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Abstract. Stanley introduced a partition statistic srank(π) = O(π) − O(π′), where O(π)
denote the number of odd parts of the partition π, and π′ is the conjugate of π. Let pi(n)
denote the number of partitions of n with srank ≡ i (mod 4). Andrews proved the following
refinement of Ramanujan’s partition congruence modulo 5:

p0(5n+ 4) ≡ p2(5n+ 4) ≡ 0 (mod 5).

In this paper, we consider an analogous partition statistic

lrank(π) = O(π) +O(π′).

Let p+i (n) denote the number of partitions of n with lrank ≡ i (mod 4). We will establish
the generating functions of p+0 (n) and p+2 (n) and show that they satisfy similar properties to
pi(n). We also utilize a pair of interesting q-series identities to obtain a direct proof of the
congruences

p+0 (5n+ 4) ≡ p+2 (5n+ 4) ≡ 0 (mod 5).
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1 Introduction

A partition of a positive integer n is a sequence of weakly decreasing positive integers whose
sum equals n. For a partition π, let π′ denote its conjugate and let O(π) denote the number
of odd parts in π. If π is a partition of n, then the number of odd parts must have the same
parity as n. Thus O(π) ≡ O(π′) (mod 2). Stanley [11, 12] initiated a study on the number
of partitions π of n for which

O(π) ≡ O(π′) (mod 4).

Following [3], we define the partition statistic

srank(π) = O(π)−O(π′)
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and let pi(n) denote the number of partitions of n with srank ≡ i (mod 4). Since srank(π)
is always even, we see that

p0(n) + p2(n) = p(n),

where p(n) is the usual partition function. Stanley [12] established the following generating
function:

∞∑
n=0

(p0(n)− p2(n))qn =
(−q; q2)∞

(q4; q4)∞(−q2; q4)2∞
. (1.1)

Here we use the standard notation

(a; q)∞ =

∞∏
n=1

(1− aqn−1) and (a1, . . . , am; q)∞ = (a1; q)∞ . . . (am; q)∞.

We remark that Stanley used the notation t(n) for p0(n) and f(n) for p0(n)− p2(n).

Andrews [1] subsequently obtained the generating function for p0(n):

∞∑
n=0

p0(n)qn =
(q2; q2)2∞(q16; q16)5∞

(q; q)∞(q4; q4)5∞(q32; q32)2∞
. (1.2)

A few years later, Chen, Ji and Zhu [7] obtained the generating function for p2(n):

∞∑
n=0

p2(n)qn =
2q2(q2; q2)2∞(q8; q8)2∞(q32; q32)2∞

(q; q)∞(q4; q4)5∞(q16; q16)∞
. (1.3)

They also provided combinatorial interpretations of p0(n) and p2(n) in terms of hook lengths.

By studying the coefficients of q5n+4 in (1.1) and using Ramanujan’s famous congruence
p(5n+ 4) ≡ 0 (mod 5), Andrews proved the remarkable congruence

p0(5n+ 4) ≡ 0 (mod 5).

Swisher [13] subsequently showed that there are infinitely many arithmetic progressions An+
B such that

p0(An+B) ≡ p(An+B) ≡ 0 (mod `j)

where ` ≥ 5 is prime and j ≥ 1.

In this paper, we shall study a variation of the srank. Define the partition statistic

lrank(π) = O(π) +O(π′)

and let p+i (n) denote the number of partitions of n with lrank ≡ i (mod 4), where i = 0, 2.
It also follows that

p+0 (n) + p+2 (n) = p(n).

In the next two sections, we will derive the generating functions for p+0 (n) and p+2 (n) and
show that they satisfy similar properties to pi(n). For example,

p+0 (5n+ 4) ≡ p+2 (5n+ 4) ≡ 0 (mod 5), (1.4)

which gives a new refinement of the Ramanujan’s congruence for p(5n + 4). Finally, in
Section 4, we utilize two q-series identities to give a direct proof of (1.4) which is independent
of Ramanujan’s congruence.
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2 Generating functions for p+
0 (n) and p+

2 (n)

Let S∞(n, r, s) be the number of partitions π of n such that O(π) = r,O(π′) = s. Andrews [1]
found the following generating function∑

n,r,s≥0
S∞(n, r, s)qnyrzs =

(−yzq; q2)∞
(q4; q4)∞(y2q2; q4)∞(z2q2; q4)∞

. (2.1)

Combinatorial proofs of identity (2.1) were independently found by Sills [10], Yee [15], and
Boulet [6]. With (2.1) in hand, we are in a position to prove the generating functions for
p+0 (n) and p+2 (n).

Theorem 2.1.

