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The notion of teaching experts’ habits of mind (e.g., computational thinking and scientific 
thinking) to novices seems to have inspired many educators and researchers worldwide. In 
particular, a great deal of efforts has been invested in computational thinking (CT) and its 
manifestations in different fields. However, there remain some troubling spots in CT education 
as far as how to teach it at different levels of education. The same argument applies to teaching 
scientific thinking (ST) skills. A remedy has been suggested to narrow CT and ST skillsets 
down to core cognitive competencies so they can be introduced in early and middle grades 
and continue to be nurtured during secondary and post-secondary years. Neuroscientists 
suggest that the act of (computational) thinking is strongly linked to the acts of information 
storage/retrieval by our brain. Plus, years of research have shown that retrieval practices 
promote not only knowledge retention but also inductive reasoning and deductive reasoning. 
Not surprisingly, these reasoning skills are core elements of both CT and ST skillsets. This 
article will mesh the findings of a teacher professional development with the existing literature 
to lay a claim that retrieval practices enhance CT and ST skills. The study offered training to 
secondary school teachers (n = 275) who conducted classroom action research to measure 
the impact of retrieval practices on teaching and learning of STEM and CT concepts. We used 
a quasi-experimental research design with purposeful sampling and a sequential mixed-
methods approach focusing on the impact of professional development on teacher outcomes 
and, in turn, on student outcomes. A survey of teacher participants showed that the majority 
(96%) of survey respondents (n = 232) reported a good understanding of retrieval strategies, 
and how relevant ideas can be implemented and tested in the classroom. A large number of 
action research (target-control) studies by teachers (n = 122) showed that students who learned 
STEM and CS concepts through retrieval practices consistently scored 5–30% higher than 
those using the usual blocked practice. In most cases, the difference was statistically significant 
(p < 0.05). While the study contributes to retrieval practices literature, those looking for best 
practices to teach core CT and ST skills should benefit from it the most. The study concludes 
with some recommendations for future research based on the limitations of its current findings.
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INTRODUCTION

More than two decades ago, when computational science (an 
interdisciplinary practice incorporating modeling, simulation, 
visualization, and problem solving) emerged as a new workforce 
strategy for institutions of higher education (IHEs) and as an 
innovative teaching pedagogy for K-12, many had hoped that 
it would revolutionize the STEM education. As such, in 1998, 
SUNY College at Brockport launched the nation’s first 
undergraduate degree program in computational science (Yaşar 
et  al., 2000; Yaşar and Landau, 2003; Turner et  al., 2011). In 
2006, Jeannette Wing, an influential computer scientist and 
an assistant director at the US National Science Foundation 
(NSF), mobilized significant NSF resources, rebranded 
computational science as computational thinking (CT), and 
claimed in her 2006 essay that CT should be  taught as a 
fundamental skill in public schools just like reading and writing 
(Wing, 2006). The notion of teaching computational thinking 
(CT) as a fundamental competency seems to have inspired 
many educators and researchers worldwide. However, teaching 
experts’ habits of practice to novices is inherently problematic 
because of prerequisite content knowledge and practice skills 
needed to engage in the same thinking processes (Kirschner 
et  al., 2006), not to mention the cost of providing them a 
similar environment to conduct inquiry and design. A remedy 
has been suggested to link experts’ habits of practice to 
fundamental cognitive processes so we can narrow their skillsets 
down to more basic competencies that can be  taught to 
young students.

Linking computation to cognition is not a new idea—in 
fact, it goes as far back as to the time of human computers 
during Babylonians (Denning and Tedre, 2019). Obviously, after 
the electronic computer age began in the 1940s, the term 
“computer” has often referred to electronic devices rather than 
human agents. What led to the design of electronic computing 
80 years ago in the first place was that if thoughts (i.e., 
information) can be broken up into simple quantifiable constructs 
and algorithmic steps, then machines can add, subtract, or 
rearrange them as our brains do (Turing, 1936). The human 
brain employs a distributed network of neurons to rearrange 
information (Hebb, 1949). As such, information is stored into 
the memory via a specific pattern of neurons placed on a 
pathway and fired together. Arrival of new information lights 
up all related cues, neurons, and pathways in a distributive 
process that is similar to the top-down action in Figure  1, 
whereby a new concept is broken up into related pieces. The 
converse, retrieving information, involves reassembly of the 
original pattern of neurons and pathways in an associative 
process similar to the bottom-up action in Figure  1. Retrieval, 
in other words, is not an act of merely recalling facts and 
figures. It is a process of reassembly involving different pathways 
that are linked to one’s knowledge. What is retrieved is not 
a carbon copy of the original but a re-imagined copy of the 
original with some holes and/or extra bits. Neuroscientists see 
little or no distinction between the acts of information storage/
retrieval and the act of (computational) thinking (Montague, 
2006; Brown et  al., 2014).

Our brain’s inclination to process information in an associative 
and distributive fashion, as well as to store and retrieve memories 
and concepts in a scatter and gather fashion by a distributed 
neural network, appears to be a manifestation of a basic duality 
engrained in the fabric of matter and information. Quantifiable 
things appear to behave in one of only two ways (as in 
Figure 1): they either unite associatively to form bigger constructs 
or break down distributively to smaller ones. Such a duality 
at the core of information processing by a computational mind 
carries itself up to higher-level cognitive processes, such as 
deductive reasoning in the form of distributive processing of 
information and inductive reasoning in the form of associative 
processing of information (Dunbar and Klahr, 2012; Yaşar, 
2017, 2018).

We are all naturally inclined to employ inductive thinking 
and deductive thinking in everyday life. They are the two 
major cognitive competencies at the root of the CT skillset 
(Wing, 2006; Yaşar et  al., 2016; Yaşar, 2018; Denning and 
Tedre, 2019; Mills et  al., 2021), which are often cited as 
abstraction and decomposition skills. We  all employ 
computational thinking by the virtue of having a computational 
mind. However, when used together in certain ways, the 
combination of inductive and deductive thinking becomes 
a much more powerful skill, as first described by Kant (1787) 
more than two centuries ago. For example, through iterative 
and cyclical use of inductive and deductive thinking, as 
depicted simplistically in Figure 1, does the conceptual change 
occur in our learning progression, all the way from childhood 
to the adulthood (Carey, 1985). Conceptual change is also 
at the heart of the scientific thinking (Vosniadou, 2013) 
both at the level of an individual scientist, or those who 
think like scientists, as well as that of the scientific progress 
by the scientific community (Kuhn, 1962; Thagard, 1999). 
Not surprisingly, imaging techniques have revealed that 
scientific thinking is not just thinking about the content (of 
sciences); it encompasses a set of cognitive processes, such 
as conceptual change, that transcend the field of science 
(Dunbar and Klahr, 2012). These processes include (a) problem 
solving, (b) design and modelling, (c) hypothesis testing, 
(d) concept formation, (e) conceptual change, and (f) reasoning 

FIGURE 1 | Distributive and associative ways of information storage and 
retrieval. Figure © 2017 IEEE. Reprinted, with permission, from (Yaşar, 2017).
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(inductive, deductive, abductive, causal, and analogical 
thinking). According to Thagard (2012), these ST processes 
are no different from those employed in everyday living by 
non-scientists—the difference comes from how they are used. 
In a sense, what distinguishes ST from everyday thinking 
(i.e., computational thinking) is that while CT involves any 
use of inductive and deductive thinking, ST involves iterative 
and cyclical use of these two opposite reasoning skills to 
accomplish conceptual change and other ST skills listed above 
(Yaşar, 2021).

