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Abstract 

     This work presents the magnetic field-temperature (H-T) phase diagram, exchange constants, 

specific heat (CP) exponents and magnetic ground state of the antiferromagnetic MnNb2O6 polycrystals.  

Temperature dependence of the magnetic susceptibility χ (= M/H) yields the Néel temperature TN = 4.33 

K determined from the peak in the computed ∂(ꭓT)/∂T vs. T plot in agreement with the transition in the 

Cp vs. T data at TN  = 4.36 K. The experimental data of Cp vs. T near TN is fitted to Cp = A|T-TN|-α yielding 

the critical exponent α = 0.12 (0.15) for T > TN (T < TN).  The best fit of χ vs. T data for T > 50 K to χ = 

χ0 + C/(T-ϴ) with χ0 = -1.85 × 10-4
 emu.mol-1Oe-1 yields ϴ = -17 K, and C = 4.385 emuKmol-1Oe-1, the 

later giving magnetic moment µ = 5.920 µB  per Mn2+ ion. This confirms the effective spin S = 5/2 and 

g = 2.001 for Mn2+
 and the dominant exchange interaction being antiferromagnetic in nature. Using the 

magnitudes of ϴ and TN and molecular field theory (MFT), the exchange constants J0/kB = -1.08 K for 

Mn2+ ions along the chain c-axis and J┴/kB = -0.61 K as the interchain coupling perpendicular to c-axis 

are determined. These exchange constants are consistent with the expected χ vs. T variation for the 

Heisenberg linear chain. The H-T phase diagram, mapped using the M-H isotherms and M-T data at 

different H combined with the reported data of Nielsen et al., yields a triple-point TTP (H, T) = (18 kOe, 

4.06 K). The spin-flopped state above TTP and the forced ferromagnetism for H > 192 kOe are used to 

estimate the anisotropy energy HA ≃ 0.8 kOe.   
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1.Introduction 

 The four transition metal niobates MNb2O6 (M = Mn, Fe, Co, and Ni) crystallize in the 

columbite structure (space group D14
2h-Pbcn) with orthorhombic unit cell containing 4 molecules per 

unit cell. For MnNb2O6, the lattice parameters are: a = 14.4204 Å, b = 5.7566 Å and c = 5.078 Å [1-3] 

and for M = Fe, Co and Ni, the lattice parameters decrease nearly linearly with decreasing ionic size of 

Fe2+, Co2+ and Ni2+ ions in that order [4-13]. This crystal structure has zig-zag like chains of M2+ ions 

along the c-axis containing two crystallographically inequivalent M2+ ions and isosceles triangular 

arrangement of Mn2+ ions in the ab plane. A schematic diagram of this structure based on available 

literature [1-13] is shown in figure 1. Consequently, the Hamiltonian describing the exchange coupling 

among M2+ ions in these systems can be written as [6,7,13,14]: 

𝐻 = −𝐽0 ∑ 𝑆𝑖
𝑧

𝑖 𝑆𝑖+1
𝑧 − 𝐽1 ∑ 𝑆𝑖.⃑⃑⃑⃑ 𝑆𝑗⃑⃑⃑  𝑖𝑗 − 𝐽2 ∑ 𝑆𝑖.⃑⃑⃑⃑ 𝑆𝑗⃑⃑⃑  𝑖𝑗    − − − −(1)    

In Eq. (1), the sum is over nearest-neighbours (nn) along the c-axis for J0, over nn along the b-axis for 

J1, and over next-nn for J2 in the ab plane (see figure 1). When independent determination of J1 and J2 

is not possible, they are replaced by an average J┴ as the interchain exchange coupling [12]. 

 Despite the similarity of the crystal structure of the four niobates, the nature of magnetic 

ordering in these systems is sufficiently different. For FeNb2O6, the reported studies by Yaeger et al 

[5], Heid et al [6] and Sarvezuk et al [7] reported TN ≃ 4.9 K to 5.5 K with canting angle Φ ⁓ 17º from 

the easy a-axis. For NiNb2O6, the studies by Yaeger et al [4], Heid et al [6] and Sarvezuk et al [7] 

reported TN = 5.7 K with easy direction being closer to c-axis. The magnetic properties of CoNb2O6 are 

somewhat different in that it is shown to be a good example of an Ising chain ferromagnet along the c-

axis with effective spin S = 1/2 and exchange constant J0/kB = 6.2 K and the interchain antiferromagnetic 

exchange constants J1/kB = -0.42 K and J2/kB = -0.67 K [14]. The Co2+ moments are aligned close to c-

axis with canting angle Φ = ±31º. In addition, for H || b-axis, TC = 2.95 K for H = 0 reduces to absolute 

zero in a critical field HC = 52.5 kOe. For H > HC, quantum critical fluctuations have been reported well 

above T = 0 K [15,16,17,18]. 

