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Quantum walks are interesting models with potential applications to quantum algorithms and physical processes
such as photosynthesis. In this paper, we study two models of one-dimensional quantum walks, namely, quantum
walks with a moving absorbing wall and quantum walks with one stationary and one moving absorbing wall.
For the former, we calculate numerically the survival probability, the rate of change of average position, and the
rate of change of standard deviation of the particle’s position in the long time limit for different wall velocities.
Moreover, we also study the asymptotic behavior and the dependence of the survival probability on the initial
particle’s state. While for the latter, we compute the absorption probability of the right stationary wall for different
velocities and initial positions of the left wall boundary. The results for these two models are compared with
those obtained for the classical model. The difference between the results obtained for the quantum and classical
models can be attributed to the difference in the probability distributions.
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I. INTRODUCTION

Analysis of random walks form the basis for the description
of many physical processes such as diffusion processes (e.g.,
Brownian motion or energy transfer in biomolecules for photo-
synthesis) [1], percolation theory in condensed matter physics,
[2] and even the prediction of prices in the stock market.

The ubiquitous application of classical random walks in
numerous physical phenomena has motivated a search for a
quantum analog, which has proven to be useful as a primitive
for quantum algorithms and computing. Indeed, a quantum
walk can be viewed as a multipath interference phenomena.
Moreover, there have been some recent preliminary proofs
that quantum walks could be responsible for the transmis-
sion of the excitation energy to reaction centers in photo-
synthetic complexes such as Fenna-Matthews-Olson (FMO)
bacteriochlorophyll complex [3]. Experimental demonstration
of quantum walks has been shown for nuclear magnetic
resonance systems [4,5], optical systems [6–9], waveguide
lattices [10], ion traps [11,12], and even trapped neutral ions
in an optical lattice [13]. For a gentle introduction to the basics
of quantum walks, please refer to [14].

In Ref. [15], the authors investigated the distribution of
the time spent by a classical random walker to the right of a
boundary moving with constant velocity v. In this paper, we
look at the possibility of analyzing the situation of a quantum
walk with a moving boundary. For a one-dimensional quantum
walk with a stationary absorbing boundary, it has been shown
[16] that the escape probability is slightly greater than 1/3,
unlike the case of a classical random walk, in which the escape
probability is zero.

II. ONE-DIMENSIONAL CLASSICAL AND QUANTUM
WALKS ON AN INFINITE LINE

In this section, we briefly review some of the known
results for classical and quantum walks. For a one-dimensional
classical random walk, one starts at the origin and moves to
the right or left with probability p and 1 − p, respectively. It is

well known from the central limit theorem that in the long time
limit or as t → ∞, the probability distribution function for the
position is given by the Gaussian probability distribution

p(x) = e−(x−μ)2/2σ

√
2πσ

(1)

with mean position at μ = (2p − 1)t� and variance (σ 2) =
4tp(1 − p)�2 where � is the step length.

For the quantum version, one could consider a particle
starting with an extra degree of freedom, namely the coin
state. The coin state is spanned by two basis states: |R〉 and
|L〉, which indicate that the particle will move one unit, for the
next step, to the right and to the left, respectively. The first step
in the quantum walk is a unitary operation U acting on the coin
state that corresponds to the coin toss in the classical setting. In
this paper we will only consider the Hadamard coin operator,
denoted by H , which acts on the coin state as follows:

H : |L〉 �→ 1√
2

(|L〉 + |R〉),
(2)

H : |R〉 �→ 1√
2

(|L〉 − |R〉).

The Hadamard coin flip is then followed by the translation op-
eration. The conditional translation of the system is described
by the unitary translation operator

T = |R〉〈R| ⊗
∑

i

|i + 1〉〈i| + |L〉〈L| ⊗
∑

i

|i − 1〉〈i|, (3)

where the index i runs over all integers. Subsequently, the
Hadamard followed by the translation operator repeatedly act
upon the particle state. At time t = 0, the particle is described
by an initial state, |ψ0〉 ∈ HC ⊗ HP , where HC is the Hilbert
space of the coin space and HP is the Hilbert space of the
position space. After t steps, the state of the system is given
by

|ψt 〉 = (W )t |ψ0〉, (4)

where W = T · (H ⊗ I ) is the walk operator.
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TABLE I. The values of 〈x〉
t

and σ (x)
t

for Hadamard walk with
different initial coin states |ϕ〉.