A great deal of efforts has gone into analyzing CT as a 
result of recent technological advancements which have affected 
our professional and personal lives. These efforts include 
definition of CT (Papert, 1980; Wing, 2006; Guzdial, 2008; 
Denning, 2009; Aho, 2012), its cognitive essence (Yaşar, 2017, 
2018) and manifestations in different fields and ways to teach 
it at different levels of education (Denning, 2017a,b; Yadav 
et  al., 2017; Denning and Tedre, 2019; Tedre and Denning, 
2021). For a literature review, see Grover and Pea (2013); 
Angeli and Giannakos (2019); Denning and Tedre (2019); 
Kakavas and Ugolini (2019) and Saqr et  al. (2021). In the 
1990s, the focus was on literacy and fluency issues with a 
push to teach programming. The arrival of easy-to-use M&S 
tools, which hid the underlying mathematics and programming, 
allowed a new way of studying scientific phenomena and 
teaching CS principles in the 2000s. The present decade has 
seen even easier tools, such as mobile apps, to support children’s 
computational thinking and literacy skills (Papadakis, 2021).

Today, there are plenty of tools available for teaching various 
CT skills. However, the discourse on what it means to different 
stakeholders continues to this date. Some have suggested to 
categorize it as “CT for beginners” and “CT for professionals.” 
The same argument applies to teaching of ST skills. There is 
a need for innovative practices to provide continuity in CT 
and ST education all the way from elementary to post-secondary. 
We posit that an information processing approach to cognition, 
as briefly explained above, allows us to teach core CT/ST 
cognitive competencies with appropriate grade-level challenges 
and skills. If indeed the acts of information storage and retrieval 
strongly correlate to the act of computational and scientific 
thinking, then all we  need to do is to strengthen those 
information processes. Whatever practices we  come up with 
to strengthen them, one way to measuring their effectiveness 
could be  through the act of information retrieval itself. We are 
lucky in that sense because long before such correlation was 
made, researchers in cognitive psychology had been studying 
the impact of memory retrieval practices on knowledge retention 
and other cognitive functions as explained in the next section. 
This article establishes ground that retrieval practices can 
be  used as a way of strengthening CT and ST skills. We  hope 
that the findings from our professional development program 
and related action research by participating teachers will shed 
a light on the discourse about CT and ST education. While 
the practitioners would benefit from reproducing similar results 
from a tested and scalable strategy, the researchers could expand 
their efficacy studies, via retrieval practices, to the teaching 
of more basic CT and scientific thinking (ST) concepts at a 

variety of grades. An approach such as the retrieval practice, 
which causes learning to stick and promotes core CT and ST 
skills, could have a broad impact in STEM education.

MATERIALS AND METHODS

Teacher Professional Development
A grim situation occurring in most urban and rural school 
districts’ math and science achievement scores (National Center 
for Education Statistics, 1996; Qazi et  al., 2020) has drawn 
concerns from local and state groups as well as the higher 
education institutions in our area. Educators point to poverty 
rates, lack of resources, and poor parental involvement as its 
root causes. Remedies suggested by State agencies include 
recruitment and training of effective leaders and teachers, ongoing 
professional development for teachers, maintaining standards, 
offering a rigorous curriculum for all, improving instruction 
via new technologies and pedagogies, and involving community; 
some of which have been adopted in our work, including the 
premise that, more than anything else, improving the teacher 
quality profiles would help improve STEM and CT education.

To support use of retrieval practices in secondary schools 
as an intervention, we offered and iteratively improved a 3-tier 
(beginner/intermediate/advanced) professional development (PD) 
to STEM teachers from partnering school districts in the area. 
The decision to offer a multi-tier program mainly came from: 
(a) our experience of previous PD effort (Yaşar et  al., 2014) 
(b) recommendations by the ESC initiative at Los Angeles 
(Margolis et al., 2008; Goode and Margolis, 2011) (c) questions 
we  got from districts to assure them continuing support and 
training, and (d) reports published by the Urban Institute 
(Beatriz, 2005) and others such as L-Horsley et  al. (2010). 
The PD was based on the Iowa Chautauqua Learning Model 
(Blunck and Yager, 1996), with a summer institute and a series 
of academic-year training and debriefing workshops and 
mentoring activities. Attendance was voluntary, but project 
funds and school principals encouraged teachers to complete 
all 3 levels of training. Throughout the separate components 
of the PD, we  used an expert-teacher-student cognition cycle 
and well-known principles of effective PD (Guskey, 2000; 
D-Hammond and Bransford, 2005; L-Horsley et  al., 2010), 
including: (1) examining student work, (2) demonstration 
lessons, (3) lesson plans study, and (4) case discussions.

The beginner-level training trained participants on practicing 
tools (e.g., Google Forms and Microsoft Forms) and spaced-out 
retrieval strategies (see the next section for details of various 
retrieval practices mentioned here). Given the situation during 
the COVID-19 pandemic, we  included online training as an 
option to increase the number of participants. The intermediate 
level training focused on (a) distributed retrieval practice, (b) 
use of the rate of change to model and simulate problems of 
interest (e.g., growth of disease and motion) with Excel, and 
(c) basics of conducting Action Research to improve classroom 
instruction (Ferrance, 2000). The advanced-level training included 
generative retrieval practices with simulations (SIMs) as well as 
basic programming skills (Scratch and Python). At the completion 
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of the 3-year training, teacher participants were expected to 
learn and deploy various retrieval strategies, understand cognitive 
underpinnings of memory retrieval, CT, and ST, and conduct 
modeling and simulation of scientific phenomena using alternative 
tools (hands-on, Excel, web-based SIMs, Scratch, and Python). 
Summer teachers formed the backbone of the project, and their 
PD activity continued throughout the academic year in various 
forms to promote their skills to engage other teachers and help 
test and revise the resources for their colleagues and students. 
During the summer, returning teachers were asked to share 
evidence in the form of artifacts and presentations about a full 
year they left behind. Identifying parts of curriculum that are 
hard to teach where retrieval strategies might help was made 
a priority. We  met the teachers where they were so they might 
build from their zone of proximal development (Vygotsky, 1978). 
Practice and peer sharing and critique throughout the school 
year were an integral part of this project. A sense of community 
and trust was nurtured via meetings, school visits, and online 
communications. We used a quasi-experimental research design 
with purposeful sampling and a sequential mixed-methods 
approach focusing on the impact of professional development 
on teacher outcomes and, in turn, on student outcomes. Details 
of the teacher PD program can be  found in Yaşar et  al. (2021).

