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Quantum Tomographic Cryptography with a Semiconductor Single Photon Source
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In this paper we analyze the security of the so-called quantum tomographic cryptography with
the source producing entangled photons via an experimental scheme proposed in Phys. Rev. Lett.
92, 37903 (2004). We determine the range of the experimental parameters for which the protocol
is secure against the most general incoherent attacks.

PACS numbers: 03.67. -a,89.70. +c

INTRODUCTION

The need to transmit information securely between two
parties is off paramount importance in military and com-
mercial communication. The discovery of the possibility
of secure communication based on photons has triggered
numerous investigations in this field. An important issue
in quantum communication is the ability to distribute
a key securely between distant parties, and a number
of schemes such as the BB84 [1] and Ekert91 [2] have
been proposed for this purpose. In particular, the to-
mographic quantum key distribution scheme proposed in
Ref. [3] in which Alice and Bob utilize a tomographically
complete set of observables to distribute the key as well
as perform full state tomography on their key distribu-
tion source has been shown to be powerful as it severely
limits Eve’s eavesdropping possibilities, when compared
to BB84 or Ekert91. An extension of this scheme to the
more general class of Bell diagonal states has also been
proposed in Ref. [4].

On the practical side, quantum key distribution
(QKD) is a sufficiently advanced field so that there is
already the possibility for commercialization of some of
the QKD devices. However, security analysis of generic
devices is not always straightforward.

Recently, using the pulsed optical excitation of a sin-
gle quantum dot from a sample of self-assembled InAs
quantum dots in a GaAs matrix, it was shown that it
is possible to use linear optics techniques to induce po-
larization entanglement between single photons emitted
independently from the source [5, 6, 7]. Such a technique
can be feasibly applied to produce entangled photons for
QKD. In this letter, we exploit the tomographic QKD
scheme [3] to study the security of QKD based on such
solid state devices.

TOMOGRAPHIC QKD

In the tomographic QKD scheme [3], a central source
distributes entangled qubits to Alice and Bob. Here,
we assume that these qubits arise from polarization-
entangled photons generated using a quantum dot sin-

gle photon source and the method described by Fattal
et al. [5]. Alice and Bob independently and randomly
choose to measure three tomographically complete ob-
servables σx, σy and σz (Pauli operators) on each qubit.
At the end of the transmission, they publicly announce
their choice of observables for each qubit pair. They
then divide their measurement results according to those
for which their measurement bases match, and those for
which their measurement bases do not match. Exchang-
ing a subset of their measurements allows Alice and Bob
to tomographically reconstruct the density operator of
the two-qubit state they share. Those measurements for
which their bases match can be used for key generation.

According to the discussion presented in Ref. [5] the
density matrix describing the photon source has the fol-
lowing form in the (say) σz basis:
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1
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The meaning of the experimentally accessible parameters
R, T, V and g is the following: R(T ) denotes the reflec-
tivity (transmittivity) of the beamsplitters in the Mach-
Zehnder interferometer used in the experiment (the ratio
R
T

reported in Ref. [5] was 1.1). The parameter V de-
notes the overlap of the wave packets of two consecutive
photons emerging from the quantum dot, and g (denoted
in Ref.[5] as g(2)) is the equal time second-order correla-
tion function. Furthermore, in order for entanglement to
exist in the two photon state, we require that V > 2g.
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From the point of view of the security analysis,
it is more convenient to express the density matrix
(1) in the Bell basis {|mab〉}a,b=0,1. Here, |mab〉 =
∑1

k=0
1√
2
ωkb|mkmk+a〉 (ω = −1) denotes the Bell state

in the mth basis (m = x, y, z). We have

̺
(z)
Bell =









α

α

β1 γ

γ β2









(3)

and in the remaining two other bases

̺
(y)
Bell = ̺

(x)
Bell =









α

β1 −γ
α

−γ β2









. (4)

From their state tomography, Alice and Bob can deter-
mine how the parameters R

T
, g and V affect the security of

their key. From these parameters, they can compute, for
each basis, the maximal strength of correlations between
Eve and any one of them. The Csiszár-Köner (CK) the-
orem [9] then guarantees that if the correlations between
Alice and Bob are stronger than those between Eve and
either of them, a secure key can be established through
one-way error correcting codes, with the efficiency given
by the CK yield. Thus for each basis, there is a CK yield
for Alice and Bob’s bit data, and they can find out which
basis will give them a positive CK yield. They will then
make use of data only from those bases with a positive
yield to establish their key, rejecting the bits obtained
from the remaining measurements. It is interesting to
note that in the tomographic protocol presented in [3],
Alice and Bob do not have to do this as the yield is the
same regardless of the measurement basis.

