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Beyond the quantum Markov approximation and the weak-coupling limit, we present a general theory to
calculate the geometric phase for open systems with and without conserved energy. As an example, the
geometric phase for a two-level system coupling both dephasingly and dissipatively to its environment is
calculated. Comparison with the results from quantum trajectory analysis is presented and discussed.
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I. INTRODUCTION

About 20 years ago, Berry discovered �1� that a state of a
quantum system can acquire a phase of purely geometric
origin when the Hamiltonian of the system undergoes a cy-
clic adiabatic change. Since then, there have been numerous
proposals for generalizations, including the geometric phase
for nonadiabatic, noncyclic, and nonunitary evolution �2�,
the geometric phase for mixed states �3–5�, the geometric
phase in systems with driven quantum field and vacuum-
induced effects �6�, as well as the geometric phase in coupled
bipartite systems �7�.

Recently, much attention has been devoted to the study of
geometric phase in open systems. This is motivated in part
by the fact that all realistic system is coupled, at least
weakly, to their environment. From the perspective of pos-
sible real application, the use of geometric phases in the
implementation of fault-tolerant quantum gates �8–11� re-
quires the study of geometric phases for more realistic sys-
tems. For instance, the system which carries information
may devolve from a quantum superposition into statistical
mixtures, and this effect, called decoherence, is the most
important limiting factor for a quantum computing.

The study of geometric phase in open systems may be
traced as far back as the eighties, when Garrison and Wright
�12� first touched on this issue by describing open system
evolution in terms of non-Hermitian Hamiltonian. This is a
pure-state analysis, so it did not address the problem of geo-
metric phases for mixed states. For the geometric phase for
mixed states in open systems, several approaches have been
proposed including the solution of a master equation of the
system �13–17�, employment of quantum trajectory analysis
�18,19� or the study of Krauss operators �20�, and a pertur-
bative expansions method �21,22� with adiabatic approxima-
tions �23�. These works have yield several interesting results
which may be briefly summarized as follows: Non-Hermitian
Hamiltonian leads to a modification of Berry’s phase �12,21�;
stochastically evolving magnetic fields produce both energy
shift and broadening �22�; phenomenological weakly dissipa-
tive Liouvillians alter Berry’s phase through the introduction
of an imaginary correction term �15� or through damping and
mixing of the density matrix elements �16�. However, nearly

all these studies have been studied for dissipative systems

1050-2947/2006/73�5�/052103�6� 052103
under various approximations; thus, the representations are
only approximately true for systems whose energy is not
conserved. Quantum trajectory analysis �18,19� based on the
quantum jump approach is available for open systems with
conserved energy. Its starting point, however, is the master
equation, a result within the quantum Markov approximation
and in the weak coupling limit. Beyond the quantum Markov
approximation and the weak-coupling limit, the geometric
phase of a two-level system with quantum field driving has
been analyzed �24�, where the whole system �the two-level
system plus the quantum field� was subjected to dephasing.
This is an ideal situation to show the vacuum effects on the
geometric phase of the subsystem, as well as the decoherence
effects on the geometric phases regardless of its feasibility of
experimental realization. However, beyond the Markov ap-
proximation and the weak-coupling limit, the geometric
phase for a dissipative system remains untouched. In this
paper, we will deal with the geometric phase in open sys-
tems, beyond the Markov approximation and weak-coupling
limit.

The structure of this paper is organized as follows. In Sec.
II the exact solution and calculation of the geometric phase
of a system dephasingly coupled to its environment are pre-
sented. An example to detail the representation and a discus-
sion on physical realization are given in Sec. III. In Sec. IV,
we present an example to show the calculation of geometric
phases in dissipative systems. Finally we conclude in Sec. V.

II. GEOMETRIC PHASE IN DEPHASING SYSTEMS:
GENERAL FORMULATION

In this section, we investigate the behavior of geometric
phase of a quantum system under decoherence. In order to
make a comparison with the results based on the quantum
jump approach, we consider the quantum system without any
driving field save for the environment. So, it is not directly
relevant to our previous study �24�. The environment that
leads to decoherence may originate form the vacuum fluc-
tuations or the background radiation. Here, we restrict our-
selves to the case where the system-environment coupling HI
commutes with the free system Hamiltonian HS. This consti-
tutes our dephasing model in which exact analytical dynam-

ics may be obtained. On the other hand, the evolution of a
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system with such properties may be described by the master
equation when the Markov approximation and the weak-
coupling assumption apply; such decoherence would not
change the geometric phase of the quantum system by the
quantum jump approach �18,19�. However, as will be seen,
this is not the case from the perspective of interferometry
methods considered in this paper.