Retrieval Practices
Retrieval practices are grounded in research which suggests 
that new concepts are retained in memory far longer if the 
retrieval process is effortful, spaced-out, interleaved, and 
generative in nature (Brown et al., 2014). The empirical evidence 
further shows that (low-stakes) practice tests can serve as 
learning tools (Karpicke et  al., 2014; Agarwal et  al., 2020) to 
help students retrieve newly taught concepts in effortful ways 
that will, in essence, burn new knowledge into memory through 
connected understandings rather than rote memorization. A 
cognitive and constructive effort to recall recently learned 
concepts through connections to what had been previously 
stored in long-term memory has a much greater chance of 
being retained longer. If memory has lapsed, each time students 
engage in purposeful recall, it reassembles concepts through 
different pathways or links to one’s knowledge. One of the 
ways to accomplish these learning pathways is spaced-out 
retrieval (SR) practice through quizzes, self-testing, or flashcards. 
Spacing allows some forgetting that will trigger a cognitive 
effort for retrieval while repeated retrieval leads to more durable 
memories. Another one is interleaving retrieval (IR) practice 
that help link newly learned concepts to different contexts, 
changing conditions and parameters, and even multiple subjects. 
Often times, spaced-out and interleaving are used together 
and called distributed retrieval practice. A third one is generative 
retrieval (GR) practice; the act of trying to answer a question 
or attempting to solve a problem rather than being presented 
with an answer or the solution. The generative retrieval refers 
to both experiential and exploratory learning via trial-and-
error. It is generally known to lead to complex mastery and 
greater knowledge of the interrelationships among parts of the 
problem and its solution. A learner may be  able to arrive at 
the understanding of a phenomena on their own (Grabowski, 

2004). One can practice generation by predicting an outcome 
or a concept before it happens while simply testing out their 
prediction and observing and noting the results—much like 
modeling and simulation (Yaşar and Maliekal, 2014).

These retrieval practices are all consistent with active learning 
and scaffolding strategies by which students are challenged in 
incremental steps as they build more skills (Mooney, 2013). 
The distributed retrieval (DR) practice has been tested in social 
sciences (Brown et  al., 2014; Agarwal and Bain, 2019), math 
(Rohrer et  al., 2014), natural sciences (Yaşar et  al., 2019a,b, 
2021; Samani and Pan, 2021), and computer sciences (Casanova 
et al., 2020) against the usual blocked practice whereby students 
learn to apply a certain method to solution of various questions 
of the same type on only one topic. An example of blocked 
practice would be to apply the Pythagorean Theorem to compute 
the hypotenuse of a right-angle triangle, a2  + b2  = c2. Students 
need not learn to choose a solution method because problems 
within a blocked practice require the same strategy. In a 
distributed retrieval practice, two or more types of questions 
(and topics) are mixed as in Table  1, and students are faced 
with choosing a strategy to solve a problem. Despite the growing 
evidence about the impact of retrieval practices, they are yet 
to become prevalent in schools. The blocked practice is still 
the norm for many reasons, including a belief that repeated 
practice alone of the same drill builds up skills. The distributed 
practice does require a re-arrangement of topics within practices 
and lectures, but what is missing perhaps is a theory or 
framework to link retrieval practices to other educational 
reforms, such as CT, that are underway. This paper reports 
findings of a 3-tier teacher professional development, along 
with an extensive Action Research effort to examine the impact 
of distributed and generative retrieval practices on teaching 
and learning in secondary school STEM classrooms.

Use of retrieval practices in the teaching of CT skills is 
very new. The only study that we  have found in the literature 
is the one by Casanova et  al. (2020) who examined if DR 
practices had durable effects on retention and learning of CT 
and programming concepts. A total of 10 elementary schools 
participated in a quasi-experimental study, consisting of 6 
weekly sessions on CT concepts, including an introduction 
to Makey Makey (week 1), inequality symbols (week 2), 
identification and understanding of programming concepts 
such as conditions in week 3, loops in week 4, and inputs/
outputs in week 5. A pre-questionnaire probed student familiarity 
and prior knowledge of Scratch, Makey Makey, and CT in 
general. Each session included hands-on practices with Scratch 
(Resnick et  al., 2009; Funke et  al., 2017) or Makey Makey 
(Silver et  al., 2012), as well as DR practices (week 1 through 
4) which involved quizzes made via Kahoot! with interleaved 
questions from current and preceding sessions. Students were 
given a review test at the end of the fifth session and an 
unannounced test a week later. The control condition and 
sample size were affected by COVID-19, and researchers used 
a t-test to compare scores of one group (n = 20) that consistently 
participated in all activities. While a week time may be  short 
to test durability of concepts, the average score was higher 
for the unannounced test than the review test (72.6 vs. 67.9). 
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The difference may not be  all that significant (p = 0.19) but 
maintaining one’s score after 1 week is even a success. Test 
scores often go down over time due to loss of knowledge 
unless there is an intervention. There may have been other 
confounding factors such as students’ continuing exposure to 
topics in other units or similar courses.

RESULTS

Teacher Professional Development
In a five-year timeframe (2016–2021), we trained 275 secondary 
school STEM teachers from 42 regional school districts (SDs), 
including 33% from urban, 30% from rural, and 36% from 
suburban SDs. 160 teachers returned for 2nd year advanced-
level training, and of those, 40 teachers returned for 3rd year 
expert-level training. Yearlong support was offered to help 
deploy these strategies and conduct action research (Ferrance, 
2000) in the classroom. Two independent evaluators were hired 
to design and conduct quantitative surveys and focus group 
interviews with teacher participants. One of these was Brockport 
Research Institute (BRI), which had previously conducted 
evaluations for over 60 National Science Foundation projects. 
BRI assigned two evaluation experts to design, collect, and 
analyze both teacher and student data. The other external 
evaluator was an education research faculty (Dr. John Tillotson) 
from a Teacher Education program at Syracuse University. 
While the BRI staff focused mainly on new participants who 
attended spaced-out and interleaved retrieval PD activities, Dr. 
Tillotson worked mainly with those returning to attend additional 
training on generative retrieval. Findings from both evaluation 
efforts took place simultaneously 3 years in a row and their 
overlap served as a triangulation of results and review of 
participant progress from distributed retrieval to generative 
retrieval. The teacher PD aspect of our program, along with 
its quantitative findings, has been described in an earlier 
publication (Yaşar et  al., 2021). Below, we  will only give a 
brief account.