 The subject of this paper is magnetic properties of MnNb2O6 on which previous magnetic 

studies include those of Nielsen et al. [1,2] and Holmes et al. [3] who reported TN ≃ 4.4 K with moments 

aligned close to the a-axis. The new results reported here include the following: (i) structural 

characterization of the sample using X-ray photoelectron spectroscopy in addition to the Rietveld 

refinement of the X-ray diffraction pattern; (ii) Measurements and analysis of specific heat covering the 

region around TN; (iii) Complete mapping of the H-T phase diagram and determining the triple point 

TTP(H,T) = (18 kOe, 4.06 K) from the M vs. H and M vs. T data; (iv) Determination of the exchange 

constants J0 and J┴ from the temperature dependence of magnetic susceptibility; and (v) estimating the 

anisotropy energies from the spin-flop field. Details of these results are presented in the following pages. 
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2. Synthesis of sample and its structural characterization:   

        Polycrystalline bulk samples of MnNb2O6 were prepared using MnO2 and Nb2O5 as precursors and 

the standard solid-state reaction method. Stoichiometric amounts of the precursors were first mixed in 

an agate mortar with pestle for 4-6 hour and then pressed into cylindrical pellets using a hydraulic press 

with pressure of 20 kN/m2. These pellets were then sintered in air at 1150°C for 12 hours. The resulting 

sample was re-grinded/pelletized and then finally sintered at 1200°C for 24 hours in air. Re-grinding 

and re-sintering were found to be very important to obtain a bulk grain size ~ 2µm and dense 

polycrystalline ceramic MnNb2O6 of ideal stoichiometric columbite structure.  

      The purity and crystal structure of this prepared material was investigated using the X-ray 

diffraction (XRD) technique employing a Rigaku X-ray diffractometer (Model-TTRAX III, Cu-Kα 

radiation with wavelength ~ 1.54 Å). The XRD pattern was recorded in the 'Ɵ-2Ɵ' geometry between 

2Ɵ = 10o and 80o with slow scan rate of 1o/minute. Figure 2 shows the XRD pattern of the prepared 

sample plotted along with the Rietveld refinement data performed using the FullProf program 

confirming the single-phase nature of the prepared MnNb2O6 sample having stoichiometric columbite 

structure with lattice constants a = 14.4327 Å, b = 5.7627 Å and c = 5.0819 Å and absence of any 

secondary impurity phase within the sensitivity of the XRD technique.  

      The electronic structure and chemical composition of the pelletized sample were probed using X-

ray photoelectron spectroscopy (XPS). For this, we used Kratos Analytical spectrometer (model: AXIS 

Supra+) configured with a dual monochromatic X-ray source Al Kα /Ag Lα (2984.2 eV) with spatial 

resolution less than 1 μm. The electronic spectra for Mn, Nb and Oxygen are shown in figure 3. The 

binding energy of carbon C-1s orbital (~ 284.8eV) was used for the calibration of all the recorded core-

level spectra. The Nb-3d core level spectrum (figure 3(a)) exhibits two sharp peaks centred at 207.25 

eV and 210 eV with binding energy separation between these peaks Δ ~ 2.75 eV confirming the 

pentavalent oxidation state of Nb [19]. The deconvolution of Mn-2p core level spectrum (figure 3(b)) 

required minimum of five peaks; four main peaks at 640.41eV(M1), 642.0eV(M2), 652.15 eV(M3), and 

653.48 eV(M4) and one broad satellite peak at 645.2eV(S1). For the deconvolution, we applied a fitting 

constraint on the FWHM of the peak profile i.e. the FWHM should range within 0.2 eV. This constraint 

is relaxed during the final iteration. The observed values of spin orbit splitting Δ(M3- M1) ~11.74 eV 

and Δ(M4- M2)~11.4 eV suggests the divalent oxidation state of ‘Mn’ [20]. Moreover, the O-1s 

spectrum (figure 3(c)) exhibits a sharp peak centred at 529.8 eV along with a low intensity broad hump 

at 531.9 eV associated with the metal-oxygen (M-O) bonding and surface oxygen, respectively [21], 

present in the system. Overall, the XPS analysis confirms the presence of Mn2+ and Nb5+ ions in the 

polycrystalline MnNb2O6 sample.  
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3. Temperature and magnetic field dependence of magnetization:  