EAVESDROPPING

Suppose we have an eavesdropper Eve in the chan-
nel. In order to make our analysis foolproof, we assume
the worst-case scenario in which she is in full control
of the qubit-distributing source, and that all the factors
that contribute to experimental imperfections (parame-
ters R, T, g and V ) are due to her eavesdropping activi-
ties.

In order to obtain as much information as possible
about the key generated by Alice and Bob, Eve entangles

their qubits with ancilla states |e(z)
ab 〉 in her possession.

She prepares the following state:

|ψABE〉 =
√
α|z00〉|e(z)

00 〉 +
√
α|z01〉|e(z)

01 〉
+

√

β1|z10〉|e(z)
10 〉 +

√

β2|z11〉|e(z)
11 〉, (5)

where

〈ea′b′ |eab〉 =

{

δaa′δbb′ , a = 0,
γ√

β1β2

δaa′(1 − δbb′) + δaa′δbb′ , a = 1.

(6)

Tracing out Eve gives the mixed state Eq. (3) that Al-
ice and Bob measure and this purification is the most
general one as far as eavesdropping is concerned. Note
that because of the tomography performed by Alice and
Bob, Eve cannot prepare a state that would give her some
additional correlations across different qubits emitted by
the source. This considerably reduces the number of co-
herent eavesdropping strategies Eve can use. More pre-
cisely, the only possibility of a coherent attack for Eve is
to collect her ancillas and perform some collective mea-
surements on them. In this paper we do not investigate
this scenario and assume that Eve measures her ancillas
one by one.

Eve’s purification, when expressed in different bases,
reads

|ψABE〉 =

1
∑

k,a=0

√

µ
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ak〉

=

1
∑
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√
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=
1

∑
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√

µ
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ak〉, (7)

where
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2
. (8)

The ancilla kets have the following inner products

〈fz
a′k′ |fz

ak〉 =
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δkk′ + (1 − δkk′ )α−β1

α+β1
, if a = a′ = 0;

δkk′ + (1 − δkk′ )α−β2

α+β2

, if a = a′ = 1;

− γ√
(α+β1)(α+β2)

ωk+k′

, if a 6= a′.

(9)

Eve’s eavesdropping strategy then proceeds as follows.
After Alice and Bob announce their measurement bases
and the basis they intend to use for key generation, Eve
knows which pairs of qubits contribute to the key and
that her ancilla for each of those pairs is a mixture of
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four possible states. Formally this can be viewed as a
transmission of information from Alice and Bob to Eve
encoded in the quantum state of Eve’s ancilla. To find the
optimal eavesdropping strategy, she has to maximize this
information transfer by a choice of a suitable generalized
measurement known as a Positive Operator Valued Mea-
sure (POVM) [8]. For example, if Alice and Bob chose
to obtain their key from the x basis, Eve would obtain
the following mixed state of ancillas,

̺
(x)
E =

1
∑

k,a=0

µ
(x)
ak |fx

ak〉〈fx
ak|. (10)

Eve has to find the optimal measurement that will extract
from the transmission as much information as possible,
the so-called accessible information.

INCOHERENT ATTACK

The conditions for which our protocol is secure against
Eve’s incoherent eavesdropping attack is given by the CK
theorem: a secure key can be generated from a raw key
sequence by means of a suitably chosen error-correcting
code and classical one-way communication between Alice
and Bob if the mutual information between Alice and
Bob (I(A;B)) exceeds that between Eve and either one
of them (the CK regime). For the protocol considered,
the mutual information between Alice and Eve (I(A;E)),
and Bob and Eve, are the same so that security is assured
as long as

I(A;B) > I(A;E). (11)

Furthermore, the difference in mutual information
I(A;B) − I(A;E) gives the CK yield for the distilled
key. Due to the asymmetric nature of the state in the
σz and σx/σy bases, the yield is different for those bases.
The yield is the same for σx and σy. As mentioned ear-
lier, Alice and Bob will choose only those measurement
bases which give them a positive yield and use the data
from those bases for key generation.

