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This paper reports on the performance of pre-service mathematics teachers with regards to 
the use of symmetry in problem solving.  The current study reveals that pre-service teachers 
do not make use of symmetry as their main problem-solving tool, even in situations where 
symmetry is the obvious notion to consider. In addition, a quantitative comparison of the 
effectiveness of problem solving among approaches (those relying on symmetry versus those 
relying on other conventional methods) is reported herein. This formal comparison validates 
the opinion that active usage of symmetry in problem solving significantly enhances the 
chance of solving non-routine problems. 
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INTRODUCTION 
In Singapore schools, the notion of symmetry is first introduced in the lower primary syllabus 
where children of age 9 years old are expected to locate and draw lines of symmetry of a given 
figure, such as a square.  In the upper primary, students built upon this knowledge in their 
study of angles, for instance, it is expected of a Primary 4 student to obtain the size of the 
acute angle made by the diagonal of a square with its side as half that of the right angle, i.e., 
45°.  Moving up to the secondary level, symmetry is invoked primarily in connection with 
geometrical properties of congruent figures as well as the graphs of quadratic functions.  It is 
clear that symmetry in itself is not a fundamental concept in the Singapore Mathematics 
Syllabus; at least not as important as mensuration concepts, such as area and volume, just to 
name one example.  However, symmetry has long been hailed as one of the most powerful 
and commonly-used problem-solving tools by mathematicians (Weyl, 1952; Pólya, 1981; 
Schoenfeld, 1985; Hilton & Pedersen; 1986; Dreyfus & Eisenberg, 1990).The 
aforementioned discussion about symmetry compels us to raise the following questions: 

(1) Does the lack of emphasis on symmetry in the current Singapore Mathematics 
Syllabus significantly handicap the students’ and teachers’ problem solving ability 
in mathematics?   

(2) To what extent is symmetry perceived as one of the heuristics or cognitive 
resources in problem solving, and how often is it invoked? 

Incidentally, the lack of emphasis of symmetry in the Israeli national mathematics curriculum 
was reported, and its effects studied in detail, by Leikin, Berman, and Zaslavsky (2000) as 
well as Leikin (2003). These studies reported that the concept of symmetry is taught only in 
connection with the graphs of quadratic functions in the Israeli mathematics syllabus, and this 
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lack of emphasis of symmetry has resulted in the situation that symmetry is now rarely used in 
problem solving at the secondary level.  Even worse was the revelation that Israeli 
mathematics teachers not only viewed problem solving via symmetry as non-rigorous (i.e., as 
compared to conventional methods), but also were increasingly ignorant of the importance of 
symmetry as an elegant and convenient problem-solving tool in mathematics. 
 
This paper takes a first step towards investigating whether Singapore school teachers are 
sharing the same fate as their Israeli counterpart, e.g., How often do teachers employ 
symmetry in problem solving?  Are the chances of successful problem solving dampened if 
symmetry is not one of the many problem solving heuristics considered or used in the 
problem solving process? 

 

RATIONALE AND METHODOLOGY 

The National Institute of Education (NIE) is the sole teacher-training institute in Singapore, 
where courses such as Postgraduate Diploma in Education and Undergraduate Degree (in 
Education) are conducted for pre-service teachers.  These programs aim to equip the trainee 
teachers with both the content and pedagogical knowledge so that they can function 
effectively as classroom teachers. It is mandatory for all teachers in Singapore 
government-based schools to be trained in NIE.  Problem solving, being the central theme of 
the Singapore Mathematic Curriculum, is a key component in the curricula study of these 
courses. The Pólya’s problem-solving model, comprising of the four strategies (1) 
Understand the problem; (2) Devise a plan; (3) Implement the plan; (4) Check and extend, is 
the main framework taught.  Additionally, students are introduced to 13 different heuristics 
which are rules of the thumb for discovering the solution to a problem (Toh et al, 2008, p.13).     