Measurements of magnetization (M) of the MnNb2O6 sample were done using a vibrating 

sample magnetometer (VSM) based Physical Property Measurement System (PPMS) from Quantum 

Design (PPMS DynaCool) capable of magnetic fields up to ±90 kOe in the temperature range of 1.9 K 

to 400 K. For these measurements, the sample was cooled to 1.9 K in zero field, followed by applying 

a measuring non-zero H and acquiring the data with increasing T (step size = 0.02K) after stabilizing 

the temperature at each T. For isothermal M vs. H measurements, the step size was 50 Oe for H < 1500 

Oe and 300 Oe for H > 1500 Oe.   

3.1. Néel temperature and its magnetic field dependence: 

 The temperature dependence of magnetic susceptibility χ = M/H (H = 100 Oe) of the 

polycrystalline MnNb2O6 sample is shown in figure 4(a) covering the temperature range of 1.9K to 

15K. There is a peak in χ near TP ⁓ 5.7 K. However as theoretically established by Fisher [22], in 

antiferromagnets TP > TN, the Néel temperature. Instead, TN is accurately given by the peak in ∂(ꭓT)/∂T 

vs. T plots since ꭓT is proportional to magnetic energy. Experimentally, this has been established in 

several antiferromagnets such as MnF2 [23] and Er2O3 [24]. In figure 4(b), the plot of computed ∂(ꭓT)/∂T 

vs. T using the χ vs. T data yields peak at TN = 4.33 K, a value in general agreement with TN = (4.40 ± 

0.05) K reported previously by Nielson et al [1, 2] and Holmes et al [3].  

 The H-dependence of TN was measured next for H up to 90 kOe following the same procedure 

of determining the peak in the computed ∂(ꭓT)/∂T vs. T plots. This was done to map out the H-T phase 

boundary analogous to that reported in the uniaxial antiferromagnet MnF2 with TN ≃ 67.3K [23, 25, 26, 

27]. For lower H, this TN vs. H variation follows the equation: 

                                                         TN(H) = TN(0) – D1H
2
               -------- (2)                                                     

as shown theoretically and experimentally in MnF2 [25, 26]. This plot of TN(H) vs. H2 is shown in figure 

5 with D1 = 0.9 × 10-9 K/Oe2 determined from the slope and TN(0) = 4.36 K. These results are compared 

with D1 = 1.59 × 10-10 K/Oe2 for MnF2 [25,26] and D1 = 7.3 × 10-9 K/Oe2 for Er2O3 [24]. Theoretically, 

the molecular field theory (MFT) for H parallel to the easy axis yields [25,26]: 

                                                         𝐷1 = 
𝑔2𝜇𝐵

2 (2𝑆2 +2𝑆+1)

40𝑘𝐵
2𝑇𝑁

                -------- (3) 

Using g = 2.001 and S = 5/2 for MnNb2O6 as shown later yields calculated D1 = 1.92 × 10-9 K/Oe2 

compared to the experimental D1 = 0.9 × 10-9 K/Oe2. As in MnF2 [25,26] and Er2O3 [24], the difference 

in the calculated and measured D1 is likely related to the inadequacy of the MFT near TN. 
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3.2. Temperature dependence of specific heat:  

The temperature dependence of specific heat CP(T) measurements from 1.9 K to 8 K were 

performed using a Physical Property Measurement System (PPMS) of Quantum Design using the 

standard heat-pulse calorimetry [28]. Near the phase transition, a dual-slope analysis was applied to 

precisely study the effect of the magnetic field on the phase transition. In this method, at any temperature 

the specific heat is estimated by direct comparison of the heating and cooling rates of the sample 

temperature without explicit use of the thermal conductance between sample and bath [29]. The plots 

of the CP vs. T data so obtained for H = 0 and H = 90 kOe are shown in figure 6 yielding peaks at TN = 

4.36 K for H = 0, in good agreement with TN = 4.33 K obtained earlier from the peak in ∂(ꭓT)/∂T vs. T 

plot of figure 4(b). For H = 90 kOe, the peak shifts to TN = 3.52 K, a result discussed later in connection 

with the H-T phase diagram.  