We shall now present the POVM that maximizes the
information transmitted from Alice and Bob to Eve for
a given basis.

Suppose Eve receives a state in the σz basis:

̺
(z)
E =

1
∑

k,a=0

µ
(z)
ak |fz

ak〉〈fz
ak|, (12)

where the kets have the structure given by Eq. (9). An-
cillas from the correlation subspace (a = 0) are orthog-
onal to all other states; those from the anti-correlation
subspace (a = 1) are in general non-orthogonal among
themselves.

In the first step, Eve sorts the mixture of the ancillas
into two sub-ensembles according to the index a. This

can easily be done using a projective measurement. After
that, depending on the outcome of the projection (a = 0
or a = 1), Eve has a mixture of two ancilla states each
corresponding to Alice and Bob’s result.

If she projects into the a = 0 subspace, Eve will possess
a mixture of equiprobable orthogonal ancilla states

̺
(z)
E,a=0 =

1

2
|fz

00〉〈fz
00| +

1

2
|fz

01〉〈fz
01|, (13)

which she can distinguish perfectly.
On the other hand, if she projects into the a = 1 sub-

space, she will obtain a mixture of non-orthogonal ancilla
states instead:

̺
(z)
E,a=1 =

(

1

2
+

γ

2α+ β1 + β2

)

|fz
10〉〈fz

10|

+

(

1

2
− γ

2α+ β1 + β2

)

|fz
11〉〈fz

11|. (14)

We shall denote the inner product of the two ancilla
states by λ ≡ β1−β2√

(β1+β2)2−4γ2
. If these states are

equiprobable, which happens if γ = 0 or R = T , the
optimal measurement for Eve would be the so-called
square-root measurement [10, 11]. Its POVM is given
by {|ω0〉〈ω0|, |ω1〉〈ω1|}, where

|ω10〉 =
1

1 − 2η

(

−√
η|fz

10〉 +
√

1 − η|fz
11〉

)

|ω11〉 =
1

1 − 2η

(

√

1 − η|fz
10〉 −

√
η|fz

11〉
)

,

(15)

with η = 1
2 (1 +

√
1 − λ2) being the probability of deter-

mining a given state correctly.
In general, the ancilla states will not occur with the

same probability, and the optimal measurement for Eve
will then not be the square-root measurement. Consider
the POVM {|ω̃10〉〈ω̃10|, |ω̃11〉〈ω̃11|}, where

|ω̃10〉 = cos θ|ω10〉 − sin θ|ω11〉
|ω̃11〉 = sin θ|ω10〉 + cos θ|ω11〉. (16)

These states are rotated from the square-root measure-
ment states by an angle θ. We then have the following
conditional probabilities

p (ω̃10|fz
10) =

(√
η cos θ −

√

1 − η sin θ
)2

p (ω̃11|fz
10) =

(√
η sin θ +

√

1 − η cos θ
)2

p (ω̃10|fz
11) =

(

√

1 − η cos θ −√
η sin θ

)2

p (ω̃11|fz
11) =

(

√

1 − η sin θ +
√
η cos θ

)2

, (17)

where, for instance, p (ω̃11|fz
11) denotes the probability

of getting the result of the measurement corresponding
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to the projector |ω̃11〉〈ω̃11| provided the state |fz
11〉 was

sent.
Using the probabilities in Eq. (17), we can compute the

mutual information between Alice and Eve as a function
of θ. The optimal measurement for Eve is then given by
the θ that maximizes the mutual information between
them.

Suppose now that Eve receives ancillas from the σx

basis. If Alice measured bit ‘0’ (k = 0, probability 1
2 ),

Eve will obtain the state

̺
(x)
k=0 = (α+ β1)|fx

00〉〈fx
00| + (α + β2)|fx

10〉〈fx
10|,(18)

and if Alice measured ‘1’ (k = 1, probability 1
2 ), Eve will

obtain the state

̺
(x)
k=1 = (α+ β1)|fx

01〉〈fx
01| + (α + β2)|fx

11〉〈fx
11|.(19)

The structure of the (normalized) ancillas is given by
Eq. (9):

〈fx
00|fx

01〉 =
α− β1

α+ β1
≡ λ0

〈fx
10|fx

11〉 =
α− β2

α+ β2
≡ λ1

〈fx
0k′ |fx

1k〉 = − γ
√

(α+ β1)(α+ β2)
ωk+k′ ≡ µωk+k′

.