∞∑
n=0

p+0 (n)qn =
(−q3; q8)2∞(−q5; q8)2∞(q8; q8)4∞

(q4; q4)5∞
, (2.2)

∞∑
n=0

p+2 (n)qn =
q(−q; q8)2∞(−q7; q8)2∞(q8; q8)4∞

(q4; q4)5∞
. (2.3)

Proof. Recall that O(π) and O(π′) are congruent modulo 2 to the number being partitioned,
thus O(π) ≡ O(π′) (mod 2). Hence, using i to denote the square root of −1, we have

∞∑
n=0

p+0 (n)qn =
∑

n,r,s≥0
4|(r+s)

S∞(n, r, s)qn

=
1

2

∑
n,r,s≥0

S∞(n, r, s)(1 + ir+s)qn

=
1

2

(
(−q; q2)∞

(q4; q4)∞(q2; q4)2∞
+

(q; q2)∞
(q4; q4)∞(−q2; q4)2∞

)
(2.4)

=
(−q; q2)∞(−q2; q4)2∞ + (q; q2)∞(q2; q4)2∞

2(q4; q4)∞(q4; q8)2∞

=
(−q; q2)∞(q8; q8)2∞

2(q4; q4)4∞

(
(−q2; q4)2∞(q4; q4)∞ + (q; q2)2∞(q2; q2)∞

)
.

By [4, p. 51, Example (iv)], we see that

(−q2; q4)2∞(q4; q4)∞ + (q; q2)2∞(q2; q2)∞ =
2(−q3; q8)2∞(−q5; q8)2∞(q8; q8)2∞(q; q2)∞

(q2; q2)∞
.

Thus,

∞∑
n=0

p+0 (n)qn =
(−q; q2)∞(q8; q8)2∞

2(q4; q4)4∞
× 2(−q3; q8)2∞(−q5; q8)2∞(q8; q8)2∞(q; q2)∞

(q2; q2)∞

=
(−q3; q8)2∞(−q5; q8)2∞(q8; q8)4∞(q2; q4)∞

(q4; q4)4∞(q2; q2)∞
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=
(−q3; q8)2∞(−q5; q8)2∞(q8; q8)4∞

(q4; q4)5∞
.

Similarly, we have

∞∑
n=0

p+2 (n)qn =
1

2

(
(−q; q2)∞

(q4; q4)∞(q2; q4)2∞
− (q; q2)∞

(q4; q4)∞(−q2; q4)2∞

)
(2.5)

=
(−q; q2)∞(q8; q8)2∞

2(q4; q4)4∞

(
(−q2; q4)2∞(q4; q4)∞ − (q; q2)2∞(q2; q2)∞

)
.

By [4, p. 51, Example (iv)], we see that

(−q2; q4)2∞(q4; q4)∞ − (q; q2)2∞(q2; q2)∞ =
2q(−q; q8)2∞(−q7; q8)2∞(q8; q8)2∞(q; q2)∞

(q2; q2)∞
.

Combining the above two identities together, we get (2.3). This completes the proof.

3 Congruences and Inequalities for p+
0 (n) and p+

2 (n)

Theorem 3.1. For all n ≥ 0,

p+0 (5n+ 4) ≡ p+2 (5n+ 4) ≡ 0 (mod 5). (3.1)

Proof. From (2.4) and (2.5), we see that

∞∑
n=0

(p+0 (n)− p+2 (n))qn =
(q; q2)∞

(q4; q4)∞(−q2; q4)2∞
.

Comparing with (1.1), we observe that

∞∑
n=0

(p+0 (n)− p+2 (n))qn =

∞∑
n=0

(p0(n)− p2(n))(−q)n.

Equating the coefficients of qn, we obtain

p+0 (n)− p+2 (n) = (−1)n(p0(n)− p2(n)). (3.2)

Recall that in [1], Andrews proved p0(5n+4)−p2(5n+4) ≡ 0 (mod 5) and used Ramanujan’s
congruence to deduce p0(5n+ 4) ≡ 0 (mod 5). Consequently p2(5n+ 4) ≡ 0 (mod 5). In the
same way, after establishing (3.2), together with the fact

p+0 (5n+ 4) + p+2 (5n+ 4) = p(5n+ 4) ≡ 0 (mod 5),

we can conclude that p+0 (5n+ 4) ≡ p+2 (5n+ 4) ≡ 0 (mod 5).

In fact, there are many congruences satisfied by p+i (n).
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Theorem 3.2. There are infinitely many arithmetic progressions An + B, such that for all
n ≥ 0,

p+0 (An+B) ≡ p+2 (An+B) ≡ p(An+B) ≡ 0 (mod `j),

where ` ≥ 5 is prime and j ≥ 1.