The temperature variation of CP near a second order phase transition is expected to vary as: Cp 

= A(T-TN)-α where α is the critical exponent [30] and A is a constant. Using log-log plot, the plots of CP 

vs. |T-TN| for both above and below TN are shown in figure 7. As observed in other systems [30], the 

linear fit is sensitive to the choice of TN and so we varied TN between 4.32 K and 4.36 K in 0.01K steps 

and determined that TN = 4.36 K gives the best overall linear fit yielding α = 0.12 (0.15) for T > TN (T 

< TN). For comparison, similar magnitudes of α = 0.16 (0.18) for T > TN (T < TN) have been reported in 

the uniaxial antiferromagnet MnF2 with TN = 67.3 K [30].  

3.3. Spin-flop field and its temperature dependence: 

 The variation of M vs. H in MnNb2O6 was measured in the temperature range of 1.9 K to TN 

with a typical variation shown in the inset of figure 8. There is a clear change in the slope of the M vs. 

H curve near 18 kOe which becomes distinctly evident in the computed ∂M/∂H vs. H curves shown in 

figure 8 for different temperatures. The position of the peak near H = 18 kOe is identical to the results 

reported by Nielsen et al [1, 2] at a few temperatures T < TN for H || a-axis in a single crystal of 

MnNb2O6. In a polycrystalline sample, only a fraction of the grains has H || a-axis and so the anomaly 

is understandably weaker than reported by Nielsen et al [1, 2] in a single crystal. This peak in ∂M/∂H 

vs. H is associated with the spin-flop transition since a-axis is the easy axis. The magnitude of Hsf 

increases slightly with increase in T towards TN hinting at the presence of triple point, like that reported 

in MnF2 [25-27]. The magnitudes of Hsf determined here in the polycrystalline sample of MnNb2O6 at 

different T < TN are in excellent agreement with those reported by Nielsen et al [1, 2] at a few 

temperatures in a single crystal with H || a-axis.  

3.4. H-T phase diagram: 

 The H-T phase diagram determined here from the variation in TN with H using the peaks in 

∂(ꭓT)/∂T vs. T and Hsf vs. T from the peaks in ∂M/∂H vs. H at different T is shown in figure 9. We have 
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included the data of Hsf vs. T reported by Nielsen et al [1, 2] who also reported that for 𝐻⃑⃑ ǁ𝑎 , M saturates 

for H >190 kOe and this point is also included in the plot. The phase diagram in figure 9 with triple 

point TTP(H,T) = (18 kOe, 4.06 K) is qualitatively similar to that reported in the uniaxial antiferromagnet 

MnF2 [25-27]. This is an important result of this work because of its resemblance to the H-T phase 

diagram in MnF2 and drastic differences from the H-T phase diagram of CoNb2O6 [14]. 

         For MnNb2O6, two critical fields are evident in figure 9: (i) the spin flop field Hsf = 18 kOe at 1.9 

K and HC2 ⁓ 200 kOe at 1.6 K determined by Nielsen et al [1, 2] above which the spins are forced to 

align along the applied field thus overcoming the exchange field HE and yielding the saturation 

magnetization MS ≃ 27 × 103 emu/mol. Using the well-known relation: MS = ꭓ
┴

 HE [31] yields ꭓ
┴

 = 

0.135 emu/mol-Oe as the susceptibility perpendicular to the easy axis which is near equal to the peak 

value of ꭓ  just above TN near 5.7 K shown in figure 4(a). This is like the observation in the 

antiferromagnet MnF2, for which  ꭓ
┴

 below TN is nearly temperature independent [25] and equal to the 

peak value of ꭓ  just above TN. For MnNb2O6, the calculated MS = NAgμBSZ = 27.9 × 103 emu/mol at 

absolute zero is quite close to MS ≃ 27 × 103 emu/mol measured at 1.6 K by Nielsen et al [1, 2]. Using 

the equation Hsf = (2HAHE)1/2 [24,26], HE ≃ 200 kOe and Hsf = 18 kOe yields HA = 0.8 kOe as the 

anisotropy field in MnNb2O6 between the easy a-axis and the hard c-axis. This estimated magnitude of 

HA is close to the magnitude of HA calculated by Nielsen et al [1, 2] assuming dipole-dipole interaction 

as the source of anisotropy.  

