 3 ≤ d < p of p. (See Table 2.1.) Let p ≥ 14 be an even integer.
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Note that
d∑
i=1

d∑
j=0

Φ(p, d, [i, j]) ≥
(
k
0

)(
(2d−1)k

p

)
=
(

2p− p
d

p

)
as the expression

(
k
0

)(
(2d−1)k

p

)
counts the number of ways such that none is selected from a (fixed) group of k

elements and p elements are selected from the remaining 2d−1 groups of k elements.

Also, recall that
(

2p
p

)
=

d∑
i=0

d∑
j=0

Φ(p, d, [i, j]) = Φ(p, d, [0, 0]) +
d∑
i=1

d∑
j=0

Φ(p, d, [i, j]) +

d∑
j=1

Φ(p, d, [0, j]) by generalised Vandermonde’s identity. It follows for each even

integer p ≥ 14 and each divisor 3 ≤ d < p of p that,

(
2p

p

)
− Φ∗(p, d) =

(
2p

p

)
− Φ(p, d, [0, 0])

=
d∑
i=1

d∑
j=0

Φ(p, d, [i, j]) +
d∑
j=1

Φ(p, d, [0, j])

≥
(

2p− p
d

p

)
> 8

(3p
2

p

)
− 12

(
p
p
2

)
+ 6

=

(
2p

p

)
− Φeven(p),

where the last inequality is due to Claim 1.

Case 2. p is odd and composite.

Set x := bp
2
c.

Claim 2: For any composite and odd integer p ≥ 17 and any divisor 3 ≤ d < p of

p,
(

2p− p
d

p

)
− 4
(

3x+2
x+1

)
− 4
(

3x+1
x

)
> 0.
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(
2p− p

d

p

)
− 4

(
3x+ 2

x+ 1

)
− 4

(
3x+ 1

x

)
=

(
2p− p

d

p

)
− 4

(
3x+ 2

2x+ 1

)
− 4

(
3x+ 1

2x+ 1

)
≥
(

2p− p
3

p

)
− 8

(
3x+ 2

2x+ 1

)
≥
(

10x+5
3

2x+ 1

)
− 8

(
3x+ 2

2x+ 1

)
> 0.

The first inequality is due to d ≥ 3 and f(z) is an increasing function for z ≥ p.

Since f(z) is also strictly convex for z ≥ p and
( 10(8)+5

3
2(8)+1

)
− 8
(

3(8)+2
2(8)+1

)
> 0, the last

inequality follows for all x ≥ 8. Hence, Claim 2 follows.

For each composite and odd integer p ≤ 15, we verified, using Maple, Φ∗(p, d) ≤

Φodd(p) for all divisors 3 ≤ d < p of p. (See Table 2.1.) Now, consider any composite

and odd integer p ≥ 17. As in Case 1,
d∑
i=1

d∑
j=0

Φ(p, d, [i, j]) ≥
(

2p− p
d

p

)
. It follows for

each composite and odd integer p ≥ 17 and each divisor 3 ≤ d < p of p that,

(
2p

p

)
− Φ∗(p, d)

=

(
2p

p

)
− Φ(p, d, [0, 0])

=
d∑
i=1

d∑
j=0

Φ(p, d, [i, j]) +
d∑
j=1

Φ(p, d, [0, j])

≥
(

2p− p
d

p

)
>4

(
3x+ 2

x+ 1

)
+ 4

(
3x+ 1

x

)
≥4

(
3x+ 2

x+ 1

)
+ 4

(
3x+ 1

x

)
− 2

(
2x+ 2

x+ 1

)
− 8

(
2x+ 1

x

)
− 2

(
2x

x

)
+ 4

=

(
2p

p

)
− Φodd(p),
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where the second last inequality follows from Claim 2.

�

p d
{

Φeven(p)−Φ∗(p, d), if p is even,

Φodd(p)−Φ∗(p, d), if p is odd.

4 2 16-16=0

6 2 486-486=0

6 3 486-64=422

8 2 9,744-9,744=0

8 4 9,744-256=9,488

9 3 39,400-14,580=24,820

10 2 163,750-163,750=0

10 5 163,750-1,024=162,726

12 2 2,566,726-2,566,726=0

12 3 2,566,726-1,580,096=986,630

12 4 2,566,726-459,270=2,107,456

12 6 2,566,726-4,096=2,562,630

14 2 39,227,538-39,227,538=0

14 7 39,227,538-16,384=39,211,154

15 3 152,558,168-121,562,500=30,995,668

15 5 152,558,168-14,880,348=137,677,820

16 2 595,351,056-595,351,056=0

16 4 595,351,056-269,992,192=325,358,864

16 8 595,351,056-65,536=595,285,520

18 2 9,038,224,134-9,038,224,134=0

18 3 9,038,224,134-8,120,234,620=917,989,514

18 6 9,038,224,134-491,051,484=8,547,172,650

18 9 9,038,224,134-262,144=9,037,961,990

20 2 137,608,385,766-137,608,385,766=0

20 4 137,608,385,766-95,227,343,750=42,381,042,016

20 5 137,608,385,766-47,519,843,328=90,088,542,438

20 10 137,608,385,766-1,048,576=137,607,337,190

Table 2.1: Comparison of Φ∗(p, d) with Φeven(p) and Φodd(p) for 4 ≤ p ≤ 20.

For clarity, we summarise Propositions 2.3.8 and 2.3.14 as follows.
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Theorem 2.3.17 Suppose p ≥ 4 is an integer. Then,

d̄(K(p, p, q)) = 2 if

p+ 2 ≤ q ≤ Φeven(p) + 2, if p is even,

p+ 3 ≤ q ≤ Φodd(p) + 2, if p is odd,

where Φeven(p) =
(

2p
p

)
− 8
( 3p

2
p

)
+ 12

(
p
p
2

)
− 6 and Φodd(p) =

(
2p
p

)
− 4
(

3x+2
x+1

)
− 4
(

3x+1
x

)
+

2
(

2x+2
x+1

)
+ 8
(

2x+1
x

)
+ 2
(

2x
x

)
− 4, x = bp

2
c.

For a clearer picture of the ‘gap’ between Theorems 2.3.17 and 1.2.9, we compare

some values of Φeven(p) + 2 and Φodd(p) + 2 with the bound (1.2) in the following

table.

p

(
2p

p

)
− (Φeven(p) + 2), if p is even,(

2p

p

)
− (Φodd(p) + 2), if p is odd.