We consider a situation described by a Hamiltonian of the
form

H = HS + HB + HI, �1�

where HS describes the free Hamiltonian of the system, HB
stands for the Hamiltonian of the environment, and HI rep-
resents the system-environment couplings. The environment
and the system Hamiltonian may be arbitrarily taken but with
constraints �HS ,HI�=0. Let us suppose that the interaction
Hamiltonian HI has the form �setting �=1�

HI = �
m

Xm��m
† + �m� , �2�

where the Xm, �m=1,2 , . . . ,M� are the system operators sat-
isfying �HS ,Xm�=0, and the �m represent environment opera-
tors that may take any form in general. The relation
�HS ,Xm�=0 enables us to write the time evolution operator
for the whole systems �system+environment� as

U�t� = e−iHt = e−iHSt�
m

Um�t��Em��Em� , �3�

with Um�t� a function of environment operators satisfying

i
�

�t
Um�t� = He,mUm�t� ,

He,m = HB + �
n

en
m��n + �n

†� . �4�

Here, �Em� stands for the eigenstate of HS with eigenvalue Em
�27�, while en

m denotes the eigenvalue of Xn corresponding to
eigenstate �Em�. For a specific �m, Um�t� may be expressed in
factorized form, which is shown later through the spin-boson
model. Furthermore, we assume that the environment and the
system are initially independent, such that the total density
operator factorizes into a direct product,

��0� = �S�0� � �B�0� = �
mn

�mn�0��Em��En� � �B�0� . �5�

At time t, the reduced density operator of the system is given
by

�S�t� = TrB�U�t��S�0� � �B�0�U†�t��

	 �
mn

�mn�0�e−i�Em−En�t�Em��En�Fmn�t� , �6�

where Fmn�t� is defined as TrB�Um�t��B�0�Un
†�t��. Equation

�6� shows that the diagonal elements of the reduced density
matrix �mm are time independent, while the off-diagonal el-
ements evolve with time involving contributions from the
environment-system couplings. For most cases, this would

lead to a decay in the off-diagonal elements, and eventually
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results in vanishing of these matrix elements. Now, we turn
to study the geometric phase of the open system. For an open
system, the state in general is not pure and the evolution of
the system is not unitary. For nonunitary evolution, the geo-
metric phase can be calculated as follows. First, solve the
eigenvalue problem for the reduced density matrix ��t� and
obtain its eigenvalues �k�t� as well as the corresponding
eigenvectors ��k�t��; second, substitute �k�t� and ��k�t�� into

�g = arg
�
k

��k�0��k�T���k�0���k�T��e−�0
T��k�t���/�t��k�t��dt
 .

�7�

Here, �g is the geometric phase for the system undergoing
nonunitary evolution �25�; T is the total evolution time. The
geometric phase Eq. �7� is gauge invariant and can be re-
duced to the well-known results in the unitary evolution. It is
experimentally testable. The geometric phase factor defined
by Eq. �7� may be understood as a weighted sum over the
phase factors pertaining to the eigenstates of the reduced
density matrix; thus, the detail of analytical expression for
the geometric phase would depend on the digitalization of
the reduced density matrix Eq. �6�.

III. GEOMETRIC PHASE IN DEPHASING SYSTEM:
EXAMPLE

To be specific, we now present a detailed model to illus-
trate the idea in Sec. II. The system under consideration con-
sists of a two-level system coupled to its environment with
interaction strengths �gi�. The Hamiltonian which governs
the evolution of such a system may be expressed as

H =
�

2
��e��e� − �g��g�� +

1

2
��e��e� − �g��g���

i

gi�ai
† + ai�

+ �
i

�iai
†ai, �8�

where ai
†, ai are the creation and annihilation operators of the

environment bosons, and �e�, �g� denote the excited and
ground states, respectively, of the two-level system with Rabi
frequency �. This Hamiltonian corresponds to Xm=X
= 1

2 ��e��e �−�g��g � �, and �m=�=�igiai in the general model
Eq. �2�. Generally speaking, the choice of the coupling be-
tween the system and the environment determines the effect
of the environment. For example, the choice of the system
operator Xm that does not change the good quantum number
of HS would result in dephasing of the system, but not a
relaxation of the energy. The system-environment coupling
taken in this section is exactly of this kind.