3.5. Temperature dependence of the paramagnetic susceptibility: 

 The temperature dependence of the magnetic susceptibility  ꭓ = M/H (H = 300 Oe) for the 

temperature range of 1.9 K to 400 K. is shown in figure 10. The larger H = 300 Oe (rather than H = 100 

Oe) was used for these measurements to improve the accuracy of the data for T > 300 K where M with 

H = 100 Oe is comparatively smaller and noisier. However, since M vs. H is linear for T > TN, the 

paramagnetic susceptibility (ꭓ) is independent of H. 

 Following the procedure outlined in our analysis of ꭓ vs. T data for isostructural CoNb2O6 [14], 

we first fitted the data to the modified Curie-Weiss (MCW) law: 

                                                                ꭓ = ꭓ
0
+ 

𝐶

(𝑇−𝜃)
          -------- (4) 

Here  ꭓ
0
 = -1.85 × 10-4 emu.mol-1Oe-1 is determined in the limit of 1/T = 0 from the plot of our data of  

ꭓ vs. 1/T with a focus on the high-T data (see inset of figure 11). This value of ꭓ
0
 is in excellent 

agreement with the theoretical estimate of diamagnetic susceptibility [32] of MnNb2O6 based on adding 

the diamagnetic contributions of the constituent atoms. The plot of (ꭓ - ꭓ0)
-1 vs. T for both ꭓ

0
 = 0 and ꭓ

0
 

= -1.85 × 10-4 emu.mol-1Oe-1 are shown in figure 11, both yielding Ɵ = (-17 ± 2) K from the linear fit 

for T > 100 K but different magnitudes of C = 4.385 (4.297) emu.K.mol-1Oe-1 for ꭓ
0
 = -1.85 × 10-4 (0) 
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emu.mol-1Oe-1.  Using C = NAμ2/3kB (NA = Avogadro’s number, kB = Boltzmann constant) yields μ = 

5.920 μB for ꭓ0 = -1.85 × 10-4 emu.mol-1Oe-1.and μ = 5.862 μB for ꭓ
0
 = 0. Since μ2 = g2S(S+1).μB

2, the 

expected value of μ for S = 5/2 and g = 2 is μ = 5.916 μB, in good agreement with μ = 5.920 μB  and g = 

2.001 obtained for ꭓ0 = -1.85 × 10-4 emu.mol-1Oe-1. For μ = 5.862 μB obtained for ꭓ
0
= 0 yields g = 1.982 

< 2 which is not physical for the S-state of Mn2+. This shows the importance of including the correct 

non-zero ꭓ
0
in the analysis using the MCW law, as also emphasized for the case of Co3O4 [33]. 

3.6. Determination of the exchange constants: 

 The effective spin S = 5/2 of Mn2+ in MnNb2O6 in large enough to be classical like, unlike S = 

½ for CoNb2O6 in which quantum effects were dominant [14]. Therefore, molecular field theory (MFT) 

should provide good estimates of the exchange constants in MnNb2O6. Using the Hamiltonian: 

                                          𝐻 =  −∑ 𝐽𝑖𝑗𝑆𝑖
⃑⃑⃑  . 𝑆𝑗⃑⃑⃑  − 𝑔𝜇𝐵𝐻.∑ 𝑆𝑖

⃑⃑⃑                        ---------- (5) 

the following equation for Ɵ and TN using MFT are obtained [31]: 

                                        3kBƟ = S(S + 1)[J0Z0 + (J1Z1 + J2Z2)]             ----------- (6) 

                                    3kBTN = S(S + 1)[J0Z0 − (J1Z1 + J2Z2)]             ----------- (7) 

Following the Hamiltonian defined in equation (1), J0 is the exchange constant between Mn2+ ions along 

the c-axis with nearest neighbours Z0 = 2. In addition, J1 and J2 are respectively the exchange interaction 

along the b-axis with Z1 = 2 and along the body-diagonal of the ab plane with Z2 = 4. Having only two 

experimental constants Ɵ and TN, only two exchange constants can be determined. Since there are three 

exchange constants in equations (6) and (7), we assume J1 = J2 = J┴ as found to be nearly valid in 

CoNb2O6 [14]. These assumptions, and S =5/2 leads to the following equations for J0 and J┴: 

                                                  J0/kB = 3(Ɵ + TN)/35                            ------------ (8) 

                                                  J┴/kB = (Ɵ − TN)/35                             ------------ (9) 

Using experimental magnitudes of Ɵ = (-17 ± 2) K, and TN = 4.36 K yields J0/kB = (-1.08 ± 0.17) K and 

J┴ = (-0.61 ± 0.06) K. The sum of the three exchange constants J/kB = (J0 + 2J┴)/kB = -2.3 K. This 

magnitude of J/kB ≃ -2.3K is further discussed in the next section. 