In quantitative teacher surveys (see Table  2) conducted 
annually between 2017 and 2018, scores above 4.0 on a 5-point 
scale for nearly every survey item suggested that teachers found 
the program to be  both engaging and effective in raising their 
awareness of retrieval strategies and of the research base 
supporting their efficacies within STEM classrooms as indicated 
by mean. The respondents highly valued the opportunities to 
collaborate with other teachers in designing online retrieval 
practices and considering possible research designs for studies 
they planned to conduct during the upcoming school year. 
Ninety-six percent (96%) of the teacher respondents highly 

valued the opportunity to learn about distributed retrieval 
strategies and the research base supporting the effectiveness 
of this pedagogical approach in K-12 classrooms. A majority 
of the teacher participants (96%) also indicated that the time 
devoted to accomplishing each of the primary workshop objectives 
was appropriate and that the workshops were effective in helping 
them develop a clear understanding of their roles and 
responsibilities pertaining to the classroom-based research 
component of the initiative (93%).

In another subsequent quantitative teacher survey conducted 
after the 2019 summer workshop on the generative retrieval 
strategy and related deployment, the data shown in Table  2 
suggest that the workshop gave them a good understanding 
of the generative retrieval practice, enhanced their skills to 
use SIMs and mobile apps, increased their confidence and 
ability to design action research, provided a chance to interact 
with colleagues, and helped them design an experiment to 
measure the impact of SIM-based generative retrieval. All of 
participating teacher respondents (100%) found the workshops 
to be  valuable overall (strongly agreed or agreed). More 
specifically, they all indicated that the workshops were effective 
in providing them with the conceptual knowledge and practical 
skills necessary to effectively engage students in SIM-based 
generative retrieval during the 2019–2020 school year. Similarly, 
92% of the STEM teacher respondents highly valued the 
opportunity to learn about generative processes and the research 
base supporting the effectiveness of these pedagogical approaches 
in K-12 classrooms. All teacher participants indicated that the 
workshop prepared them with knowledge and skills to successfully 
design, implement, and even conduct classroom-based action 
research project to assess the impact of intervention on students’ 
learning outcomes. The surveys’ construct and face validities 
had been confirmed by their designers and the experts they hired.

The surveys were followed up by an enriched qualitative case 
study (focus group interviews) to explore the meaning of trends/
findings in the quantitative part of the study. Two independent 
experts coded the responses and used an inductive process (Creswell, 
2012) to form broader themes. For example, one of the broad 
themes was that the workshops afforded teachers deeper insight 
into the practical aspects of the classroom implementation of 
retrieval strategies and the positive effects research has shown 
these techniques to have on student learning outcomes. Another 
theme was that workshops provided ample time for the participants 
to delve deeply into their work in creating the required SIM-based 
learning exercises that would be  implemented in the following 
school year. Evaluators used several forms of validation, including 
triangulation via data from multiple sources and member checking 
by asking project teachers and faculty to review the findings 
(Fincher and Petre, 2005). Further details of qualitative findings 

TABLE 1 | An experimental set up to compare blocked vs. distributed practices.

Group Assign #1 Assign #2 Time Delay

3

days

Unit Review

&

Test

Time Delay

15–30

days

Unannounced

TestBlocked

5 days
Topic X Topic Y
Topic X Topic Y

Distributed

5 days

Topic Y Topic X
Topic X Topic Y
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are being published separately due to their nature and volume. 
The main focus of our article here is on classroom action research 
by teachers, which will be given in the following two subsections.

Distributed Retrieval Practice
A large cadre (n = 82) of trained teachers participated in the 
Action Research to explore the impact of distributed retrieval 
(DR) practices (the combination of spaced-out and interleaving) 
in teaching and learning of various topics in geometry (e.g., 
quadrilaterals and altitudes in right-angled triangles), biology 
(photosynthesis, respiration, and Punnett squares), chemistry (Le 
Chatelier’s Principle, Potential Energy Diagrams, heat, and half-
life decay), and earth sciences (erosion and planetary motion). 
Of these, 68 teachers conducted research 3 years in a row using 
different classes and student populations while improving their 
methods of selecting topics and students more randomly and 
increasing the delay time between pre- and post-assessments. 
Google (and Microsoft) Forms provided a framework by which 
students could use a mobile program to record their thinking 
while the assessment data could be  collected by the teacher 
and ultimately shared with students for immediate feedback. 
The science teachers used a question bank (e.g., CastleLearning™) 
to draw questions from. Students were placed randomly into 
control and target groups of equal sizes ranging from 12 to 32 
depending on each study. About half the cases followed a research 
design whereby one group (A) followed the blocked (BL) strategy 
while the other group (B) used a DR strategy for practices and 
assignments. Other cases followed a design whereby each group 
(A and B) was taught using both strategies (blocked and distributed) 
alternately, though care was taken to make sure that group 
placement was not visible to students—that is, all students 
participated in simultaneous classroom instruction. Instruction 

for each topic lasted for the same number of school days with 
both strategies. An in-class review of both topics was conducted 
a short while after completion of instruction. The review was 
concluded with a test which in some cases served as a baseline. 
Finally, an unannounced test was conducted later to measure 
student retention of the content knowledge 15–30 days after the 
review. In most cases, teachers conducted pre- and post-activity 
assessments with multiple-choice questions on all control and 
target groups to identify and reduce the number of confounding 
variables and triangulate the results as much as possible.

In 82 independently run control-target experiments, like 
the one in Table  1, students who learned STEM and CS 
concepts through DR practices scored better than those using 
blocked (BL) practice in 80 cases (95% of the time). The 
average of pre- and post-scores for DR groups was 70.7 (pre) 
and 71.1 (post), meaning that knowledge was retained, whereas 
the average scores were 70 (pre) and 65 (post) for BL groups, 
meaning information was lost (p < 0.007), during the blocked 
practice. The difference between DR & BL post-assessment 
averages (71.1 vs. 65) was also significant (p < 0.015). Standard 
deviation in group average scores was 15 (pre) and 16 (post) 
for BL and 15 (pre) and 12 (post) for the DR groups, implying 
more consistency in post-assessment scores by the DR groups. 
A few representative studies are shown below to illustrate more 
details. T-test statistics was used to examine the significance 
of differences both between and within groups.

 • 10th Grade Chemistry (Topics: Half-life, Heat formula): 
While Group A (n = 20, blocked) and Group B (n = 18, 
distributed retrieval) scored about the same (Group A at 63.5 
vs. Group B at 61.4) at the review (pre) test for half-life, their 
performance on an unannounced test given 30 days later 
differed significantly (p = 0.014) with Group A’s average being 

TABLE 2 | Likert-scaled questions and answers from summer workshops.

The following questions apply to spaced-out (SR), interleaved (IR), and generative (GR) retrieval 
strategies/practices as indicated by enclosed within brackets.

Score (out of 5)

2017

SR

n = 10

2018

IR

n = 26

2019

GR

n = 18

1. The summer workshop dates and times fit well with my schedule and commitments. 4.8 4.72 4.94
2. The goals and expectations were clearly articulated by the project leadership team. 4.9 4.16 4.94
3. The time devoted to accomplishing each of the primary objectives was appropriate. 4.9 4.36 4.88
4.  After the workshop I now have a deeper conceptual understanding of the research and literature supporting 

the use of [SR/IR/GR] retrieval practices in the classroom.
4.9 4.56 4.82

5.  The workshop enhanced my skills in using digital devices, relevant tools [SIMs], and mobile Apps to assess 
students’ understanding of important concepts.