|ϕ〉 〈x〉
t

σ (x)
t

(1/
√

2,i/
√

2)T 0
√

2−√
2

2 = 0.54119

(0,eiθ )T 2−√
2

2 = 0.29289
√√

2−1
2 = 0.45508

(eiθ ,0)T
√

2−2
2 = −0.29289

√√
2−1
2 = 0.45508

(1/
√

2,1/
√

2)T
√

2−2
2 = −0.29289

√√
2−1
2 = 0.45508

The probability distribution and average position of the
particle after t steps depend on the initial state of the particle.
A limit theorem for the particle’s position x has been derived
in Ref. [17] where it is shown that as t → ∞, X = x

t
→ Y ,

where Y is the limiting random variable. For the initial state
|ϕ〉 ⊗ |0〉 = (α|L〉 + β|R〉) ⊗ |0〉 and unitary coin operator

U =
(

a b

c d

)
,

the probability distribution for the particle’s position has been
shown in Ref. [17] to be

f (X) =
√

1 − |a|2
π (1 − X2)

√
|a|2 − X2

×
[

1 −
(

|α|2 − |β|2 + aαbβ + aαbβ

|a|2
)

X

]
(5)

for X ∈ (−|a|,|a|) and f (X) = 0 for |X| � |a| with the
average and variance given by

〈Y 〉 = −
(

|α|2 − |β|2 + aαbβ + aαbβ

|a|2
)

×(1 −
√

1 − |a|2) (6)

and

〈Y 2〉 = 1 −
√

1 − |a|2. (7)

The rates of change of the average position 〈x〉
t

and standard
deviation σ (x)

t
for different initial coin states |ϕ〉 are given in

Table I.

III. ONE-DIMENSIONAL RANDOM WALK WITH A
STATIONARY ABSORBING BOUNDARY

The classical random walk with a stationary absorbing
boundary can be regarded as a variant of the gambler’s ruin
problem. The gambler’s ruin problem can be described as
follows: A player begins with n dollars but each time he
plays the game, he either wins a dollar with probability p

or loses the same amount with a probability 1 − p. The player
wishes to attain a goal of N dollars in which case he stops
playing. The problem is to determine the probability that he
owes the banker an infinite amount of money (and therefore
is broke). This problem can be mapped to a classical random
walk with the particle initially located at position n and a
stationary absorbing wall placed at position N . In this paper,
we consider the particle to be initially located at n = 0 and

the absorbing boundary to be placed at position N = 1. The
particle has a probability p of moving to the right and 1 − p of
moving to the left. Each step of the walk is independent of the
previous steps. For this model, one can show that the escape
probability of the particle (i.e., the probability that the particle
will never be absorbed by the absorbing wall for t → ∞), is
given by

P esc =
{ 1−2p

1−p
, for p < 1/2,

0, for 1/2 � p � 1.
(8)

In this paper, we only consider the symmetric classical random
walk with equal probability of moving to the left and to the
right. As shown in Eq. (8), for a symmetric classical random
walk, P esc = 0.

Quantum walks with a stationary absorbing boundary have
been discussed at length in Ref. [16]. In this model, the
walk operator W followed by the projective measurements
are repeatedly applied on the particle’s state until the particle
is absorbed by the wall. The projective measurements are
given by the operators 
N

yes = I ⊗ ∑
j�N |j 〉〈j | and 
N

no =
I − 
N

yes, which correspond to asking the question of whether
the particle has reached location N . If the particle’s state is |�〉,
then the answer is yes with probability ||
N

yes|�〉||2 and no with
probability ||
N

no|�〉||2 where after the measurement the state
becomes respectively 
N

yes|�〉 and 
N
no|�〉 (renormalized).

For the case where the initial state of the particle is |R,0〉
and the boundary is placed at position 1; after the first walk the
state will evolve to 1√

2
|L, − 1〉 − 1√

2
|R,1〉. The measurement

at this step then yields an answer yes with a probability∥∥∥∥
1
yes

(
1√
2
|L, − 1〉 − 1√

2
|R,1〉

)∥∥∥∥
2

=
∥∥∥∥ 1√

2
|R,1〉

∥∥∥∥
2

= 1

2
,

and an answer no with another half of the probability after
which the state collapses to |R,1〉 and |L, − 1〉, respectively.
If the answer is yes then the walk is stopped, otherwise the
walk followed by the measurement operators are continuously
applied until a yes answer is obtained. The absorption
probability, which is the probability that a yes answer is
obtained, is given by

P abs
|R〉 (t) =

t∑
t ′=1

∣∣〈R,1|W (

1

noW
)t ′−1|R,0〉∣∣2

, (9)

where W = T · (H ⊗ I ). In contrast to the symmetric classical
random walk, the Hadamard quantum walk with a stationary
absorbing boundary has a nonzero escape probability. For
the Hadamard walk, the escape probability P esc is 1 − 2

π
≈

0.36338 [16,18].