 In CoNb2O6, the variation of the paramagnetic  ꭓ vs. T was shown to fit nicely with the 

prediction of Ising linear chain (ILC) using the equation [14,34]: 

𝜒 = 𝜒0 +
𝐶

𝑇
 𝑒𝑥𝑝 (

2𝐽0𝑆2

𝑘𝐵𝑇
)                           ------------- (10) 
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The fit with S = ½ valid for CoNb2O6 yielded J0/kB = (6.2 ± 0.2) K as the ferromagnetic exchange 

coupling between Co2+ ions along the c-axis. For Heisenberg linear chain (HLC), the corresponding 

expression for the temperature variation of ꭓ  is given by [34]: 

                                                        ꭓ = ꭓ
0
+ 

𝐶

𝑇
(
1 + 𝛤

1 + 𝛤
)                               ------------- (11) 

In Eq. (11),  Γ = coth(y) – (1/y) with y = JS2/kBT. We tried fits of the data of  ꭓ vs. T in MnNb2O6 to both 

Eq. (10) for ILC and Eq.(11) for HLC using S = 5/2, C = 4.385 emu.K.mol-1Oe-1 and ꭓ0 = -1.85 × 10-4 

emu.mol-1Oe-1 determined from our analysis based on the MCW law. The fit to Eq.(10) for ILC using 

positive J0 is not possible since in this case there is no peak in ꭓ vs. T. For negative J0/kB = -1.1K, we 

show the fit to ILC in figure 10, the fit failing for T < 100 K. For HLC, we show the fit for three different 

values of J/kB = -1.7 K, -1.9K and -2.1 K. For J/kB = -2.1 K, the fit of the data to HLC is very good 

above 25 K. For T < 20 K, the calculated curve falls below the experimental data, the peak position 

occurring near 15 K compared to about 6 K for the experimental data. This is likely due to neglect of 

anisotropy in the HLC model. So fits of the data to the HLC model for ꭓ vs. T is considered to be 

semiquantitative only since the position of the peak and magnitude of ꭓ for T < 20 K do not match well 

with the HLC model. However, the magnitude of J/kB = -2.1 K determined from the fit to HLC is close 

to total J/kB ≃ -2.3 K estimated from the MFT. For these reasons, J0/kB = -1.08 K and J┴/kB = -0.61 K 

determined earlier are suggested to be reliable estimates of the intrachain and interchain exchange 

interactions in MnNb2O6. There have no other reported estimates of these exchange constants reported 

in MnNb2O6 with which to compare these results. For comparison, J0/kB = 6.2 K, J1/kB = -0.42 K and 

J2/kB = -0.67 K were determined for CoNb2O6 [14]. Although the signs and magnitude of the interchain 

exchange constants for CoNb2O6 and MnNb2O6 are nearly same, theoretical reasons for J0/kB being 

negative in MnNb2O6 and positive in CoNb2O6 still need to be understood. 

4. Concluding Remarks  

 The results reported in this paper on MnNb2O6  include the following: (i) The system orders 

antiferromagnetically below TN = 4.36 K, in agreement with previous reports; (ii) A complete H-T phase 

diagram is presented with a triple point TTP (H, T) = (18 kOe, 4.06 K), spin flop field Hsf ≃ 18 kOe and 

exchange field HE ≃ 200 kOe; (iii) Molecular field theory and fit to the Heisenberg linear chain model 

yields J0 = -1.08 K as the intrachain exchange and J┴ ≃ -0.61 K as the interchain exchange coupling; 

(iv). The anisotropy field HA ≃ 0.8 kOe is determined from the magnitude of the spin-flop field, in good 

agreement with the estimates based on the dipole-dipole interaction; and (v) Analysis of the specific 

heat data on approach to TN yields the critical exponent α = 0.12 (0.15) for T > TN (T < TN). Good 

theoretical understanding is still needed regarding the differences in the magnetic properties of the four-

transition metal niobates MNb2O6 (M = Mn, Fe, Co and Ni) having the same columbite structure, along 
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the lines of our understanding of the magnetic properties of the transition metal oxides MO (M = Mn, 

Fe, Co and Ni) with the NaCl structure [35].     
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