3.7 3.96 4.82

6.  The workshop increased my confidence and ability to design classroom-based research to investigate the 
effectiveness of [SR/IR/GR] retrieval practices

4.5 4.24 4.60

7.  The workshop provided me a chance to interact with colleagues to discuss the use of SIMs and digital 
mobile App development ideas and potential research projects

4.6 4.08 4.92

8.  The project overview, leadership, and framework discussion for the research needs was effective in helping 
me understand my role and responsibilities as a participant

4.4 4.24 4.60

9.  The workshop was effective in helping me design Action Research cycles to test the impact of SIM-based 
generative retrieval on my students’ learning outcomes.

NA NA 4.88

10.  Overall, the workshop was effective in preparing me with the knowledge and skills necessary to 
successfully participate in the project during the upcoming school year.

4.7 4.32 4.88
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40 vs. Group B’s 63.3. On the topic of heat, while Group A 
scored significantly (p = 0.027) higher than Group B (81.1 vs. 
68.8) at the review test, its performance (32.6) on an 
unannounced test given 30 days later fell substantially below 
Group B’s (42.4). The drops in performance by both groups 
were statistically significant (p < 0.0006), yet the drop by the 
group with the blocked practice was twice as high as the drop 
by the group with the distributed retrieval practice.

 • 9th Grade Chemistry (Topics: Photosynthesis, Respiration): 
Two groups (n = 22 each) experimented with alternating 
practices on different topics. While Group A used the blocked 
practice to learn about photosynthesis, Group B used the 
distributed retrieval practice. Similarly, while Group B used 
the blocked practice to learn about respiration, Group A used 
the distributed retrieval practice. Groups were compared to 
themselves (pre-test vs. post-test) to see their self-improvement 
and to their counterparts (post-tests) which learned the same 
topic via different practices. As shown in Table  3, while 
groups that used the blocked practice scored higher on 
pre-tests, they scored lower than the groups with the 
distributed practice. While pre- and post-test differences 
between groups are not statistically significant, the 
improvements by the distributed groups from pre-test to post-
test are significant and large enough to exceed their counterpart.

 • 9th Grade Technology Education (Topics: Design, Drawing, 
and Production). Group A (n = 17, blocked practice) and 
Group B (n = 17, distributed retrieval practice) scored 65.6 
and 72.5 on the pre-delay test. 30 days later, the score for the 
group with distributed retrieval remained about the same 
(76.25) while the score for the group with blocked practice 
went down significantly (p = 0.04) to 56.87.

 • 7th Grade Science (Unit: Motion, Topic: Acceleration). Group 
A (n = 21) and Group B (n = 20) were taught acceleration by 
the same teacher. 15 days later, both groups received a unit 
review, followed by a test to set a baseline for the recall later. 
As shown in Table 4, both groups scored the same right after 
the unit review. In an unannounced test 15 days later, however, 
the average score for the group (A) with blocked practice 
decreased significantly (p < 0.01) by 22.8%, whereas the 
average score for the group with distributed retrieval (B) 
decreased by only 5.5%, indicating that retrieval practices 
helped students retain knowledge better than the 
blocked practice.

 • 7th Grade Biology (Topic: Punnett squares): The average 
score of 4 daily assignments conducted in the same week 
by Group A (blocked, n = 27) and Group B (distributed 
retrieval, n = 29) were about the same (46.79 vs. 47.34 out 
of 100). As shown in Table  5, the average scores on the 
review test were 55.88 (Group A) and 52.45 (Group B). 
When an unannounced quiz was given to both groups 
15 days after the review test, Group B not only retained its 
knowledge of the topic but outscored Group A while 
improving its average significantly by 8 points (p < 0.01) to 
60.21. Group A scored slightly better with 2-points 
compared to its review test. A similar trend was seen in the 
analysis of each student’s progress for both groups: 19 
students in the distributed retrieval group increased their 
score while 8 decreased versus 14 increasing and 10 
decreasing in the blocked group.

 • 7th Grade (Topics: Erosion, Planetary Motion): As shown in 
the Table  6, Group A (distributed, n = 30) outperformed 
Group B (blocked, n = 31) by 9% on a post-test on weathering 
and erosion; a difference that is statistically significant. In 
another experiment on planetary motion and the effect of 
mass on the gravity of an object, Group B (distributed, n = 21) 
outperformed Group A (blocked, n = 29) by 38%; a difference 
that is also statistically significant. In the same experiment, 
the distributed group outperformed the blocked group by 
30% on levels of organization (progression of levels by cell(s) 
to reach an organism).

Generative Retrieval Practice
With a vast array of simulations (SIMs) available (in-house 
and on the internet) as surrogates for real phenomena, student 
comprehension of a STEM topic or phenomena was compared 
using generative retrieval practices with SIMs against regular 
practice with text and illustrations. Neither group had been 
previously introduced to topic-related concepts whose 
understanding was the purpose of this phenomena-first 
experiment. Secondary school teachers (n = 40) in this study 
selected up to 6 topics to compare learning in control-target 
groups using 3-level Socratic level questions (based on Bloom’s 
Taxonomy), testing for growing complexity, interrelationships, 
and greater content knowledge (see Table  7). Level 4 and 
higher were optional. While students were not randomly 
selected (they came from each teachers’ classes), the groups 

TABLE 3 | Comparing 9th grade chemistry classes using blocked practice vs distributed retrieval practice.

Group A

n = 22

Group B

n = 22

Is the difference statistically 
significant?

Topic: Photosynthesis BLOCKED DISTRIBUTED

Pre-test 53.66 45.86 No (p = 0.19)
Post-test 57.47 62.04 No (p = 0.55)
Is the difference significant? No (p = 0.59) Yes (p = 0.001)
Topic: Respiration DISTRIBUTED BLOCKED
Review test 15.59 20.27 No (p = 0.14)
Post-review test 57.72 50.90 No (p = 0.33)
Is the difference significant? Yes (p < 0.01) Yes (p < 0.01)

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
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TABE 5 | Comparing 7th grade biology classes using blocked practice vs distributed retrieval practice.

Topic: Punnett Squares Group A (n = 27)  
BLOCKED

Group B (n = 29)  
DISTRIBUTED

Is the difference statistically 
significant?

Review test 55.88 52.45 No (p = 0.52)
Post-test 57.67 60.21 No (p = 0.71)
Is the difference significant? No, p = 0.50 Yes, p = 0.01

were reversed for half of the topics, so each group had access 
to equal number simulations and illustrative texts. This 
eliminated the concern that one group was simply academically 
superior to the other group. T-test statistics was used to 
compare group scores.