4 70-18=52

5 252-74=178

6 924-488=436

7 3,432-2,090=1,342

8 12,870-9,746=3,124

9 48,620-39,402=9,218

10 184,756-163,752=21,004

11 705,432-644,502=60,930

12 2,704,156-2,566,728=137,428

13 10,400,600-10,004,430=396,170

14 40,116,600-39,227,540=889,060

15 155,117,520-152,558,170=2,559,350

16 601,080,390-595,351,058=5,729,332

17 2,333,606,220-2,317,099,178=16,507,042

18 9,075,135,300-9,038,224,136=36,911,164

19 35,345,263,800-35,238,721,934=106,541,866

20 137,846,528,820-137,608,385,768=238,143,052

Table 2.2: Comparison of
(

2p
p

)
with Φeven(p) and Φodd(p) for 4 ≤ p ≤ 20.

Since complete tripartite graphs can be spanning subgraphs of the complete

multipartite graphs, we have the following corollary.
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Corollary 2.3.18 Suppose n ≥ 2 and pi are positive integers for i = 1, 2, . . . , n

such that p1 + p2 + . . . + pr = pr+1 + pr+2 + . . . + pn = p ≥ 4 for some integers r

and p. Let G = K(p1, p2, . . . , pn, q). Then, d̄(G) = 2 if

p+ 2 ≤ q ≤ Φeven(p) + 2, if p is even,

p+ 3 ≤ q ≤ Φodd(p) + 2, if p is odd.

Proof : Note that G is a supergraph of K(p, p, q) and d̄(K(p, p, q)) = 2 by Theorem

2.3.17. So, there exists an orientation D for K(p, p, q), where d(D) = 2. Partition

V (G) into three parts
r⋃
i=1

Vi,
n⋃

i=r+1

Vi and Vn+1, and define an orientation F for G

such that D is a subdigraph of F , and edges not in D are oriented arbitrarily. It

follows that d(F ) = 2.

�
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3. Tree Vertex-multiplications

3.1. Existing Results

In [30], Koh and Tay studied vertex-multiplications of trees. Since trees of

diameter at most 2 are parent graphs to complete bipartite graphs which have a

characterisation (see Theorem 1.2.5), they only considered trees of diameter at least

3. Specifically, they proved the following results for trees of diameter 3 or 4. Recall

the assumption, si ≥ 2 for i = 1, 2, . . . , n, holds unless otherwise stated.

Theorem 3.1.1 (Koh and Tay [30])

If T is a tree of order n and d(T ) = 3 or 4, then T (s1, s2, ..., sn) ∈ C0 ∪ C1.

Theorem 3.1.2 (Koh and Tay [30])

Let T be a tree with diameter 4 and its only central vertex be u.

(i) If degT (u) = 2, then T (s1, s2, . . . , sn) ∈ C0.

(ii) If degT (u) ≥ 3, then T (2) ∈ C1.

3.2. New Results On Trees With Diameter 4

In light of the above theorems, we are interested in determining conditions in

which T (s1, s2, . . . , sn) ∈ C0 or C1. Particularly, Theorem 3.2.8 generalises Theorem

3.1.2.

For convenience, we shall introduce some notations. Let D be an orientation of

G(s1, s2, . . . , sn) with si ≥ 2 for 1 ≤ i ≤ n. If vp and vq, 1 ≤ p, q ≤ n and p 6= q,

are adjacent vertices in G, then for each i, 1 ≤ i ≤ sp, we denote O
vq
D ((i, p)) :=

{(j, q)| (i, p) → (j, q), 1 ≤ j ≤ sq} and I
vq
D ((i, p)) := {(j, q)| (j, q) → (i, p), 1 ≤ j ≤
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sq}. If there is no danger of confusion, we shall omit the subscript D for the above

notations.

Let T be a tree of diameter 4 with vertex set V (T ) = {v1, v2, . . . , vn}. We further

denote by u, the unique central vertex of T , i.e. eT (u) = 2, and the neighbours of u

by [i]. i.e. NT (u) = {[i]| i = 1, 2 . . . , degT (u)}. For each i = 1, 2, . . . , degT (u),

we further denote the neighbours of [i], excluding u, by [α, i]. i.e. NT ([i]) −

{u} = {[α, i]| α = 1, 2, . . . , degT ([i]) − 1}. In the vertex-multiplication graph

G := T (s1, s2, . . . , sn) of T , the integer si corresponds to the vertex vi, i 6= n, while

sn := s corresponds to u. We will loosely use the two denotations of a vertex, for

example, if vi = [j], then si = s[j]. Also, we set (Ns, u) := {(1, u), (2, u) . . . , (s, u)}.

Since each shortest v − w path is unique for all v, w ∈ V (T ), the above notation is

well-defined. Example 3.2.1 illustrates the use of this notation.

Example 3.2.1 Let u be the unique central vertex in T , a tree of diameter 4.

u

[1, 1]

[2, 1]

[1, 2]

[1]

[2]

[3]

[4]

[1, 4]

Figure 3.2.1: Labelling vertices in T

Also, we set G(Aj) := {i| s[i] = j, 1 ≤ i ≤ degT (u) and [i] is not an end-vertex in

T}, where j is a positive integer. If there is no ambiguity, we will use Aj instead of

G(Aj). Similarly, A≤j and A≥j denote the corresponding sets, when the condition

s[i] = j is replaced by s[i] ≤ j and s[i] ≥ j respectively. If T is as given in Example

3.2.1 and G := T (2), then G(A2) = {1, 2, 4} since none of the vertices [1], [2], [4] is

an end-vertex in T .
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Now, we will see that tree vertex-multiplications of a tree T with diameter 4 lies

in C0 whenever the vertex-multiplication of [i] is not too small, i.e. s[i] ≥ 4, for all

i = 1, 2, . . . , degT (u).

Theorem 3.2.2 Let T be a tree of diameter 4 and u be its unique central vertex.

If A≥4 6= ∅ and A2 = A3 = ∅, then G := T (s1, s2, . . . , sn) ∈ C0.