         Figure 1 : G. Polya’s problem solving model and the 13 problem solving heuristics 
Figure 1 above depicts the Polya’s problem solving model (left), and the 13 problem solving 
heuristics (right).  Since problem-solving expertise is strongly connected to teachers’ content 
knowledge (e.g., Polya, 1963; Silver & Marshall, 1990; Yerushalmy, Chazan & Gordon, 
1990), it is best to minimize the potential interference of (the lack of) content knowledge on 
the outcome of the study by targeting the experiment to a specific group of teachers: the 
pre-service teachers.  As such, pre-service teachers who participated in the study, had just 
completed or were in the process of completing their undergraduate studies in mathematics 



Ho, Ho and Jaguthsing 
 

 
ICME-12, 2012 abcde+2 

(or a mathematics-related discipline), and so the content knowledge was still fresh in their 
minds by virtue of the principle of  recency.  Thus, any significant deficiency in the use of 
symmetry during problem solving observed for this group of subjects could not have been due 
to a lack of content knowledge. 
 
A sample of 96 pre-service teachers (they had been told in advance that the activity would not 
count towards their grades for the course they were taking), who had already received prior 
training in problem solving using the Pólya’s model and the 13 heuristics, were given 15 
minutes to solve the following problem: 
 
Item 1 
A quadratic curve 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 passes through two points (−2,4) and (4,4).  Find the range of 
values of a such that the curve has a minimum point above the x-axis.  
 

The design of the problem was intentional.  In order to be able to draw valid parallel 
conclusions in relation to the Israeli context (as reported in Leikin, 2003), the mathematical 
topic of choice had to be the graphs of quadratic functions and their symmetrical properties.  
The mathematical concepts of “quadratic curve”, “Cartesian coordinates-system”, “range of 
values” and “minimum points” are familiar to all Secondary 3 students in Singapore.  
Moreover, the problem had been phrased in a way that was very similar to frequent 
examination items for this topic, such as the one shown below: 
 
Find the range of values of a for which the quadratic expression (𝑎 − 2)𝑥2 − 𝑎𝑥 + (2𝑎 + 3) is 
positive for all real values of x. 
 
Examining both the explicit and implicit requirements of the item immediately reveals its 
non-routine nature.  Since only two points are supplied for the interpolating quadratic curve, 
the Lagrange Interpolating Polynomial Theorem dictates the degree of freedom in this 
problem to be 1, i.e., one of the quantities (amongst a, b and c) is free to vary.  The constraint 
that the minimum point of the curve must lie above the x-axis further imposes on the freedom 
of that varying quantity.   
 

𝒚 = 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 and Symmetry 
 
The curve 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐  is a parabola that belongs to the general family of conics and is 
geometrically defined as the locus of points equidistant from a fixed line (directrix) and a 
fixed point (focus).  Other than the vertex (V) which lies on the axis of the parabola, there are 
always two points symmetrically placed with respect to the axis for which the above locus 
conditions apply. From Figure 2, we can note that P1F

P1D1
=  P2F

P2D2
, where F is the focus, P1 and 

P2 are points symmetrically placed on the parabola, and D1 and D2 are on the directrix. 
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    Figure 2.  Symmetry in the parabola 
 
Thus, apprehending the bilateral symmetry in a parabola involves identifying the axis and the 
points symmetrically placed on each side of the axis.  Accordingly, knowing points 
symmetrically placed on the parabola, the use of symmetry involves identifying the axis by 
finding the perpendicular bisector of the line joining any two pairs of symmetrically placed 
points on the parabola.  At the school level in Singapore, students are not expected to know 
the terms “conics”, “directrix” or “focus” of a parabola.  However, the bilateral symmetry 
about the axis or line of symmetry is taught to students. 
On the other hand, the general equation 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 can also be written in the form                 
𝑦 = 𝑎(𝑥 + 𝑏