(20)

Now, the total state describing Eve’s ancillas is given
by

̺(x) =
α+ β1

2
|fx

00〉〈fx
00| +

α+ β1

2
|fx

01〉〈fx
01|

+
α+ β2

2
|fx

10〉〈fx
10| +

α+ β2

2
|fx

11〉〈fx
11|,

(21)

which has the following eigenkets

|g0〉 =
1

N0
(|fx

00〉 + |fx
01〉)

|g1〉 =
1

N1
(|fx

10〉 + |fx
11〉)

|g2〉 =
1

N2
(κ+ (|fx

00〉 − |fx
01〉) + η (|fx

10〉 − |fx
11〉))

|g3〉 =
1

N3
(κ− (|fx

00〉 − |fx
01〉) + η (|fx

10〉 − |fx
11〉)) ,

(22)

where

κ± = β2 − β1 ±
√

(β2 − β1)2 + 4γ2

η = 2γ

√

α+ β2

α+ β1
. (23)

The normalization constants Nk (k = 0, 1, 2, 3) read:

N0 =
√

2(1 + λ0)

N1 =
√

2(1 + λ1)

N2 =

√

4

α+ β1

(

β1κ
2
+ + 4γ2

(

β1 −
√

(β2 − β1)2 + 4γ2
))

N3 =

√

4

α+ β1

(

β1κ
2
− + 4γ2

(

β1 +
√

(β2 − β1)2 + 4γ2
))

.

(24)

If we adopt {|g0〉, |g1〉, |g2〉, |g3〉} as an orthonormal ba-
sis, the optimal measurement for Eve can then be ex-
pressed as {|ω0〉〈ω0|, |ω1〉〈ω1|, |ω2〉〈ω2|, |ω3〉〈ω3|}, where

(|ω0〉, |ω1〉, |ω2〉, |ω3〉)

= (|g0〉, |g1〉, |g2〉, |g3〉)









−a a b b

b −b a a

c c −d d

d d c −c









, (25)

and in which a, b, c, d are real numbers. These parameters
are also related by

a2 + b2 =
1

2

c2 + d2 =
1

2
(26)

so that the operators decompose the identity.

As before, we can compute the mutual information be-
tween Alice and Eve I(A;E) for this basis and maximize
it over the two independent variables a and c to obtain
the maximum information that Eve can obtain about Al-
ice’s measurements.

It should be mentioned here that the optimality of
the above POVMs for the three bases was deduced and
confirmed numerically using the algorithms presented in
Refs. [12, 13].

Table I summarizes the results of the computations for
various values of g and V . We fixed the ratio R

T
= 1.1

(the value reported in Ref. [5]). We see that for certain
values of g and V (the first row of the table), for which
the state is still entangled, the CK yield (denoted as ∆)
is negative in all the measurement bases. For such states,
according to the CK theorem, one cannot extract secure
bits by means of one-way communication (because the
CK yield is zero). More interesting are cases where the
CK yield is negative in one measurement basis and pos-
itive in another. In such cases, Alice and Bob reject the
data obtained by measurements in the basis with neg-
ative yield and process only the data from the basis for
which the CK yield is positive. The total CK yield is then
the equally-weighted average of only the positive yields
from the three measurement bases. In the case where all
the CK yields are positive, Alice and Bob use the data
from all the bases.
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σz σx,y

R

T
g V I(A; B) max I(A; E) yield, ∆z I(A; B) max I(A; E) yield, ∆x,y overall yield