Proof :

Let H := T (t1, t2, . . . , tn) be the subgraph of G, where tn = 2, t[i] = 4 and

t[α,i] = 2 for all i ∈ G(A≥4) and α = 1, 2, . . . , degT ([i]) − 1, while t[j] = 2 for all

j ∈ NT (u) − G(A≥4) (These [j]’s are end-vertices in T ). Note that we will use

Aj for H(Aj) from here onwards. So, H(Aj) 6= ∅ if and only if j = 4. Define an

orientation D for H as follows.

(I) {(2, [i]), (3, [i])} → (1, [α, i]) → {(1, [i]), (4, [i])} → (2, [α, i]) → {(2, [i]), (3, [i])},

and

(II) {(1, [i]), (2, [i])} → (1, u)→ {(3, [i]), (4, [i])} → (2, u)→ {(1, [i]), (2, [i])},

for all i ∈ A4 and α = 1, 2, . . . , degT ([i])− 1.

(III) (2, u)→ {(1, [j]), (2, [j])} → (1, u)

for all j ∈ NT (u)− A4.

(See Figure 3.2.2.)

Claim: For all v, w ∈ V (D), dD(v, w) ≤ 4.

Case 1.1. v, w ∈ {(1, [α, i]), (2, [α, i])| α = 1, 2, . . . , degT ([i]) − 1} for each i ∈ A4.

This is clear since, by (I), (2, [i]) → (1, [α1, i]) → (1, [i]) → (2, [α2, i]) → (2, [i])

is a directed C4 for all 1 ≤ α1 ≤ α2 ≤ degT ([i])− 1.
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Case 1.2. v ∈ {(1, [α, i]), (2, [α, i])} and w ∈ {(1, [i]), (2, [i]), (3, [i]), (4, [i])} for all

i ∈ A4 and α = 1, 2, . . . , degT ([i])− 1.

By symmetry, it suffices to show for the case v = (1, [α, i]). (1, [α, i]) →

{(1, [i]), (4, [i])} → (2, [α, i])→ {(2, [i]), (3, [i])} by (I).

Case 1.3. v ∈ {(1, [α, i]), (2, [α, i])} and w ∈ {(1, u), (2, u)} for all i ∈ A4 and

α = 1, 2, . . . , degT ([i])− 1.

By symmetry, it suffices to show for the case v = (1, [α, i]). Note that (1, [α, i])→

(1, [i])→ (1, u) and (1, [α, i])→ (4, [i])→ (2, u) by (I) and (II).

Case 1.4. v ∈ {(1, [α, i]), (2, [α, i])} and w ∈ {(1, [j]), (2, [j]), (3, [j]), (4, [j])} for

all i, j ∈ A4, i 6= j, and all α = 1, 2, . . . , degT ([i])− 1.

By symmetry, it suffices to show for the case v = (1, [α, i]). Note that (1, [α, i])→

(1, [i])→ (1, u)→ {(3, [j]), (4, [j])} and (1, [α, i])→ (4, [i])→ (2, u)→ {(1, [j]), (2, [j])}

by (I) and (II).

Case 1.5. v ∈ {(1, [α, i]), (2, [α, i])} and w ∈ {(1, [β, j]), (2, [β, j])} for all i, j ∈ A4,

i 6= j, all α = 1, 2, . . . , degT ([i])− 1 and β = 1, 2, . . . , degT ([j])− 1.

By symmetry, it suffices to show for the case v = (1, [α, i]). Note that (1, [α, i])→

(1, [i]) → (1, u) → {(3, [j]), (4, [j])} and while (3, [j]) → (1, [β, j]) and (4, [j]) →

(2, [β, j]) by (I) and (II).

Case 2.1. v ∈ {(1, [i]), (2, [i]), (3, [i]), (4, [i])} and w ∈ {(1, [α, i]), (2, [α, i])} for all

i ∈ A4 and α = 1, 2, . . . , degT ([i])− 1.

By symmetry, it suffices to show for the case v = (1, [i]). Note that (1, [i]) →

(2, [α, i])→ (2, [i])→ (1, [α, i]) by (I).
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Case 2.2. v, w ∈ {(1, [i]), (2, [i]), (3, [i]), (4, [i])} for all i ∈ A4 and α = 1, 2, . . . , degT ([i])−

1.

By symmetry, it suffices to show for the case v = (1, [i]). Note that (1, [i]) →

(1, u)→ {(3, [i]), (4, [i])} → (2, u)→ {(1, [i]), (2, [i])} by (II).

Case 2.3. v ∈ {(1, [i]), (2, [i]), (3, [i]), (4, [i])} and w ∈ {(1, u), (2, u)} for all i ∈ A4.

By symmetry, it suffices to show for the case v ∈ {(1, [i]), (2, [i])}. Note that

{(1, [i]), (2, [i])} → (1, u)→ {(3, [i]), (4, [i])} → (2, u) by (II).

Case 2.4. v ∈ {(1, [i]), (2, [i]), (3, [i]), (4, [i])} and w ∈ {(1, [j]), (2, [j]), (3, [j]), (4, [j])}

for i, j ∈ A4 and i 6= j.

By symmetry, it suffices to show for the case v ∈ {(1, [i]), (2, [i])}. Note that

{(1, [i]), (2, [i])} → (1, u)→ {(3, [j]), (4, [j])} → (2, u)→ {(1, [j]), (2, [j])} by (II).

Case 2.5. v ∈ {(1, [i]), (2, [i]), (3, [i]), (4, [i])} and w ∈ {(1, [β, j]), (2, [β, j])} for

i, j ∈ A4, i 6= j, and β = 1, 2, . . . , degT ([j])− 1.

By symmetry, it suffices to show for the case v ∈ {(1, [i]), (2, [i])}. Note that

{(1, [i]), (2, [i])} → (1, u)→ {(3, [j]), (4, [j])}, while (3, [j])→ (1, [β, j]) and (4, [j])→

(2, [β, j]) by (I) and (II).

Case 3.1. v, w ∈ {(1, u), (2, u)}.

Note that (1, u) → {(3, [i]), (4, [i])} → (2, u) → {(1, [i]), (2, [i])} → (1, u) for all

i by (II).

Case 3.2. v ∈ {(1, u), (2, u)}, w ∈ {(1, [i]), (2, [i]), (3, [i]), (4, [i])} for all i ∈ A4.

Note that (1, u)→ {(3, [i]), (4, [i])} → (2, u)→ {(1, [i]), (2, [i])} → (1, u) by (II).
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Case 3.3. v ∈ {(1, u), (2, u)}, w ∈ {(1, [α, i]), (2, [α, i])} for all i ∈ A4 and α =

1, 2, . . . , degT ([i])− 1.