2𝑎
)2 + 4𝑎𝑐−𝑏2

4𝑎
.  Simple observation of this equation highlights the algebraic 

symmetry that replacing 𝑥 + 𝑏
2𝑎

 by −𝑥 − 𝑏
2𝑎

 will not change the equation. What does this 

mean? Since 𝑥 = − 𝑏
2𝑎

 is the equation of axis of the parabola or more specifically the equation 

of the line of symmetry, for any point 𝑃(𝑥, 𝑦) on the parabola, 𝑥 + 𝑏
2𝑎

 represents the distance 
from the axis of the parabola. Thus, the point Q symmetrically placed on the parabola will be 
twice this distance from P. Accordingly, the 𝑥-coordinate of Q is 𝑥 − 2(𝑥 + 𝑏

2𝑎
) or −𝑥 − 𝑏

𝑎
, 

which satisfies the equation of the parabola 𝑦 = 𝑎(𝑥 + 𝑏
2𝑎

)2 + 4𝑎𝑐−𝑏2

4𝑎
, as it yields −𝑥 − 𝑏

2𝑎
 

inside the brackets. Although this algebraic discussion may seem hard for the average student, 
we anticipate that replacing the parameters a, b and c by specific numbers can be an easier 
option. 
 
INSTRUMENT 
 
Our discussion of the solutions S1 and S2 (stated below) to the problem stated as Item 1 
follows the ideas of symmetry of the parabola discussed above. 
 
The item design anticipates the use of a diagram (Heuristic 3 of Figure 1) to clarify problem at 
hand.  This, together with the cognitive resource that the graphs of quadratic functions exhibit 
symmetry, would lead the problem solver to exploit the geometrical symmetry (i.e., notice 
that the y-coordinates of the given points are equal) to locate the axis of symmetry at 
𝑥 = (−2)+4

2
= 1.  The problem solver then draws on his/her cognitive resource that the line of 

symmetry is 𝑥 = − 𝑏
2𝑎

 and so, 𝑏 = −2𝑎.  Again using the line of symmetry 𝑥 = 1 enables us 
to write 𝑄(𝑥) = 𝑎(𝑥 − 1)2 + (𝑐 − 𝑎) . A direct substitution of 𝑥 = −2  (or 𝑥 = 4 ) then 

Axis

Directrix

Parabola  

  

D2 D1

P2 P1

F

V
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results in 𝑐 = 4 − 8𝑎. Since that the y-value at 𝑥 = 1 is positive, 𝑄(1) =  𝑎 + 𝑏 + 𝑐 = 𝑎 +
(−2𝑎) + (4 − 8𝑎) > 0 ⟺ 𝑎 < 4

9
.  Since a necessary condition for the minimum point to lie 

above the x-axis is that the curve is concave upwards, it follows that 𝑎 > 0.  Combining these 
inequalities yields the desired range of values of a, i.e., {𝑎 ∈ ℝ|0 < 𝑎 < 4

9
}.  We label this 

track of solutions as (S1). 
 
Another variant of symmetry that can be exploited is algebraic symmetry.  An instance of 
algebraic symmetry typically involves ‘completing the squares’, i.e., by writing the quadratic 

expression 𝑄(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 ≡ 𝑎 �𝑥 + 𝑏
2𝑎
�
2

+ �𝑐 − 𝑏2

4𝑎
�  and observing that 𝑄(−2) =

𝑄(4) , one has �−2 + 𝑏
2𝑎
� = −�4 + 𝑏

2𝑎
� ⟺ 𝑏

𝑎
= −2 ⟺ 𝑏 = −2𝑎 . Because the perfect 

square creates an algebraic symmetry about zero (i.e., 𝛼2 = (−𝛼)2), we still regard this 
method as one that invokes symmetry.  The problem is subsequently solved, following the 
remaining part of the argument in (S1). We label this track of solutions as (S2).  However, we 
expect few solutions belonging to (S2) since the argument involved seems less natural. 
 