In order to generalize the findings, we combined data across 
multiple subjects, specific topics, teachers, school districts, etc. 
to remove confounding variables. Of the ~14,000 questions 
answered by control and target group students, students in 
the generative SIMs practice consistently answered more questions 
correctly. The comparison test was run at all question levels 
at a significance level of 0.05. As expected, performance decreased 
in both groups as the level of the question increased, but the 
drop-off was more pronounced in the illustrative text group 
(18% worse on level 3 vs. level 1) than in the generative 

retrieval group with SIMs (7% worse on level 3 vs. level 1). 
Target group students answered level-1 questions 2% more 
correctly and the difference rose to 5% more correctly for 
level-2 and 8% more correctly for level-3 questions. In all 
levels, the value of p was less than 4×10−4. The standard 
deviation was also smaller for the generative group, implying 
more consistency in its results. Students in the generative 
retrieval group not only performed better but also SIMs-based 
generative retrieval was superior as a delivery method to increase 
comprehension of STEM and CT concepts as well as critical 
thinking. A few representative studies are shown below to 
illustrate more details.

 • 10th Grade Special Education/Algebra: (Topics: Graphing 
Quadratics, Vertex Form of Quadratic Equations, Point Slope, 
Slope Intercept, Solving Linear Equations with One Variable, 
Quadratic Solutions, n = 81). Research Design: Random 
division of the class populations from two Intro to Algebra 
courses and three Algebra/Common Core courses with both 
General Education and Special Education students. In both 
control and target groups, there were 81 students; of which 
43 students were special education students. As shown in 
Table 8, the groups with SIM generative retrieval practice 
overwhelmingly outperformed the groups with text 
illustrations. According to the teacher report, the SIMs 
allowed students to use visual examples and check scenarios 
to come up with correct answers more quickly than other 
students who used text and illustrations. In particular, this 
kind of visual and interactive aspects of practice helped special 
education students more significantly because they had 
reading levels below their grade level.

TABLE 4 | Comparing 7th grade science classes using blocked practice vs distributed retrieval practice.

Topic: Motion Group A, n = 21

BLOCKED

Group B, n = 20

DISTRIBUTED

Is the difference statistically 
significant?

Pre-test 70 72 No (p > 0.05)
Post-test 54 68 Yes (p < 0.01)
Is the difference significant? Yes, p < 0.01 No, p > 0.05

TABLE 6 | Comparing 7th grade earth sciences classes using blocked practice vs distributed retrieval practice.

Topic ↓ Post-test (Group A) Post-test (Group B) Is the difference significant?

Erosion DISTRIBUTED (n = 30)

81.66

BLOCKED (n = 31)

75.16

yes; p = 0.013

Planetary motion BLOCKED (n = 29)

51.13

DISTRIBUTED (n = 21)

70.5

yes; p = 0.008

TABLE 7 | A template for socratic questions in generative retrieval practices.

Overall 
Goal

Construct a minimum of 12 questions per simulation (SIM), including 
illustrated text.

NOTE: Levels 4 and up are optional.

Level 1 Explore students’ first thoughts and observations; clarify student’s 
thinking

Level 2 Challenge student thinking; have students manipulate the SIM to 
challenge such thinking

Level 3 Point out the evidence; ask for evidence that backs up student claims
Level 4 Point out counter thinking; ask students for conflicting issues, if any
Level 5 Explore student expertise of the concept/phenomena; ask “if/then what 

happens” questions
Level 6 Question the intent of questions asked; Explore the main idea of the 

simulation
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 • 9th Grade Biology (Topics: Circulation, Homeostasis, 
Enzymes, Photosynthesis, Diffusion, Natural Selection, and 
Gene Expression, n = 15). Since students were not allowed 
to use the internet without supervision and since they have 
limited access to computers, the teacher decided to display 
the simulations on the Smart Board and allowed students 
to do the practice as a group exercise. According to the 
teacher report, students showed a fear of failure with the 
first couple of SIMs even when they were told that this 
would not affect their grade. Compared to the text-based 
exercise, they answered more questions correctly. While 
this was not readily apparent for level 1 questions, it became 
more noticeable for the level 2 and 3 questions. The group 
aggregate over the use of multiple SIMs is also given in 
Table 9.

 • 8th Grade Biology (Topics: Circulation, Homeostasis, 
Enzymes, Photosynthesis, and Diffusion, n = 30). Research 
Design: Group A had SIMs for topics 1–3 and Text with 
Illustrations for topics 4–5 while Group B had Text with 
Illustrations for topics 1–3 and SIMs for topics 4–5. Each 
group had topic-related level-based questions, which generally 
included 6 to 8 level-1 questions, 2 to 3 level-2 questions, and 
1 to 3 level-3 questions. As shown in Table 10, the groups 
with SIMs scored higher at all levels except for topic 2 
(homeostasis). However, as questions got more difficult and 
complicated, even for homeostasis (#2), the group with SIMs 
scored higher.

 • 8–11th Grades General Science and Physics: (Topics: Forces 
on a Ramp, States of Matter, Ideal Gas Law, Pendulums, 
Projectile Motion, and Hooke’s Law, n = 68). Research Design: 
A heterogeneous population of 68 students, ranging in age 
from 12 to 18 in different classes (8th grade General Science 
and 11th grade Regent Physics). Students were randomly 
divided in half for each of the 6 modules. While one group 
practiced via phenomena first (SIMs), the other practiced via 

traditional (Text) instruction using text and illustrations. As 
shown in Table 11, groups with SIMs generally outperformed 
the other groups with text and illustrations. However, the 
difference is significant for only half of the topics.

 • 6th Grade Introductory Computer Programming (Topics: 
Flashing Heart, Name Tag, Coin Flip, Smiley Face, Random 
Dice, Rock Paper Scissor, n = 30). Research design included 
having two different classes each doing 3 SIMs and 3 Text 
with Illustrations. As shown in Table 12, groups with SIMs 
consistently and significantly outscored others. The teacher 
used Microsoft MakeCode (a free open-source platform) 
for creating engaging CS learning experiences that support 
a progression path into real-world programming. 
He  followed Project Lead the Way’s Computer Science 
curriculum and repeated the experiment twice (Fall and 
Spring) with two different samples. He noted that students 
appeared to have put more effort into completing the SIMs 
during Spring 2020 COVID lockdown and focused more 
on the questions rather than relying on help from 
the teacher.

DISCUSSION

To support new pedagogical experiences, we offered professional 
development opportunities on memory retrieval strategies to 
secondary school teachers from an urban city surrounded by 
many suburban and rural school districts. Both quantitative 
and qualitative data from participating teachers pointed to the 
effectiveness of the spaced-out, interleaved, and generative 
retrieval strategies in the classroom. The multi-year quantitative 
and qualitative data consistently suggested that all of the 
participating teachers found the workshops to be  valuable 
overall, specifically in providing them with the conceptual 
knowledge and practical skills necessary to effectively engage 

TABLE 8 | Comparing 10th grade math classes using SIM-based generative practices vs text-based illustration practices.