By symmetry, it suffices to show for the case v = (1, u). Note that (1, u) →

{(3, [i]), (4, [i])}, while (3, [i])→ (1, [α, i]) and (4, [i])→ (2, [α, i]) by (I) and (II).

Case 4.1. v ∈ {(1, [α, i]), (2, [α, i])} and w ∈ {(1, [j]), (2, [j])} for all i ∈ A4,

α = 1, 2, . . . , degT ([i])− 1 and j ∈ NT (u)− A4.

Note that (1, [α, i]) → (4, [i]) → (2, u), (2, [α, i]) → (3, [i]) → (2, u), and

(2, u)→ {(1, [j]), (2, [j])} by (I)-(III).

Case 4.2. v ∈ {(1, [j]), (2, [j])} and w ∈ {(1, [α, i]), (2, [α, i])} for all i ∈ A4,

α = 1, 2, . . . , degT ([i])− 1 and j ∈ NT (u)− A4.

Note that {(1, [j]), (2, [j])} → (1, u)→ {(3, [i]), (4, [i])}, (3, [i])→ (1, [α, i]), and

(4, [i])→ (2, [α, i]) by (I)-(III).

Case 4.3. v ∈ {(1, [i]), (2, [i]), (3, [i]), (4, [i])} and w ∈ {(1, [j]), (2, [j])} for all i ∈ A4,

α = 1, 2, . . . , degT ([i])− 1 and j ∈ NT (u)− A4.

Note that {(1, [i]), (2, [i])} → (1, u)→ {(3, [i]), (4, [i])} → (2, u)→ {(1, [j]), (2, [j])}

by (II) and (III).

Case 4.4. v ∈ {(1, [j]), (2, [j])} and w ∈ {(1, [i]), (2, [i]), (3, [i]), (4, [i])} for all i ∈ A4,

α = 1, 2, . . . , degT ([i])− 1 and j ∈ NT (u)− A4.

{(1, [j]), (2, [j])} → (1, u)→ {(3, [i]), (4, [i])} → (2, u)→ {(1, [i]), (2, [i])} by (II)

and (III).

Case 4.5.

(i) v ∈ {(1, u), (2, u)} and w ∈ {(1, [j]), (2, [j])} for all j ∈ NT (u)− A4, or

(ii) v ∈ {(1, [j]), (2, [j])} and w ∈ {(1, u), (2, u)} for all j ∈ NT (u)− A4.

Note that {(1, [j]), (2, [j])} → (1, u) → (3, [k]) → (2, u) → {(1, [j]), (2, [j])} is a
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directed C4 for any k ∈ A4.

Case 4.6. v ∈ {(1, [i]), (2, [i])} and w ∈ {(1, [j]), (2, [j])} for all i, j ∈ NT (u) − A4.

Note that {(1, [i]), (2, [i])} → (1, u) → (3, [k]) → (2, u) → {(1, [j]), (2, [j])} is a

directed C4 for any k ∈ A4 by (II) and (III).

Hence, d(D) ≤ 4. Notice that every vertex in D lies in a directed C4. So, by

Lemma 1.3.2, 4 = d(T ) ≤ d̄(G) ≤ max{4, d(D)} = 4. Therefore, d̄(G) = 4.

�

(1, [1, 1])

(2, [1, 1])

(1, [2, 1])

(2, [2, 1])

(1, [1])

(2, [1])

(3, [1])

(4, [1])

(1, u)

(2, u)

(1, [2])

(2, [2])

(3, [2])

(4, [2])

(1, [1, 2])

(2, [1, 2])

(1, [3])

(2, [3])

(1, [4])

(2, [4])

Figure 3.2.2: Orientation D, where A4 = {1, 2} and NT (u)− A4 = {3, 4}.
For clarity, the arcs directed from (p, u) to (q, [i]) and (q, [i]) to (r, [α, i]) are

omitted.
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Next, we consider the smallest possible size s[i] of our concern. Given s[i] =

2 for all i = 1, 2, . . . , degT (u), we seek a necessary and sufficient condition for

T (s1, s2, . . . , sn) ∈ C0, where T is a tree of diameter 4. We start by introducing

some lemmas.

Remark 3.2.3 Note that it is not necessarily true that A2 = NT (u) in a T (2).

Consider T (2), where T is as given in Example 3.2.1. Then, A2 = {1, 2, 4} 6=

NT (u) = {1, 2, 3, 4} since [3] is an end-vertex in T .

Lemma 3.2.4 Let T be a tree of diameter 4, G := T (s1, s2, . . . , sn) and D be an

orientation of G where d(D) = 4. If s[i] = 2 for some 1 ≤ i ≤ degT (u), then for

all 1 ≤ j ≤ s[α,i] and 1 ≤ α ≤ degT ([i]) − 1, either (2, [i]) → (j, [α, i]) → (1, [i]) or

(1, [i])→ (j, [α, i])→ (2, [i]).

Proof : This follow from the fact that deg+((j, [α, i])) > 0 and deg−((j, [α, i])) > 0

for all j = 1, 2, . . . , s[α,i] so that D is a strong orientation.

�

Lemma 3.2.5 Let T be a tree of diameter 4, G := T (s1, s2, . . . , sn) and D be an ori-

entation of G where d(D) = 4. Then, dD((p, [α, i]), (q, [j])) = dD((q, [j]), (p, [α, i])) =

3 for all 1 ≤ i, j ≤ degT (u), i 6= j, 1 ≤ α ≤ degT ([i]) − 1, 1 ≤ p ≤ s[α,i] and

1 ≤ q ≤ s[j].

Proof : Note that 3 = dT ([α, i], [j]) ≤ dD((p, [α, i]), (q, [j])) ≤ d(D) = 4. Since there

is no [α, i]− [j] path of even length in T , there is no (p, [α, i])− (q, [j]) path of even

length in G, in particular, no path of length 4. Hence, dD((p, [α, i]), (q, [j])) = 3.

Similarly, dD((q, [j]), (p, [α, i])) = 3 may be proved.