Understandably, we anticipate other solutions which, in general, do not appeal to symmetry at 
all.  We label such a track of solutions as (C), called conventional solutions.  Solutions in (C) 
typically begin with the routine substitutions of 𝑥 = −2  and 𝑥 = 4  to yield a pair of 
simultaneous linear equations: 
                                             4𝑎 − 2𝑏 + 𝑐 = 4…(1) 
                      16𝑎 + 4𝑏 + 𝑐 = 4…(2) 
 
Subtracting (1) from (2) yields 12𝑎 + 6𝑏 = 0 ⟺ 𝑏 = −2𝑎.  Thus, 𝑐 = 4 − (4𝑎 − 2𝑏) =
4 − (4𝑎 + 4𝑎) = 4 − 8𝑎.  At this point, we expect a bifurcation of methods.  (CS1) consists 
of solutions which exploit differential calculus.  Typically, this involves differentiating the 
quadratic function 𝑄(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 to yield 𝑄′(𝑥) = 2𝑎𝑥 + 𝑏.  Equating this to zero 
gives 𝑥 = − 𝑏

2𝑎
= 1.  Substituting this into Q to calculate the corresponding y-value, one has 

𝑄(1) = 𝑎 + 𝑏 + 𝑐 = 𝑎 + (−2𝑎) + (4 − 8𝑎) = 4 − 9𝑎.  Setting this to be positive yields 
𝑎 < 4

9
.  Applying the second derivative test, one requires further that 𝑑𝑄

𝑑𝑥
= 2𝑎 > 0 so that 

𝑎 > 0.  The desired range of values of a is obtained by combining the two inequalities.  (CS2) 
consists of solutions that make use of the discriminant condition.  Relying on the background 
knowledge that 𝑄(𝑥) > 0 for all real x is possible only when a > 0, and additionally, the 
discriminant of Q must be negative, i.e., 𝐷 =  𝑏2 − 4𝑎𝑐 < 0.  We expect many attempts to 
fall within this track. 
 
In summary, Tracks (S1) and (S2) make use of symmetry, and Track (CS) makes use of 
conventional methods such as calculus but not symmetry.  Thus, our classification dictates 
that any solution must fall within one of these tracks, regardless of whether that solution 
eventually leads to the complete solution of the problem.   
 
Measuring the degree of success of an attempted solution is a separate business. For 
comparison purposes, such a measure should be, at worst, unbiased towards any particular 
track of solutions and at the same time give credit according to how much progress is made in 
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the solution for a given solution track.  To do this, we devise a ‘marking scheme’ within each 
track, which is given in Table 1.  Each marking scheme awards constructive progress towards 
the solution of the problem, and maintains consistency with the other parallel marking 
schemes.  For instance, 2 marks are awarded for a solution that reaches the deduction of b = 
-2a or any of its logical equivalent, e.g., x = 1 is the line of symmetry. 
 
The instruments are designed to meet two purposes: (1) compare the degree of success in 
problem among the different solution tracks, and (2) obtain the relative frequency of the 
usage of symmetry in problem solving. 
 
DATA ANALYSIS 
 
We begin with a quantitative data analysis.  Owing to the fact that the observed frequencies in 
symmetry track (S2) falls below 5, we choose to amalgamate (S1) and (S2) into a combined 
track (S).  It was observed that the conventional tracks (CS1) and (CS2) are the main solution 
tracks used, and each of these is of sufficient weightage that they can be considered as two 
distinct tracks.  Similarly, owing to small class sizes, in terms of the marks scored, we have 
collapsed the data into the various progress classes (0-1: Poor; 2: Satisfactory; Good: 3; 
Excellent: 4-5).  The observed absolute and relative frequencies (expressed in percentages) 
for the various progress classes within the tracks (S), (CS1) and (CS2) are tabulated in Table 
2 below.  Depicting relative frequencies as histograms, those associated to each of the 
performance classes are depicted in Figure 3(a), while those associated to each solution track 
(S), (CS1) or (CS2) are depicted in Figure 3(b). 
 