Proof. Swisher [13] proved that there are infinitely many arithmetic progressions An + B,
such that for all n ≥ 0, p0(An + B) ≡ p(An + B) ≡ 0 (mod `j) where ` ≥ 5 is prime and
j ≥ 1. For those progressions An + B, we see that p2(An + B) ≡ 0 (mod `j). Recall that
p+0 (n)− p+2 (n) = (−1)n(p0(n)− p2(n)). This means p+0 (An+B)− p+2 (An+B) ≡ 0 (mod `j)
and p+0 (An+B) ≡ p+2 (An+B) ≡ 0 (mod `j).

There is an easier way to prove the previous two theorems. Recall that p+0 (2n) counts
partitions of 2n where

lrank(π) = O(π) +O(π′) ≡ 0 (mod 4).

Coupled with the fact that we now have O(π) ≡ O(π′) ≡ 0 (mod 2), we can deduce that

O(π) ≡ O(π′) (mod 4).

In other words, srank(π) ≡ 0 (mod 4), thus p+0 (2n) = p0(2n). Depending on the parity of n,
similar arguments can be used to derive other relations between p+i (n) and pi(n). We record
these relations as the next result.

Lemma 3.1. For all n ≥ 0,

p+0 (2n) = p0(2n), (3.3)

p+0 (2n+ 1) = p2(2n+ 1), (3.4)

p+2 (2n) = p2(2n), (3.5)

p+2 (2n+ 1) = p0(2n+ 1). (3.6)

From (1.3), we see that p2(n) is always even.

Corollary 3.1. For n ≥ 0, we have

p+0 (2n+ 1) ≡ 0 (mod 2), (3.7)

p+2 (2n) ≡ 0 (mod 2). (3.8)

Andrews [1] and Chen et. al. [7] provided 4-dissections of p0(n) and p2(n) respectively.
Using their results and Lemma 3.1, it is straightforward to write down 4-dissections of p+0 (n)
and p+2 (n). In another related paper, Berkovich and Garvan proved several inequalities,
including the surprising result [2, Eq. (1.17)]

|p0(2n)− p2(2n)| > |p0(2n+ 1)− p2(2n+ 1)|,

which holds for all n ≥ 1. They also proved that [2, p. 281] for n ≥ 0,

p0(n) >
p(n)

2
, if n ≡ 0, 1 (mod 4), (3.9)
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p0(n) <
p(n)

2
, if n ≡ 2, 3 (mod 4). (3.10)

By combining Lemma 3.1 and their results, we can obtain the following analogues.

Corollary 3.2. For n ≥ 0, we have

p+0 (n) > p+2 (n), if n ≡ 0, 3 (mod 4), (3.11)

p+0 (n) < p+2 (n), if n ≡ 1, 2 (mod 4). (3.12)

Corollary 3.3. For n ≥ 1, we have

|p+0 (2n)− p+2 (2n)| > |p+2 (2n+ 1)− p+0 (2n+ 1)|. (3.13)

4 Two interesting q-series identities

Our previous proof of Theorem 3.1 relied on the known congruences for pi(5n + 4) and
p(5n+ 4). We can actually give an independent proof directly from the generating functions
of p+0 (n) and p+2 (n) which leads to a new refinement of p(5n+ 4) ≡ 0 (mod 5). To this end,
we define a(n) and b(n) as follows,

∞∑
n=0

a(n)qn = (−q3; q8)2∞(−q5; q8)2∞(q8; q8)4∞, (4.1)

∞∑
n=0

b(n)qn = q(−q; q8)2∞(−q7; q8)2∞(q8; q8)4∞. (4.2)

Since

∞∑
n=0

p+0 (n)qn ≡ 1

(q20; q20)∞
×
∞∑
n=0

a(n)qn (mod 5), (4.3)

we have p+0 (5n+4) ≡ 0 (mod 5) if a(5n+4) ≡ 0 (mod 5). Similarly, if b(5n+4) ≡ 0 (mod 5)
then p+2 (5n+ 4) ≡ 0 (mod 5). In fact, we have the following stronger result.

Theorem 4.1.

∞∑
n=0

a(5n+ 4)qn = −5

∞∑
n=0

b(n)q5n+3, (4.4)

∞∑
n=0

b(5n+ 4)qn = −5

∞∑
n=0

a(n)q5n+3. (4.5)

The coefficients of a(n) and b(n) are interlinked in a way that is analogous to some recent
investigations by Hirschhorn [8]. Just as Hirschhorn’s results were generalized from the prime
5 to infinitely many primes in [9, 14], the same holds for Theorem 4.1.
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Theorem 4.2. Suppose n ≥ 0 and p ≡ 5 (mod 6) is prime. If p ≡ ±3 (mod 8), then

a

(
p2n+

19(p2 − 1)

24

)
= −pb(n), (4.6)

b

(
p2n+

19(p2 − 1)

24

)
= −pa(n). (4.7)

If p ≡ ±1 (mod 8), then

a

(
p2n+

19(p2 − 1)

24

)
= −pa(n), (4.8)

b

(
p2n+

19(p2 − 1)

24

)
= −pb(n). (4.9)

Proof. Combining Entries 30(v) and 30(vi) in [4, p. 46], we have

f(a, b)2 = f(a2, b2)ϕ(ab) + 2af(b/a, a3b)ψ(a2b2).