By the procedure presented above, the reduced density
matrix in basis ��e� , �g�� for the open system follows �26�:

�S =� cos2 �

2

1

2
sin �F12�t�

1

2
sin �F21�t� sin2 �

2
� , �9�

where an initial state of �cos �
2 �e�+sin �

2 �g�� � �0�B for the

total system was assumed in the calculation, and
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F12�t� = F21
* �t� = F�t� = e−i�te−�j	j�t�, �10�

with 	 j�t�=4 �
gj

� j
�2�1−cos � jt�, and �0�B denoting the vacuum

state of the environment. Some remarks on the reduced den-
sity matrix are now in order. For any j, 	 j�t�
0, so as t
tends to infinity �with respect to the system’s coherence
time�, �F�t�� tends to zero. This indicates that the off-diagonal
elements would vanish on a long time scale with respect to
the decoherence time, and hence the open system would not
acquire geometric phase when time is longer than the deco-
herence time. This is different from the results concluded in
the previous work, where the subsystem may acquire geo-
metric phase even for the whole system in its pointer states
�24�. To calculate the geometric phase pertaining to Eq. �9�,
we first write the eigenstate and its corresponding eigenvalue
for the reduced density matrix �S as

��±�t�� = C��±�t���e� + S��±�t���g� ,

�±�t� =
1

2
�1 ± �cos2 � + sin2 ��F�t��2� , �11�

with

C��±�t�� =
sin �F�t�

�sin2 ��F�t��2 + 4
�±�t� − cos2 �

2

2

, �12�

and �C��±�t���2+ �S��±�t���2=1. We first discuss two limiting
cases with gi=0 and small damping rate �. The discussions
for general cases will be presented in the next paragraph.
Clearly, for a closed system, namely gi=0, F�t�=e−i�t, the
eigenvalues reduce to �±�t�=1,0, and C��+�t��=cos �

2e−i�t,
S��+�t��=sin �

2 , C��−�t��=−sin �
2 , S��−�t��=cos �

2ei�t.
These relations yield the well-known geometric phase �g

�0�

= �1+cos ��. Equation �11� and �12� are the exact results for
the open two-level system; the geometric phase would de-
pend on how F�t� varies with time. For a continuous spec-
trum of environmental modes with constant spectral density

���=�, F�t�=e−i�te−�t with �=2�� �g�2, where gi=g was
assumed. Up to first order in �, the geometric phase �g

�1� at
time T=2� /� is given by

�g
�1� = ��1 + cos �� −

�

�
�2sin2 � . �13�

This result can be easily understood as follows. The geomet-
ric phase factor for mixed states is defined as a weighted sum
over the phase factors associated with the eigenstates of the
reduced density matrix. The dephasing that leads to decays in
the off-diagonal elements would change the phase factors
acquired by each eigenstate of the reduced density matrix.
This modifies the geometric phase. This is different from the
definition in the quantum jump approach �19�, in which the
problem of defining Berry’s phase for mixed states was
avoided by approaching the dynamics of open system from a
sequence of pure states, leading to the result that the geomet-
ric phase is unaffected by dephasing, even though it lowers
the observed visibility in any interference measurements. As

a mixed state, the evolution of the system depends on the
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many trajectories with the corresponding probabilities. Thus,
the geometric phase is defined as a weighted sum over those
trajectories that the system undergoes.

Now, we are in a position to discuss the geometric phase
acquired at time T=2� /� by the two-level system. Substi-
tuting Eqs. �11� and �12� into Eq. �7�, we obtain

�g = �
0

T

��C��+�t���2dt . �14�

It is worth noting that Eq. �14� is the geometric phase beyond
the quantum Markov approximation and the weak-coupling
limit. In this sense it provides us more insight into the geo-
metric phase for dephasing system. The numerical results for
Eq. �14� are presented in Fig. 1, where the dependence of the
geometric phase is illustrated as a function of the azimuthal
angle � and the damping rate �. The spectrum of environ-
mental modes was taken to be 
���=� in this plot. Clearly,
the two-level system acquires zero geometric phase with �
tending to infinity; this indicates that the two-level system
acquires no geometric phase after the decoherence time. The
representation in this paper may be used to analyze and es-
timate the error in the holonomic quantum computation due
to decoherence �28�, in which the key error occurs within the
degenerate subspace. The Hamiltonian that describes such a
system reads H=�i,j,�gi,j

� �a�
† +a�� � i��j � +�i�iai

†ai, where the
degenerate energy was assumed to be zero, and ��i� , i
=1, . . . ,N� denotes the degenerate levels coupled to the en-
vironment with coupling constants �gi,j

� �. This Hamiltonian
can be rewritten as H=��,�g�

��a�
† +a�� ����� � +�i�iai

†ai,
with an appropriate choice of ���=�i=1

N ci � i�. This is exactly
the case discussed in Secs. II and III.