1.1 0.1 0.6 0.3478 0.6070 -0.2592 (×) 0.1872 0.4320 -0.2448 (×) 0

0.02 0.4 0.7598 0.7550 0.0048 0.1085 0.1088 -0.0003 (×) 1

3
∆z = 0.0016

0.1 0.84 0.3478 0.3528 -0.005 (×) 0.3869 0.3755 0.0114 1

3
∆y + 1

3
∆x = 0.0076

0.1 0.9 0.3478 0.2845 0.0633 0.4525 0.3321 0.1204 1

3
∆z + 1

3
∆y + 1

3
∆x = 0.1014

TABLE I: Table of yields in the three bases for R

T
= 1.1, and different values of g and V . Due to the asymmetric nature of the

state in the σz and σx/σy bases, the yield is different for those bases. The yield is the same in σx and σy. Crosses mean that
the data from this basis is not used for the key generation.
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FIG. 1: Three-dimensional plot of the CK yield for perfect beamsplitters R = T (left), and the corresponding contour plot
(right). The threshold for security is given by the contour for which the CK yield is zero. For g = 0, security is guaranteed as
long as V is greater than zero, although fewer secure bits can be distilled for smaller V .

In Fig. 1, we show the overall CK yield plotted against
g and V in the case of perfect beamsplitters (R = T ). In
this case the state produced by the source is a mixture
of Bell states. The security thresholds for such states
have been analyzed in Ref. [4]. We observe that the pro-
tocol is always secure against incoherent attacks as long
as g = 0 and V > 0, although fewer secure bits can be
distilled for smaller V . If V is zero the state becomes
separable and, of course, one cannot extract any secure
bits. More detailed analysis reveals that these states (for
which R = T , g = 0 and V > 0) have the interesting
property that the mutual information between Alice and
Eve is always zero when Alice performs measurements in
σx or σy basis. This is due to the fact that Eve’s ancillas
corresponding to different outcomes of Alice’s measure-
ments in the σx and σy bases are the same, which means
that they do not carry any information whatsoever about
Alice’s and Bob’s correlations. Therefore, if Alice and
Bob agree on using only the data from the σx and σy

measurements (this reduces the efficiency), the protocol
becomes secure against all possible attacks by Eve (un-
conditional security). In realistic situations however, the

value of g can be small but not exactly zero (for example,
the value of g reported in [6] was 0.02). In this case, the
protocol is secure over a smaller range of V . Even then,
we conjecture that the information that Eve can extract
from her ancillas in the σx or σy basis is negligible, and
the protocol remains pretty robust against all possible
attacks by her in those bases.

NOISY CHANNEL

So far, we have excluded the effects of noise in the
channel so that Alice and Bob expect to receive the state
‘as-is’ from the source. In reality however, this is not the
case: Alice and Bob can expect their quantum channel to
be affected by interaction with the environment. We next
consider what happens when there is symmetric white
noise present in the channel, i.e. the state that Alice and
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0.2 0.4 0.6 0.8 1
V
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CK yield

F = 0

F = 0.1

F = 0.2
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FIG. 2: Overall CK yield for R

T
= 1.1 and g = 0.02 and different amounts of noise in the channel F . For a noiseless channel

(F = 0), when V . 0.39, one can no longer extract secure bits by means of one-way communication because the CK yield is
zero. As the amount of noise increases, the CK yield drops until for F & 0.42, where we will not be able to distill any secure
bits at all (because the CK yield is 0 for all V ).

Bob expect to receive is of the form:

̺(z) =
1 − F

2











2α

β1 + β2 + 2γ β1 − β2

β1 − β2 β1 + β2 − 2γ

2α











+
F

4
1 ⊗ 1, (27)

where we have a proportion F (0 ≤ F ≤ 1) of unbi-
ased noise admixed to the original state from the source.

Analysis shows that the optimal POVM for Eve is of the
same form as that presented earlier.

As before, we can obtain the condition for security and
the CK yield for various proportions of noise and this is
shown in Fig. 2, for fixed values of R

T
= 1.1 and g = 0.02

(values reported in Ref. [5, 6]). We can distill less secure
bits as the amount of noise increases.

CONCLUSION

We have analyzed the security of the tomographic
QKD protocol using a source of entangled photons pro-
duced in the experimental scheme proposed by Fattal et.

al [5] against the most general incoherent attacks.

Using the analysis presented in this paper we can give
the number of secure bits that can be distilled by means
of one-way communication between Alice and Bob as
a function of the experimentally accessible parameters
R, T, g and V , and for different degrees of unbiased noise
in the channel F .
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