(Definitions of f(a, b), ϕ(q) and ψ(q) can be found in [4, pp. 34–36].) Applying the above
identity with a 7→ q3, b 7→ q5, we get

(−q3,−q5, q8; q8)2∞ = (−q6,−q10, q16; q16)∞
(q16; q16)5∞

(q8; q8)2∞(q32; q32)2∞

+ 2q3(−q2,−q14, q16; q16)∞
(q32; q32)2∞
(q16; q16)∞

Multiplying both sides by (q8; q8)2∞, we conclude that

∞∑
n=0

a(n)qn = (−q6,−q10, q16; q16)∞
(q16; q16)5∞
(q32; q32)2∞

+2q3(−q2,−q14, q16; q16)∞
(q8; q8)2∞(q32; q32)2∞

(q16; q16)∞
.

From the following identities [5, Cor. 1.3.21 and 1.3.22]

(q2; q2)5∞
(q4; q4)2∞

=

∞∑
m=−∞

(6m+ 1)q3m
2+m,

(q; q)2∞(q4; q4)2∞
(q2; q2)∞

=

∞∑
m=−∞

(3m+ 1)q3m
2+2m,

and the Jacobi triple product identity [5, Th. 1.3.3], we have

∞∑
n=0

a(n)qn =
∞∑

n=−∞
q8n

2+2n
∞∑

m=−∞
(6m+ 1)q8(3m

2+m)

+ 2q3
∞∑

n=−∞
q8n

2+6n
∞∑

m=−∞
(3m+ 1)q8(3m

2+2m).
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The above series representation can be rewritten as

∞∑
n=0

a(n)qn =
∑

x≡1 (mod 6)
y≡1 (mod 8)

xq
16x2+3y2−19

24 +
∑

x≡2 (mod 6)
y≡3 (mod 8)

xq
16x2+3y2−19

24 . (4.10)

Similarly,

∞∑
n=0

b(n)qn =
∑

x≡1 (mod 6)
y≡3 (mod 8)

xq
16x2+3y2−19

24 +
∑

x≡2 (mod 6)
y≡1 (mod 8)

xq
16x2+3y2−19

24 . (4.11)

Now given a prime p ≡ 5 (mod 6), when

16x2 + 3y2 − 19

24
= pm+

19(p2 − 1)

24
,

the expression is equivalent to

(4x)2 + 3y2 = 24pm+ 19p2 ≡ 0 (mod p).

Since p ≡ 2 (mod 3), we conclude that the above congruence holds only when p | x and
p | y. We write x = −px1 where x ≡ x1 (mod 6) and y = ±py1. We further assume p ≡ ±3
(mod 8) which means if y ≡ 1, 3 (mod 8), then y1 ≡ 3, 1 (mod 8). Returning to the previous
equation,

16x2 + 3y2 = p2(16x21 + 3y21) = 24pm+ 19p2.

In other words,
16x21 + 3y21 − 19

24
=
m

p
.

Now extracting the coefficients from (4.10), we have

a

(
pn+

19(p2 − 1)

24

)
=

∑
x≡1 (mod 6)
y≡1 (mod 8)

16x2+3y2=24pn+19p2

x+
∑

x≡2 (mod 6)
y≡3 (mod 8)

16x2+3y2=24pn+19p2

x

=
∑

x1≡1 (mod 6)
y1≡3 (mod 8)

16x2
1+3y21=24n/p+19

−px1 +
∑

x1≡2 (mod 6)
y1≡1 (mod 8)

16x2
1+3y21=24n/p+19

−px1

= −pb(n/p).

This proves (4.6). The proofs of the other cases are analogous.

Finally, we remark that if we define

c(n) = a(n) + b(n),

then it follows from (2.4) and (2.5) that

∞∑
n=0

c(n)qn =
(q4; q4)5∞
(q; q)∞

. (4.12)
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With some calculations, the above fact can also be deduced directly from summing (4.10)
and (4.11). Theorem 4.2 means that for every prime p ≡ 5 (mod 6),

c

(
p2n+

19(p2 − 1)

24

)
= a

(
p2n+

19(p2 − 1)

24

)
+ b

(
p2n+

19(p2 − 1)

24

)
= −p

(
a(n) + b(n)

)
= −pc(n).
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