�

Lemma 3.2.6 Let T be a tree of diameter 4, G := T (s1, s2, . . . , sn) and D be an

orientation of G where d(D) = 4. For some 1 ≤ i < j ≤ degT (u), 1 ≤ α ≤

degT ([i])− 1, and 1 ≤ β ≤ degT ([j])− 1,
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(i) if O((1, [α, i])) = {(1, [i])} and O((1, [β, j])) = {(1, [j])}, then Ou((1, [i])) and

Ou((1, [j])) are independent.

(ii) if I((1, [α, i])) = {(1, [j])} and I((1, [β, j])) = {(1, [j])}, then Iu((1, [i])) and

Iu((1, [j])) are independent.

Proof :

(i) By Lemma 3.2.5, dD((1, [α, i]), (1, [j])) = 3. Now, dD((1, [α, i]), (1, [j])) = 3

implies dD((1, [i]), (1, [j])) = 2. Hence, it follows that Ou((1, [i])) 6⊆ Ou((1, [j])). A

similar argument shows Ou((1, [j])) 6⊆ Ou((1, [i])).

(ii) This part follows from (i) and the Duality Lemma.

�

The next theorem by Lih will be useful in shortening our proof, as we will explain

in a moment.

Theorem 3.2.7 (Lih [34])

Let n ∈ Z+ and Y ⊆ Nn. If A is an antichain of Nn such that X ∩ Y 6= ∅ for all

X ∈ A , then

|A | ≤
(

n

dn/2e

)
−
(
n− |Y |
dn/2e

)
.

We return to our aim of seeking a necessary and sufficient condition for T (s1, s2, . . . , sn) ∈

C0, where T is a tree with diameter 4. The condition dD((1, [1, i]), (1, [j])) = 3 =

dD((1, [1, j]), (1, [i])) for all i 6= j is fundamental to our proof for the “necessary”

direction. As in Lemma 3.2.6, it is consequent that {Ou((1, [i]))| i ∈ A2} is an

antichain, assuming O((1, [1, i])) = {(1, [i])} for each i ∈ A2. Hence, |A2| ≤
(

s
ds/2e

)
by Sperner’s Lemma. This bound is tight if A2 = NT (u). And, if A2 ⊂ NT (u), we

invoke Lih’s Theorem to obtain a tighter bound |A2| ≤
(

s
ds/2e

)
− 1.
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Theorem 3.2.8 Let T be a tree of diameter 4 and u be its unique central vertex.

Suppose A2 6= ∅, and A≥3 = ∅. Then,

G := T (s1, s2, . . . , sn) ∈ C0 ⇐⇒

|A2| ≤
(

s
ds/2e

)
, if |A2| = degT (u),

|A2| ≤
(

s
ds/2e

)
− 1, if |A2| < degT (u).

Proof :

(⇒)

Let D be an orientation of G such that d(D) = 4. By Lemma 3.2.4, we

may assume w.l.o.g. for each i ∈ A2 that, (2, [i]) → (1, [1, i]) → (1, [i]). Then,

{Ou((1, [i]))| i ∈ A2} is an antichain of (Ns, u) by Lemma 3.2.6. It follows from

Sperner’s Lemma that |A2| = |{Ou((1, [i]))| i ∈ A2}| ≤
(

s
ds/2e

)
. Now, we are done if

A2 = NT (u).

Assume A2 ⊂ NT (u) and let i∗ ∈ NT (u) − A2. By a similar argument as

in the previous paragraph, {Iu((2, [i]))| i ∈ A2} is also an antichain of (Ns, u). If

|Ou((1, [i∗]))| ≥ d s
2
e, then dD((1, [1, i]), (1, [i∗])) = 3 impliesOu((1, [i]))∩Iu((1, [i∗])) 6=

∅ for all i ∈ A2. It follows from Theorem 3.2.7 that |A2| = |{Ou((1, [i]))| i ∈

A2}| ≤
(

s
ds/2e

)
−
(
s−|Iu((1,[i∗]))|

ds/2e

)
≤
(

s
ds/2e

)
−
(ds/2e
ds/2e

)
=
(

s
ds/2e

)
− 1. If |Ou((1, [i∗]))| ≤

b s
2
c, then dD((1, [i∗]), (1, [1, i])) = 3 implies Iu((2, [i])) ∩ Ou((1, [i∗])) 6= ∅ for all

i ∈ A2. It follows from Theorem 3.2.7 that |A2| = |{Iu((2, [i]))| i ∈ A2}| ≤(
s
ds/2e

)
−
(
s−|Ou((1,[i∗]))|

ds/2e

)
≤
(

s
ds/2e

)
−
(ds/2e
ds/2e

)
=
(

s
ds/2e

)
− 1.

On account of the last proof, it is intuitive to assign b s
2
c-element subsets of

(Ns, u) as Ou((1, [i])) = Ou((2, [i])) in constructing an orientation D of G. In-

deed, this is our plan if |A2| is big enough (i.e. |A2| ≥ s). However, there are

some potential drawbacks of this approach if |A2| is small (i.e. |A2| < s). For

instance, consider s = 5 and degT (u) = |A2| = 2. Should we have assigned

Ou((p, [1])) = {(1, u), (2, u)} and Ou((p, [2])) = {(1, u), (3, u)} for p = 1, 2, then

deg+((1, u)) = 0 and deg−((j, u)) = 0 for j = 4, 5. Consequently, D will not be

a strong orientation. Hence, we consider cases dependent on |A2| to circumvent

this problem; namely, they are Cases 1 and 3 if A2 = NT (u), and Cases 2 and 4 if
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A2 ⊂ NT (u).

(⇐)

W.l.o.g., assume A2 = N|A2|. Thus, it is taken that NT (u) − A2 = {|A2| +

1, |A2|+ 2, . . . , degT (u)}, if A2 ⊂ NT (u).

Case 1. A2 = NT (u) and |A2| < s.

Define an orientation D1 for G as follows.

(I) (2, [i]) → (1, [α, i]) → (1, [i]) → (2, [α, i]) → (2, [i]) for i ∈ A2 and α =

1, 2, . . . , degT ([i])− 1.

(II) (Ns, u)− {(i, u)} → {(1, [i]), (2, [i])} → (i, u) for i = 1, 2, . . . , |A2| − 1.

(III) (Ns, u) − {(k, u)| |A2| ≤ k ≤ s} → {(1, [|A2|]), (2, [|A2|])} → {(k, u)| |A2| ≤

k ≤ s}. (See Figure 3.2.3 for D1 when s = 5.)