(a)

Topics ➔ Point slope Slope intercept

Students ➔ All students General edu. Special edu. All students General edu. Special edu.

Practice ➔ SIM Text SIM Text SIM Text SIM Text SIM Text SIM Text

Level1 56 25 80 41 32 10 72 55 83 80 61 31
Level2 30 17 41 27 19 8 34 21 60 31 8 11
Level3 38 8 39 11 38 5 33 20 38 29 28 11
Total 46 20 62 32 30 8 53 37 66 54 40 21
(b) Graphing quadratics Vertex form of quadratic functions

Level1 64 32 70 48 58 16 58 35 74 54 42 17
Level2 27 22 40 35 15 10 51 32 67 50 36 16
Level3 28 10 41 17 15 3 32 18 49 27 15 10
Total 51 28 60 42 42 14 54 33 70 50 38 16

(c) Solving linear equations Quadratic solutions

Level1 76 62 88 74 65 49 42 25 47 31 37 18
Level2 31 22 41 30 21 14 28 16 38 21 17 11
Level3 21 10 26 18 16 2 19 5 29 6 9 4
Total 36 25 44 34 28 16 32 17 40 22 25 13
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in implementation efforts during the school year. Similarly, 
they highly valued the opportunity to learn about generative 
processes and the research base supporting the effectiveness 
of these pedagogical approaches in K-12 classrooms.

An overall analysis of student data from classroom action 
research studies shows that those who learned a topic via 

the distributed retrieval strategy scored considerably better 
than those who learned in the traditional (blocked) way. In 
many cases reported, the differences were statistically significant 
in favor of the distributed retrieval practice. While students 
in the DR practice group retained knowledge of the topics, 
students in the BL practice group lost on the average 8% of 

TABLE 9 | Comparing 9th grade biology classes using SIM-based generative practices vs text-based illustration practices.

Topics ➔ Circulation Homeostasis Enzymes Photosynthesis Diffusion Total

Method ➔ SIM Text SIM Text SIM Text SIM Text SIM Text SIM Text

Level1 100 66 100 83 100 0.0 100 100 80 80 96 64
Level2 80 50 50 50 100 0 75 100 66 0 76 58
Level3 100 50 50 0.0 66 100 100 66 75 75 80 60
Total 93 60 80 60 90 20 91 90 73 70 85 61

TABLE 10 | Comparing 8th grade biology classes using SIM-based generative practices vs text-based illustration practices.

Topics ➔ Circulation Homeostasis Enzymes Photosynthesis Diffusion Total

SIM Text SIM Text SIM Text SIM Text SIM Text SIM Text

Level1 86 75 72 89 89 89 78 64 87 68 85 79
Level2 45 37 94 95 79 80 83 70 91 71 75 70
Level3 21 11 59 56 51 26 82 61 63 14 54 42
Total 72 62 76 85 84 82 80 65 85 51 78 72

TABLE 11 | Comparing grades 8–11 general science and physics classes using SIM-based generative practices vs text-based illustration practices.

Topics ➔ Forces on a ramp States of matter Ideal gas law Pendulums Projectile motion Hooke’s law Weighted average

Method SIM Text SIM Text SIM Text SIM Text SIM Text SIM Text SIM Text

Size 7 9 16 15 16 18 15 15 18 16 15 17

Level1 96 83 74 51 72 73 67 67 94 86 75 61 78.50 69.37
Level2 86 67 62 53 81 71 36 55 64 61 62 51 63.35 59.37
Level3 79 44 75 60 80 79 47 32 56 61 56 24 64.20 50.91
Total 89 69 71 53 77 74 53 56 76 72 65 43 70.44 60.78

TABLE 12 | Comparing 6th grade introductory computer programming classes using SIM-based generative practices vs text-based illustration practices.

Topics ➔ Flashing heart Name tag Coin flop Smiley face Random dice Rock paper 
scissor

Weighted 
average

Fall SIM Text SIM Text SIM Text SIM Text SIM Text SIM Text SIM Text

Level1 100 75 100 100 100 100 100 66 100 100 100 66 100 82.3
Level2 66 33 100 75 50 25 66 33 75 25 60 20 69.5 34.7
Level3 66 66 100 66 75 50 75 25 75 50 50 50 75 50
Total 80 60 100 80 70 50 80 40 80 50 70 40 80 53.3
Spring
Level 1 100 50 100 66 100 50 100 66 100 50 100 66 100 58
Level 2 66 33 75 25 75 25 100 66 75 50 80 40 78 39
Level 3 100 33 100 0 50 50 75 25 75 75 100 50 80 40
Total 90 40 90 30 70 40 90 50 80 60 90 50 85 45

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
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it after 2 weeks. For experiments with longer time delays 
(30 days), the knowledge loss reached up to 60% (for example, 
see the first bullet listed in the Distributed Retrieval Practice 
section above). A drop in performance after 30 days is normal 
for both groups because of natural information loss due to 
time, but in some cases the drop for the blocked practice 
group was twice as high as the drop by the treatment group.

A similar trend was seen with students who learned a 
concept via a phenomena-first approach through interactive 
and generative retrieval using modeling and simulations (M&S) 
versus others who were first lectured about the topic through 
reading text and illustrations. This is consistent with the literature 
on the use of modeling and simulation in science education 
(Stinken-Rösner, 2020). Researchers have reported that M&S 
supports both inductive and deductive approaches to learning 
(Rutten et al., 2012; Smetana and Bell, 2012; Yaşar and Maliekal, 
2014). Teachers have historically used deductive pedagogies to 
instruct students (Bransford et  al., 2000). In this approach, 
information flows from general to details (top-down), or from 
simple to more complex, as seen in Figure  1. The teacher 
introduces a concept and then shows supporting facts, 
applications, and details to afford students an opportunity to 
apply it themselves. In an inductive pedagogical approach, the 
flow of information is from details to more general (bottom-up) 
and it is the student, not teacher, at the center of action. 
Through experimentation and problem solving, students are 
led to discover their own conclusions by sorting out details 
and connecting the dots to arrive at more general patterns 
and principles. Inquiry-based teaching is one such form. Since 
learning invariably involves movement in both directions (Haight 
et  al., 2007), a teaching that matches bi-directional learning 
could maximize the benefits (Prince and Felder, 2007).

Limitations of our study include some confounding variables 
such as suitability of content for distributed and generative 
practice, and each group’s prior experience and background were 
possibly in play in our research. We  suspect that the level of 
improvement in some cases depended on the nature of topics, 
grade level, as well as teacher experience and school environment. 
For example, mathematics and geometry seem to be  well suited 
for retrieval practices. The benefits to students with special needs 
(as seen in Table  8) seemed greater in all content areas tested 
by one of the best math teachers in the program. However, 
given the large number of cases, both the distributed and generative 
retrieval practice outshined the traditional blocked practice.