The effect of open system on the geometric phase may be
observed with a combination of the engineering reservoir
technique �29� and the Mach-Zehnder atom interferometer
�30,31�, in which each of the arms consists of an atom in a
dark state. Dark states can be realized in the atom-light sys-
tem that consists of cesium atoms interacting with light reso-

2

FIG. 1. �Color online� An illustration of the geometric phases of
the two-level system coupling to the environment at time T
=2� /�. The phase was calculated in units of �, and � was in units
of radians.
nant with the F=3→F�=3 transitions of the D1 6 s1/2
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→62p1/2 line. It makes the dynamical phase negligible with
respect to the geometric phase. A dephasing engineering res-
ervoir in one arm of the interferometer may be simulated by
variations of the light fields and gives a relative phase to the
atom passing though the arm. The output interference pattern
then yields the geometric phase of the atom system.

One of the key assumptions in our discussion is the
dephasing condition, i.e., �HS ,HI�=0. Exact formulation can
be achieved by using ground states of a quantum system as
the qubits. Suppose now there is an additional small term in
HI, HI�=�mYm��m+�m

† �. Simple algebra shows that the tran-
sition probability between �Em� and �En� due to coupling
Yp��p+�p

†� is proportional to ��p�En �Yp �Em��2 / �Em−En�2,
where �p denotes the maximum of average values of ��p

+�p
†�. In the case of ��p�En �Yp �Em� � � �Em−En�, the open

system may be treated as a dephasing system, because the
transition between any different eigenstates of the system
may be ignored. The case where this transition could not be
ignored will be discussed in the next section.

IV. GEOMETRIC PHASE IN DISSIPATIVE SYSTEMS:
EXACTLY SOLVABLE MODEL

In this section, we will consider a spin-1
2 particle interact-

ing with an environment formed by N independent spins
through the Hamiltonian

H = �
x +
1

2�
k=1

N

gk
z
z
�k�, �15�

where 
i
�k� and 
i, i=x ,y ,z denote Pauli operators for the

environment and spin-1
2 particle, respectively. gk, k

=1,2 , . . . ,N, are coupling constants, term with � stands for
the self-Hamiltonian of the particle. This model is interesting
because the pointer states do not coincide with the eigen-
states of the interaction Hamiltonian. Rather, they can take
the form of coherent states or eigenstates of the system’s
Hamiltonian determined through the interplay between the
self-Hamiltonian and the interaction with the environment.
We will calculate the geometric phase gained by the particle
beyond the Markov approximation and the weak-coupling
limit. The dynamics governed by Hamiltonian Eq. �15� can
be exactly solved by a standard procedure �32�; it yields the
reduced density matrix of the particle as

��t� = �I + p��t� · 
� �/2, �16�

where p��t� is the polarization vector given by p��t�
=�p��t ,B�	�B�dB with �B

2 =�2+B2 and

	�B� =
1

�2�sN
2

e−B2/2sN
2
,

px�t,B� = px�0�
�2 + B2cos�2�Bt�

�B
2 − py�0�

B

�B
sin�2�Bt�

+ pz�0�
2�B

�B
2 sin2��Bt� ,
052103
py�t,B� = py�0�cos�2�Bt� +
sin�2�Bt�

�B
�px�0�B − �pz�0�� ,

pz�t,B� = pz�0�
B2 + �2cos�2�Bt�

�B
2 + px�0�

2�B

�B
2 sin2��Bt�

+ py�0�
�

�B
sin�2�Bt� . �17�

To get this result, it is essential that the couplings gk of Eq.
�15� peak near their average value with finite standard devia-
tion.

By rewriting the reduced density/matrix ��t� in the form

��t� = �1�t���1�t����1�t�� + �2�t���2�t����2�t�� , �18�

we get the geometric phase �25� of the particle acquired at
time �,

�g���� = arg
 �
i=1,2

��i�0��i�����i�0���i����e−�0
���i�t���/�t��i�t��dt
 .