Claim 1: For all v, w ∈ V (D1), dD1(v, w) ≤ 4.

Subcase 1.1. v, w ∈ {(1, [α, i]), (2, [α, i]), (1, [i]), (2, [i])} for each i ∈ A2 and α =

1, 2, . . . , degT ([i])− 1.

This is clear since, by (I), (2, [i]) → (1, [α, i]) → (1, [i]) → (2, [α, i]) → (2, [i]) is

a directed C4.

Subcase 1.2. For each i, j ∈ A2, i 6= j, each α = 1, 2, . . . , degT ([i]) − 1, and

each β = 1, 2, . . . , degT ([j])− 1,

(i) v = (p, [α, i]), w = (q, [β, j]) for p, q = 1, 2, or

(ii) v = (p, [α, i]), w = (q, [i]) for p, q = 1, 2, or

(iii) v = (p, [i]), w = (q, [β, j]) for p, q = 1, 2.

If i 6= j, then, by (I)-(III), (p, [α, i]) → (p, [i]) → (i, u) → (1, [j]) → (2, [β, j])

and (p, [α, i])→ (p, [i])→ (i, u)→ (2, [j])→ (1, [β, j]) for all α, β and p = 1, 2.
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Subcase 1.3. v = (x1, u) and w = (x2, u) for x1 6= x2 and 1 ≤ x1, x2 ≤ s.

If x2 < |A2|, then (x1, u) → (1, [x2]) → (x2, u) by (II). If x1 < |A2| ≤ x2 ≤ s,

then (x1, u) → (1, [|A2|]) → (x2, u) by (III). If |A2| ≤ x1, x2 ≤ s, then (x1, u) →

(1, [1])→ (1, u)→ (1, [|A2|])→ (x2, u) by (II) and (III).

Subcase 1.4. v ∈ {(1, [i]), (2, [i]), (1, [α, i]), (2, [α, i])} for each i ∈ A2, α = 1, 2, . . . , degT ([i])−

1, and w = (j, u) for j = 1, 2, . . . , s.

If j = i, then (p, [α, i]) → (p, [i]) → (j, u) for p = 1, 2, by (I) and (II). If j 6= i

and j < |A2|, then (p, [α, i])→ (p, [i])→ (i, u)→ (1, [j])→ (j, u) for p = 1, 2, by (I)

and (II). If j 6= i and |A2| ≤ j ≤ s, then (p, [α, i])→ (p, [i])→ (i, u)→ (1, [|A2|])→

(j, u) for p = 1, 2, by (I)-(III).

Subcase 1.5.

v = (j, u) for each j = 1, 2, . . . , s, and w ∈ {(1, [i]), (2, [i]), (1, [α, i]), (2, [α, i])} for

each i ∈ A2 and α = 1, 2, . . . , degT ([i])− 1.

If j < |A2| and j 6= i, or i < |A2| ≤ j ≤ s, then (j, u)→ (p, [i])→ (3− p, [α, i])

for p = 1, 2, by (I)-(III). If i = j < |A2|, then (j, u) → (1, [|A2|]) → (|A2|, u) →

(p, [i]) → (3 − p, [α, i]) for p = 1, 2 by (I) and (III). If i = |A2| ≤ j ≤ s, then

(j, u)→ (1, [1])→ (1, u)→ (p, [|A2|])→ (3− p, [α, |A2|]), for p = 1, 2 by (I)-(III).

Subcase 1.6. v = (p, [i]) and w = (q, [j]), where 1 ≤ p, q ≤ 2, i 6= j, and i, j ∈ A2.

This follows from the fact that |Ou((p, [i]))| > 0, |Iu((q, [j]))| > 0, and dD1((r1, u), (r2, u)) =

2 for any r1 6= r2 and 1 ≤ r1, r2 ≤ |A2| by Subcase 1.3.

Case 2. A2 ⊂ NT (u) and |A2| < s.

We define an orientationD2 forG such that 〈V (D2)−{(1, [|A2|]), (2, [|A2|])}〉D2
∼=

〈V (D2)− {(1, [|A2|]), (2, [|A2|])}〉D1 .

Furthermore, in D2, we have
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(IV) (2, [|A2|) → (1, [α, |A2|]) → (1, [|A2|]) → (2, [α, |A2|]) → (2, [|A2|]) for α =

1, 2, . . . , degT ([|A2|])− 1,

(V) (Ns, u)− {(k, u)| |A2| ≤ k ≤ s− 1} → {(1, [|A2|]), (2, [|A2|])} → {(k, u)| |A2| ≤

k ≤ s− 1}, and

(VI) (Ns, u)− {(s, u)} → {(1, [i]), (2, [i])} → (s, u) for all i ∈ NT (u)− A2.

(See Figure 3.2.4 for D2 when s = 5.)

Claim 2: For all v, w ∈ V (D2), dD2(v, w) ≤ 4.

In view of the similarity between D1 and D2, it suffices to check the following

subcases.

Subcase 2.1. For each i ∈ A2, each j ∈ NT (u)−A2, and each α = 1, 2, . . . , degT ([i])−

1,

(i) v = (p, [α, i]), w = (q, [j]) for p, q = 1, 2, or

(ii) v = (p, [i]), w = (q, [j]) for p, q = 1, 2, or

(iii) v = (q, [j]), w = (p, [α, i]) for p, q = 1, 2.

(i) and (ii) follow from (p, [α, i]) → (p, [i]) → (i, u) → {(1, [j]), (2, [j])} for all

p = 1, 2, by (I), (II) and (IV)-(VI). Similarly, for (iii), {(1, [j]), (2, [j])} → (s, u)→

(3− p, [i])→ (p, [α, i]) for p = 1, 2 by (I), (II) and (IV)-(VI).

Subcase 2.2. v = (x1, u) and w = (x2, u) for x1 6= x2 and 1 ≤ x1, x2 ≤ s.

If x2 ∈ A2, then (x1, u)→ (1, [x2])→ (x2, u) by (II) and (V). If x1 ∈ A2 ∪ {s}−

{|A2|} and |A2| ≤ x2 ≤ s−1, then (x1, u)→ (1, [|A2|])→ (x2, u) by (II) and (V). If

|A2| ≤ x1, x2 ≤ s− 1, then (x1, u)→ (1, [1])→ (1, u)→ (1, [|A2|])→ (x2, u) by (II)

and (V). If x2 = s, then (x1, u)→ (1, [w])→ (x2, u) by (II), (V) and (VI), where w

can be any element of NT (u)− A2.
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Subcase 2.3. v ∈ {(1, [i]), (2, [i])} for each i ∈ NT (u) − A2, and w = (j, u) for

j = 1, 2, . . . , s.