A majority (about 2.5 times) of the subjects used the conventional methods as compared to 
those who used symmetry.  This confirms our expectations that in Singapore schools, 
symmetry is not the mainstream method to be considered or used for problem solving.   At a 5% 
level of significance, a Pearson’s χ2-test indicates that there is a dependency between the 
measure of success of problem solving (marks scored) and the solution tracks used, with a 
p-value of 0.04556 (5 d.p.).   
 
Table 1.  Marking scheme deriving the degree of success of an attempted solution within each 
track 

Marks S1 S2 CS1 CS2 
0 Nothing is correct. Nothing is correct. Nothing is correct. Nothing is correct 
1 Symmetry at x = 1. Completing squares 

correctly. 
Solving simultaneous 
equations to get:  b = -2a. 

Solving simultaneous 
equations to get: b = -2a 

2 b = -2a. b = -2a and obtain the line 
of symmetry at x = 1. 

Solving Q’(x)= 0 to yield 
x = 1. 

b = -2a and either a > 0 or D 
< 0. 

3 b = -2a and a > 0. 
Rewrite Q(x) as 
a(x-1)2+(c-a) or set Q(1) > 
0. 
Did not get c in terms of a. 

b = -2a and a > 0. 
Did not get c in terms of a. 

b = -2a and a > 0. 
Using Q”(x) > 0 to get a > 
0. 
Did not get Q(1) or c in 
terms of a. 

b = -2a and a > 0. 
D  < 0 or completing the 
square correctly. 
Did not get c in terms of a. 

4 Achieving 3 marks and 
Q(1) = 4-9a or c = 4-8a. 
Did not obtain or did not 
explain the answer 
0<a<9/4. 

Achieving 3 marks and 
Q(1) = 4-9a or c = 4-8a. 
Did not obtain or did not 
explain the answer 
0<a<9/4. 

Achieving 3 marks and 
Q(1) = 4-9a or c = 4-8a. 
Did not obtain or did not 
explain the answer 
0<a<9/4. 

Achieving 3 marks and Q(1) 
= 4-9a or c = 4-8a. 
Did not obtain or did not 
explain the answer 0<a<9/4. 

5 Achieving 4 marks and 
obtain 0<a<9/4 with correct 
explanations. 

Achieving 4 marks and 
obtain 0<a<9/4 with correct 
explanations. 

Achieving 4 marks and 
obtain 0<a<9/4 with 
correct explanations. 

Achieving 4 marks and 
obtain 0<a<9/4 with correct 
explanations. 
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Table 2.  Observed absolute (resp. relative) frequencies of marks scored within each solution 
track 

Score S = S1 & S2 CS1 CS2 Total 
0-1 7 (25.00%) 7 (31.82%) 18 (39.13%) 32 (33%) 
2 4 (14.29%) 8 (36.36%) 9 (19.57%) 21 (22%) 
3 12 (42.86%) 6 (27.27%) 7 (15.22%) 25 (26%) 
4-5 5 (17.86%) 1 (4.55%) 12 (26.09%) 18 (19%) 
Total 28 (100%) 22 (100%) 46 (100%) 96 (100%) 

 

 
Figure 3(a):  Histogram of observed relative frequencies within progress class 

 
Figure 3(b): Histogram of observed relative frequencies within solution tracks 

 
Figure 3(a) suggests that people using conventional methods are more prone to mistakes, 
leading to ‘Poor’ progress in problem solving.  Interestingly, the highest relative frequency 
for ‘Good’ performance is achieved by the symmetry track.  This somewhat indicates that 
symmetry as a problem solving tool can be effective in putting people on the right track in 
problem solving, i.e., there is a high chance of achieving good progress if symmetry has been 
considered or invoked.  Also, subjects who employed symmetry had a better chance (more 
precisely, 4 times as likely) of achieving ‘Excellent’ progress than those who employed the 
differential calculus.  To get a sense of the overall effective of each solution track in terms of 
achieving progress in problem solving, we compute the weighted average of the score (based 
on the statistics corresponding to Figure 3(b)) as follows: 
 