�19�

After simple manipulations, we arrive at

�g� = arg��1���
cos
��0�

2
cos

����
2

e−i�����−��0��

+ sin
��0�

2
sin

����
2


eiC + �2���

�
cos
��0�

2
cos

����
2

ei�����−��0��

+ sin
��0�

2
sin

����
2


e−iC� . �20�

Here,

�1,2 =
1

2
��1 ± �p��0����1 ± �p��t��� ,

cos ��t� =
pz�t�

�px
2�t� + py

2�t� + pz
2�t�

,

tan ��t� =
py�t�
px�t�

,

C =
i

2
�0

� ��

�t
dt + �

0

�

cos �
��

�t
dt
 .

The dependence of the geometric phase �g� on the variance
sN and system free energy � is complicated. We discuss here
two limiting cases: sN�� and sN�� with a specific initial
state px�0�=1, py�0�= pz�0�=0. In the limit sN��, the dy-
namics of the spin-1

2 particle is so slow that its behavior

should approach px�t�=e−2t2sN
2

and py�t�= pz�t�=0, which
yields �g�=0 because �=0 in this limit with the initial state.
In the limit s ��, Eq. �17� gives
N
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px�t� � px�0���
 �

�2sN

 +

cos
2�t +
3�

4



�8�sN
2 t3 � ,

py�t� = pz�t� = 0, �21�

where ��x�=��xex2
�1−Erf�x��, Erf�x� is the error function,

and �� �
�2sN

��1 in this limit. By Eq. �20�, it is clear that �g�
=0 in this limit, too. The numerical result for the geometric
phase as a function of � and sN is shown in Fig. 2. To plot
this figure, we assume that the system has evolved for time
�=2� /�, which is the characterized time for the system un-
dergoing a free evolution. Figure 2 shows that the geometric
phase is zero in the two limiting cases ��sN and ��sN as
expected. There are sharp changes among the line ��sN,
indicating a crossover from the limit ��sN to ��sN.

V. SUMMARY AND DISCUSSION

We have presented a general calculation for the geometric
phase in open systems subject to dephasing and dissipation;
the calculations are beyond the quantum Markov approxima-
tion and the weak-coupling limit. For the dephasing system,
it acquires no geometric phase with the decoherence rate �

FIG. 2. �Color online� The geometric phase of the spin-1
2 par-

ticle vs sN and �. The spin was dissipatively coupled to an environ-
ment and the phase was calculated at time �=2� /�, depending on
the time scale of free evolution of the particle. The units chosen are
the same as in Fig. 1.
�2006�.

052103
→�; this can be explained as an effect of decoherence on the
geometric phase, i.e., the quantum system could not maintain
its phase information after the decoherence time. There is a
sharp change along the line �=� /2 as Fig. 1 shows; this can
be understood in terms of the Bloch sphere that represents
the state of the system. The geometric phase increases due to
decoherence when initial states fall onto the upper semi-
sphere, but it decreases when the initial states are on the
lower semisphere. These results are similar to the prediction
given by the quantum trajectory analysis for dissipative sys-
tems. The geometric phase �g� in dissipative systems is al-
ways zero as long as px�t� / py�t�=constant; this is exactly the
case when � /sN→� or � /sN→0. � /sN→� implies that the
self-energy � of the particle is much larger than the cumu-
lative variance sN of the coupling constants gk. For gk taking
the value +g or −g �g arbitrary� with equal probability, sN

2

=�kgk
2. This tells us that the geometric phase is zero when

the self-Hamiltonian dominates. On the other hand, when
� /sN→0 the interaction Hamiltonian dominates; pointer
states in this situation coincide with the eigenstates of the
interaction Hamiltonian and thus the spin-1

2 particle could
not acquire geometric phase. In the crossover regime �
�sN, the geometric phase changes sharply due to the inter-
play between the self-Hamiltonian and the interaction with
the environment.

These results constitute the basis of a framework to ana-
lyze errors in the holonomic quantum computation, where
two kinds of errors are believed to affect its performance.
This first error would take the system out of the degenerate
computation subspace, while the second takes place within
the subspace. The first kind of error can be eliminated by
working in the ground states and by having a system where
the energy gap with the first excited state is very large. The
second kind of error falls to the regime analyzed in Sec. II
and III, since there is no dissipation but dephasing in the
system, while the first belongs to the regime discussed in
Sec. IV. The calculation presented here in principle allows
one to study the geometric phase at any time scale, and
hence it has advantages with respect to any treatment with
approximations in most literature.
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