For 1 ≤ j < |A2|, {(1, [i]), (2, [i])} → (s, u) → (1, [j]) → (j, u) by (II) and (VI).

For |A2| ≤ j ≤ s − 1, {(1, [i]), (2, [i])} → (s, u) → (1, [|A2|]) → (j, u) by (V) and

(VI). And, of course, {(1, [i]), (2, [i])} → (j, u) if j = s by (VI).

Subcase 2.4.

v = (j, u) for each j = 1, 2, . . . , s, and w ∈ {(1, [i]), (2, [i])} for each i ∈ NT (u)−A2.

By (VI), for any 1 ≤ j ≤ s − 1, (j, u) → {(1, [i]), (2, [i])}. Furthermore,

(s, u)→ (1, [1])→ (1, u)→ {(1, [j]), (1, [j])} by (II) and (VI).

Subcase 2.5. v = (p, [i]) and w = (q, [j]), where 1 ≤ p, q ≤ 2, and i, j ∈ NT (u)−A2.

Here, it is possible that i = j. Note that {(1, [i]), (2, [i])} → (s, u) → (1, [1]) →

(1, u)→ {(1, [j]), (1, [j])} by (II) and (VI).

Case 3. A2 = NT (u) and s ≤ |A2| ≤
(

s
ds/2e

)
.

Let Ψs be the set containing all b s
2
c-element subsets of (Ns, u). In particular,

denote ψj ∈ Ψs where ψj := {(j, u), . . . , (j + b s
2
c − 1, u)} for j = 1, 2, . . . , s, where

the addition is taken modulo s. For j > s, the denotation of ψj is arbitrary. Define

an orientation D3 for G as follows.

(VII) (2, [i])→ (1, [α, i])→ (1, [i])→ (2, [α, i])→ (2, [i]), and

(VIII) ψ̄i → {(1, [i]), (2, [i])} → ψi,

for i ∈ A2 and α = 1, 2, . . . , degT ([i])− 1.

(See Figure 3.2.5 for D3 when s = 5.)
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Claim 3: For all v, w ∈ V (D3), dD3(v, w) ≤ 4.

Subcase 3.1. v, w ∈ {(1, [α, i]), (2, [α, i]), (1, [i]), (2, [i])} for each i ∈ A2 and α =

1, 2, . . . , degT ([i])− 1.

This is clear since, by (VII), (2, [i])→ (1, [α, i])→ (1, [i])→ (2, [α, i])→ (2, [i])

is a directed C4.

Subcase 3.2. For each i, j ∈ A2, i 6= j, each α = 1, 2, . . . , degT ([i]) − 1, and

each β = 1, 2, . . . , degT ([j])− 1,

(i) v = (p, [α, i]), w = (q, [β, j]) for p, q = 1, 2, or

(ii) v = (p, [α, i]), w = (q, [j]) for p, q = 1, 2, or

(iii) v = (p, [i]), w = (q, [β, j]) for p, q = 1, 2.

By (VII) and (VIII), since Ou((p, [i])) = ψi 6⊆ ψj = Ou((q, [j])), there exists

a vertex (x, u) ∈ ψi ∩ ψ̄j such that (p, [α, i]) → (p, [i]) → (x, u) → (q, [j]) →

(3− q, [β, j]) for p, q = 1, 2.

Subcase 3.3. v = (r1, u) and w = (r2, u) for r1 6= r2 and 1 ≤ r1, r2 ≤ s.

Let t = r1 − b s2c(mod s). Since (r1, u) 6∈ ψr1+1 ∪ ψt, it follows that (r1, u) →

{(1, [r1 + 1]), (1, [t])}. Taking addition modulo s, (1, [r1 + 1]) → ψr1+1 = {(r1 +

1, u), (r1+2, u), . . . , (r1+b s
2
c, u)} and (1, [t])→ ψt = {(t, u), (t+1, u), . . . , (r1−1, u)}

since t + b s
2
c − 1 = r1 − 1(mod s). Noting that ψr1+1 ∪ ψt = (Nn, u)− {(r1, u)}, it

follows w.l.o.g. that dD3(v, w) = 2.

Subcase 3.4. v ∈ {(1, [i]), (2, [i]), (1, [α, i]), (2, [α, i])} for each i ∈ A2 and α =

1, 2, . . . , degT ([i])− 1, and w = (r, u) for r = 1, 2, . . . , s.

Note that there exists some 1 ≤ k ≤ s such that dD3(v, (k, u)) ≤ 2 by (VII) and

(VIII). If k = r, we are done. If k 6= r, then dD3((k, u), (r, u)) = 2 by Subcase 3.3.

Hence, it follows that dD3(v, w) ≤ dD3(v, (k, u)) + dD3((k, u), w) = 4.
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Subcase 3.5.

v = (r, u) for r = 1, 2, . . . , s and w ∈ {(1, [i]), (2, [i]), (1, [α, i]), (2, [α, i])} for each

i ∈ A2 and α = 1, 2, . . . , degT ([i])− 1.

Note that there exists some 1 ≤ k ≤ s such that dD3((k, u), v) ≤ 2 by (VII) and

(VIII). If k = r, we are done. If k 6= r, then dD3((r, u), (k, u)) = 2 by Subcase 3.3.

Hence, it follows that dD3(v, w) ≤ dD3(v, (k, u)) + dD3((k, u), w) = 4.

Subcase 3.6. v = (p, [i]) and w = (q, [j]), where 1 ≤ p, q ≤ 2 and i, j ∈ A2.

This follows from the fact that |Ou((p, [i]))| > 0, |Iu((q, [j]))| > 0, and dD3((r1, u), (r2, u)) =

2 for any r1 6= r2 and 1 ≤ r1, r2 ≤ s by Subcase 3.3.

Case 4. A2 ⊂ NT (u) and s ≤ |A2| ≤
(

s
ds/2e

)
− 1. (If s = 3, this case does not

apply, and we refer to Case 2 instead.)