 S : 25(0.5) + 14.29(2) + 42.86(3) + 17.86(4.5)  = 250.03 
 CS1  : 31.82(0.5) + 36.36(2) + 27.27(3) + 4.55(4.5)  = 190.915 
 CS2 : 39.13(0.5) + 19.57(2) + 15.22(3) + 26.09(4.5) = 221.77  
 
Based on this rubric, there is a suggestion that symmetry, when employed in problem solving, 
ensures better progress. 
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Next, we make some qualitative remarks concerning the use of symmetry in this problem.  A 
total of 69 responses included a sketch of the quadratic graph, and yet only 5 students made 
use of the symmetry present in the graph to solve the problem.  What this means is that even 
when a pictorial representation (such as a graph) is given, the trigger to invoke symmetry is 
rarely pulled.  Also, there was a sizable portion (about 25% of those who used symmetry) 
calculated the position of the line of symmetry wrongly, given that they knew it was located 
mid-way between x = −2 and x = 4.  
    
DISCUSSION AND IMPLICATIONS 
 
The written responses of the subjects provide sufficient evidence for us to raise the following 
alarm:   Singapore teachers do not employ the concept of symmetry in problem solving as 
frequently as they should, even in cases where symmetry seemed to be the natural track to 
take (e.g., problems related to the bilateral symmetry arising from quadratic graphs).  One of 
the most likely causes for this, we reckon, is the lack of emphasis of symmetry as an 
important mathematical concept in the Singapore mathematics syllabus.  More specifically, 
the relationship between zeros (i.e., the x-intercepts) and the line of symmetry is not stressed 
in most textbooks.  Regarding curve sketching, for instance, there is only one example found 
on p. 53 of the textbook (Fan, 2007).  As for use of symmetry in sketching the quadratic curve, 
there is only one example found on p. 20-21 of the textbook (Teh et al, 2007).  Such a deficit 
can be easily remedied by supplying more examples which make salient use of symmetry in 
the solution of problems related to quadratic functions and their graphs.  Classroom lessons 
can be enriched with activities that are centred about the theme of symmetry in several 
contexts, such as those suggested in Weyl (1952) and Voloshinov (1996). 
 
 
CONCLUDING REMARKS 
 
Using and teaching symmetry should never be seen as an ad-hoc approach or “one-off” 
business.  In order that symmetry be exploited in problem solving, there must be a concerted 
effort to raise the awareness that symmetry is a powerful and convenient problem-solving tool.  
This can be made very explicitly by including it in the list of problem solving heuristics, or by 
mentioning it when examples involve the 6th heuristics of “looking for patterns”.  
Additionally, the concept of symmetry can be intentionally grafted at every possible location, 
especially when geometry is concerned. Take for instance, an alternative definition of a 
rhombus (as opposed to the traditional one that says it is a quadrilateral with all sides equal) is 
a quadrilateral with two lines of symmetry each passing through a pair of opposite vertices. 
 
As mathematics educators, we have a dual responsibility of equipping pre-service and 
in-service teachers with sound mathematical problem solving skills.  The problem used in the 
present study demonstrated that solutions which exploit symmetry tend to be more effective 
and elegant.  More importantly, our study suggests that by considering symmetry as one of 
the problem solving heuristics or tool one heightens the chance of success in the problem 
solving endeavour.  Symmetry seems to tease out the essence of the entire problem.  The 
present study revealed that our pre-service teachers lack a habit of mind of using symmetric 
property of a mathematical entity, such as a graph, in problem solving. We attribute this 
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deficiency to the fact that textbook problems do not give ample exposure on the application of 
symmetry throughout the mathematics syllabus. 
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