Our findings complement those in the literature about the 
impact of retrieval practices on retention (Brown et  al., 2014; 
Agarwal and Bain, 2019) as well as on comprehension of STEM 
(Rohrer et  al., 2014) and CT concepts (Casanova et  al., 2020). 
In almost all cases, students in the treatment groups not only 
seemed to retain their knowledge of the topics they were tested 
on, but they also improved their scores, an indication that retrieval 
helped them comprehend the topics better and make inductive 
and deductive associations with other topics taught within the 
same course. This is especially true for the groups with generative 
retrieval practices because students’ ability to comprehend a topic 
was put to test without their exposure to the material about 
such topic ahead of time. The effectiveness of SIM-based generative 

retrieval may be partly driven by inductive and deductive cognitive 
processes of modeling and simulation, but other researchers have 
also reported that retrieval practices support inductive and 
deductive learning even without the use of modeling and simulation 
tools. While we did not directly measure the impact of SIM-based 
generative retrieval on basic reasoning skills (i.e., inductive and 
deductive thinking), recent reviews by Birnbaum et  al. (2013); 
Brunmair and Richter (2019), and Firth et  al. (2021) cite that 
interleaving retrieval practices improve inductive learning—a 
mental process of acquiring conceptual knowledge from the 
synthesis of exemplars (Prince and Felder, 2007) that is often 
known as abstraction in both CT and ST literatures (Wing, 
2006; Dunbar and Klahr, 2012; Thagard, 2012; Yaşar et al., 2017; 
Denning and Tedre, 2019). Wissman et al. (2018) found spaced-out 
retrieval to improve deductive learning—a mental process of 
testing factual knowledge, a formula, concept, or theory to various 
scenarios (Prince and Felder, 2007) as described earlier in terms 
of distributive processing of information. Eglington and Kang 
(2018) also reported that retrieval practice improves deductive 
inference (p = 0.013, d = 0.41). Deductive thinking skills are often 
categorized as decomposition skills in the CT literature (Wing, 
2006; Barr and Stephenson, 2011; Denning and Tedre, 2019) 
and as analysis skills (the opposite of synthesis) in the ST literature 
(Dunbar and Klahr, 2012; Thagard, 2012). According to Eglington 
and Kang (2018)—Kang was a collaborator of the PI on and 
NSF project—for the spaced-out retrieval practice to benefit 
students’ deductive thinking, the material to draw appropriate 
inferences from may need to be  presented together.

There is strong evidence that the combination of spaced-out 
and interleaving retrieval (called distributed retrieval) practices 
promotes both inductive and deductive thinking skills—which, 
when used in an iterative and cyclical fashion, constitute a major 
thrust of ST (Dunbar and Klahr, 2012). Additionally, Samani 
and Pan (2021) examined their effects on factual knowledge 
and problem-solving skills. Over 8 weeks, students (n = 350) in 
two lecture sections of an introductory physics course practiced 
interleaving in thrice-weekly homework assignments. The control 
group practiced one topic at a time whereas the target group 
practiced alternating topics. The study consisted of two stages, 
similar to those we  reported, where in stage 1 class A used 
blocked practice and class B used interleaved practice, and in 
stage 2 class A used interleaved practice and class B used blocked 
practice. In each of the two stages, students completed 84 practice 
problems across 10 homework assignments. On two unannounced 
tests (one at the end of each stage) containing novel and more 
challenging problems than those in the homework assignments, 
the target group recalled more relevant information and more 
frequently produced correct solutions (with observed median 
improvements of 50% on test 1 and 125% on test 2). Effect 
sizes were reported in terms of Cohen’s d. Interleaving retrieval 
yielded higher test scores than blocked practice in Stage 1 (d = 0.40, 
p = 0.0008) and Stage 2 (d = 0.91, p < 0.0001). When spaced-out, 
even restudy or cramming (blocked practice) has its benefits in 
terms of helping students to apply (or transfer) the same formula 
or facts to the solutions of various problems or situations. Karpicke 
and Blunt (2011) and others (Butler, 2010; Rohrer et  al., 2010) 
showed that repeated retrieval practice of scientific concepts 
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could promote transfer to test questions which are related to, 
but different from, originally practiced materials.

IMPLICATIONS, CONCLUSION, AND 
RECOMMENDATIONS

The findings of classroom action research by a large number 
of teachers in our study support the use of retrieval practices 
for retention and comprehension of secondary school STEM 
and CT concepts. This is consistent with the literature on 
retrieval practices (Agarwal et  al., 2020). More importantly, 
our study complements findings of other recent studies such 
as Prince and Felder (2007), Birnbaum et  al. (2013), Eglington 
and Kang (2018); Brunmair and Richter (2019); Firth et  al. 
(2021), and Samani and Pan (2021) to point out that retrieval 
practices enhance core elements of computational and scientific 
thinking. While other researchers had reported a favorable 
impact of retrieval practices on inductive and deductive thinking, 
a more general realization that—taken together with our 
findings—retrieval practices enhance core CT and ST skills is 
the most important conclusion of our study. This is a timely 
discovery because of the ongoing search in the STEM community 
for innovative and fundamental practices and tools to support 
CT and ST education across different levels of education 
(Denning and Tedre, 2019; Papadakis, 2021). The authors posit 
that use of retrieval practices is perhaps one of the most direct 
ways of improving core CT skills because memory retrieval 
is nothing but the thinking itself by a computational brain. 
For those who are looking for best practices to improve CT 
and ST skills of young children, memory retrieval practices 
set a natural example.

There were several limitations of our study, which can 
be  improved in future studies. Even though a large number 
of action research studies (n = 122) by teachers consistently 
point to the benefit of retrieval practices, some confounding 
variables such as suitability of content for retrieval practices 
as well as prior experience and background by control and 
target groups were possibly in play in our research. Circumstances 
surrounding each experiment were obviously different because 
they were each run by different researchers. This may have 
also been good to eliminate bias. At the same time, we suspect 
that the level of improvement in some cases depended on the 

nature of topics, grade level, as well as teacher experience and 
school environment. The control variables can be isolated better 
in future studies. Also, the time delay between the unannounced 
test and the review test (the last time students are exposed 
to the topic) should be  long enough (at least 30 days) to allow 
more contrast, if any, to surface out between control and target 
groups. In some cases, it appears that performance of both 
groups was higher at the final test than the review test, which 
means the examined topics were continued to be  discussed 
either in similar classes that students attended or in the same 
class within the context of other topics. In studies where group 
exposure to the examined topic were better isolated, student 
retention appears to go down for both groups but more so 
for the group with blocked practice than the group with retrieval 
practices. Finally, since the current study was limited to secondary 
schools, the authors recommend expanding the study to lower 
grades. Future research should include use of retrieval practices 
in a wider set of CT and ST concepts. A recommendation 
for the computer science education community is that because 
of the importance of programming in CT education, there is 
a need for more studies such as Casanova et  al. (2020) to 
examine effect of retrieval practices on retention and learning 
of programming concepts.
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