Using the notations in Case 3, we define an orientation D4 for G by making a

slight modification to D3. Noting that |A2| ≤
(

s
ds/2e

)
− 1, define D4 as follows.

(VII)′ (2, [i])→ (1, [α, i])→ (1, [i])→ (2, [α, i])→ (2, [i]).

(VIII)′ ψ̄i → {(1, [i]), (2, [i])} → ψi for i ∈ A2 and α = 1, 2, . . . , degT ([i])− 1.

(IX)′ ψ̄( s
ds/2e)

→ {(1, [j]), (2, [j])} → ψ( s
ds/2e)

for j ∈ NT (u)− A2.

(See Figure 3.2.6 for D4 when s = 5.)

Claim 4: For all v, w ∈ V (D4), dD4(v, w) ≤ 4.

In view of the similarity between D3 and D4, it suffices to check the following

subcases.

Subcase 4.1. v ∈ {(1, [i]), (2, [i])} for each i ∈ NT (u)−A2 and α = 1, 2, . . . , degT ([i])−

1, and w = (r, u) for r = 1, 2, . . . , s.

This follows from the fact that |Ou((p, [i]))| > 0 for p = 1, 2, and dD4((r1, u), (r2, u)) =

2 for any r1 6= r2 and 1 ≤ r1, r2 ≤ s by Subcase 3.3.
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Subcase 4.2.

v = (r, u) for r = 1, 2, . . . , s and w ∈ {(1, [i]), (2, [i])} for each i ∈ NT (u) − A2 and

α = 1, 2, . . . , degT ([i])− 1.

This follows from the fact that |Iu((p, [i]))| > 0 for p = 1, 2, and dD4((r1, u), (r2, u)) =

2 for any r1 6= r2 and 1 ≤ r1, r2 ≤ s by Subcase 3.3.

Subcase 4.3. v = (p, [i]) and w = (q, [j]), where 1 ≤ p, q ≤ 2 and i, j ∈ NT (u)−A2.

This follows from the fact that |Ou((p, [i]))| > 0, |Iu((q, [j]))| > 0, and dD4((r1, u), (r2, u)) =

2 for any r1 6= r2 and 1 ≤ r1, r2 ≤ s by Subcase 3.3.

Hence, d(Di) ≤ 4 for i = 1, 2, 3, 4. Notice that every vertex in D lies in a di-

rected C4. So, by Lemma 1.3.2, 4 = d(T ) ≤ d̄(G) ≤ max{4, d(D)} = 4. Therefore,

d̄(G) = 4.

�
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(1, [1])

(2, [1])

(1, [1, 1])

(2, [1, 1])

(1, [2])

(2, [2])

(1, [1, 2])

(2, [1, 2])(1, [1, 3])

(2, [1, 3])

(1, [2, 3])

(2, [2, 3])

(1, [3])

(2, [3])

(1, u)

(2, u)

(3, u)

(4, u)

(5, u)

(1, [4])

(2, [4])

(1, [1, 4])

(2, [1, 4])

Figure 3.2.3: D1 for Case 1. s = 5 and A2 = {1, 2, 3, 4}.
For clarity, the arcs directed from (p, u) to (q, [i]) are omitted.

83

ATTENTION: The Singapore Copyright Act applies to the use of this document. Library and Information Services Centre, National Institute of Education.



(1, [1])

(2, [1])

(1, [1, 1])

(2, [1, 1])

(1, [2])

(2, [2])

(1, [1, 2])

(2, [1, 2])(1, [1, 3])

(2, [1, 3])

(1, [2, 3])

(2, [2, 3])

(1, [3])

(2, [3])

(1, u)

(2, u)

(3, u)

(4, u)

(5, u)

(1, [4])

(2, [4])

(1, [1, 4])

(2, [1, 4])

(1, [5])

(2, [5])

(1, [6])

(2, [6])

Figure 3.2.4: D2 for Case 2. s = 5, degT (u) = 6, A2 = {1, 2, 3, 4} and
NT (u)− A2 = {5, 6}.

For clarity, the arcs directed from (p, u) to (q, [i]) are omitted.
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(1, [1])

(2, [1])

(1, [1, 1])

(2, [1, 1])

(1, [1, 2])

(2, [1, 2])

(1, [2, 2])

(2, [2, 2])

(1, [2])

(2, [2])

(1, u)

(2, u)

(3, u)

(4, u)

(5, u)

(1, [3])

(2, [3])

(1, [1, 3])

(2, [1, 3])

Figure 3.2.5: D3 for Case 3. s = 5, and A2 = {1, 2, 3, 4, 5}.
For clarity, we only show the vertices [α, i] and [i] for i = 1, 2, 3,

and the arcs directed from (p, u) to (q, [i]) are omitted.
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(1, [1])

(2, [1])

(1, [1, 1])

(2, [1, 1])

(1, [1, 2])

(2, [1, 2])

(1, [2, 2])

(2, [2, 2])

(1, [2])

(2, [2])

(1, u)

(2, u)

(3, u)

(4, u)

(5, u)

(1, [3])

(2, [3])

(1, [1, 3])

(2, [1, 3])

(1, [10])

(2, [10])

(1, [11])

(2, [11])

Figure 3.2.6: D4 for Case 4. s = 5, degT (u) = 11, A2 = {1, 2, . . . , 9} and
NT (u)− A2 = {10, 11}.

Here, assume we define ψ( s
ds/2e)

= {(3, u), (5, u)}.
For clarity, we only show the vertices [α, i] and [i] for i = 1, 2, 3, 10, 11,

and the arcs directed from (p, u) to (q, [i]) are omitted.

Corollary 3.2.9 Let T be a tree of diameter 4 and u be its unique central vertex.

If

(i) |A≥2| ≤
(

s
ds/2e

)
and |A2| = degT (u), or

(ii) |A≥2| ≤
(

s
ds/2e

)
− 1,

then G := T (s1, s2, . . . , s) ∈ C0.

Proof :

Note that every vertex lies in a directed C4 for each orientationDi and d(Di) ≤ 4,

for i = 1, 2, 3, 4. Thus, d̄(G) ≤ max{4, d(Di)} for i = 1, 2, 3, 4, by Lemma 1.3.2.

Since d̄(G) ≥ d(T ) = 4, it follows that d̄(G) = 4.
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�

Further research may be done to characterise the tree vertex-multiplications

T4(s1, s2, . . . , sn) which belong to C0.
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