IV. ONE-DIMENSIONAL RANDOM WALK WITH A
MOVING ABSORBING BOUNDARY

In this section, we consider a quantum and a classical one-
dimensional random walk starting at the origin with a moving
absorbing semi-infinite wall. The wall extends infinitely to the
right with its boundary initially located at position N = 1. In
this model as the particle walks with unit step, the wall moves
with constant step length |v|. The wall step length is measured
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in the unit of the spacing between two nearest-neighbor points
on a line, namely,

(i) |v| < 1 if the wall step length is smaller than the lattice
spacing,

(ii) |v| = 1 if the wall step length is the same as the lattice
spacing, and
(iii) |v| > 1 if the wall step length is larger than the lattice

spacing.
The wall velocity v is taken to be positive if the wall moves

to the right and negative if the wall moves to the left. Clearly if
the wall moves away from the particle with a velocity v � 1 per
unit time, the particle is never going to encounter the wall, so
that the escape probability is always unity. On the other hand,
if the wall moves toward the particle with a velocity v � −1,
in the long time limit, the particle will definitely be absorbed
by the wall. Hence, the nontrivial case is when −1 < v < 1.

For quantum walks, the particle absorption process is
represented by projective measurements. The position of the
wall boundary at time t is given by Nt = 1 + vt . Since the wall
moves, the projective measurements applied in this model vary
with time. The projective measurements are given as follows:


�Nt 

yes = I ⊗

∑
j��Nt 


|j 〉〈j |,
(10)


�Nt 

no = I − 
�Nt 


yes ,

where �x
 is ceiling(x), a function that gives an integer not
smaller than x. The projective operators 


�Nt 

yes and 


�Nt 

no

correspond to asking the question of whether the particle hits
the moving absorbing wall whose boundary is at location Nt

at time t . For this model, the absorption probability of the wall
for any arbitrary initial coin state |ϕ〉 can be written as

P abs
|ϕ〉 (t) =

�|Nt−1|
∑
i=1

� i
|v| �∑

t ′=� i−1
|v| �+1

∑
j�2+i sgn(v)−�H (v)


× |〈R,j |�i(t
′)|ϕ,0〉|2�H (t − t ′)
, (11)

where �x� is floor(x), a function that gives an integer not larger
than x. The operator �i(t ′) in Eq. (11) is given as follows

�i(t
′) = (


2+ i sgn(v)−�H (v)

no W

)
t ′−� i−1

|v| �−1

×
i−1∏
k=1

(

2+k sgn(v)−�H (v)


no W
)� k

|v| �−� k−1
|v| �

,

where W is the walk operator given by W = T · (H ⊗ I ),
H (v) is the Heaviside step function, which is defined as

H (v) =
⎧⎨
⎩

0 if v < 0,

1/2 if v = 0,

1 if v > 0,

(12)

and sgn(v) is the signum function, which is defined as follows:

sgn(v) =
⎧⎨
⎩

−1 if v < 0,

0 if v = 0,

1 if v > 0.

(13)

The survival probability is simply given by

P surv
|ϕ〉 (t) = 1 − P abs

|ϕ〉 (t). (14)
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FIG. 1. (Color online) Survival probability of a particle undergo-
ing classical random walks (open squares) and quantum walks with
initial coin state |R〉 (red dots) and |L〉 (blue down triangles) as a
function of the velocity of the wall. Positive velocity corresponds
to the situation in which the absorbing wall moves away from the
particle, and negative velocity to the situation in which the wall
moves toward the particle. The results are obtained from running
the simulation for 1000 time steps.

Similar to the classical case, for the quantum version
when the wall moves with a velocity v � 1 or v � −1, the
escape probability is unity and zero, respectively. However
for v = 0, which corresponds to the case of a stationary
absorbing boundary, it has been shown in Ref. [16,18] that the
escape probability is 1 − 2/π = 0.36338, in contrast with the
classical case where the escape probability is zero. To study
the survival probability for different wall velocities v, we carry
out numerical simulations of the quantum and classical model
for 1000 time steps. Figure 1 shows the survival probability of
a particle undergoing classical random walks (open squares)
and quantum walks with initial coin state |R〉 (red dots)
and |L〉 (blue down triangles) as a function of the wall
velocity v.

Note that for v � 0, the survival probability values for
quantum walks with initial coin state |L〉 and |R〉 are the
same. This result can be deduced from looking at how the
state evolves. If the initial state is |R,0〉, the state will
become 1√

2
(|L, − 1〉 − |R,1〉) after the first walk. For wall

velocity −1 � v � 0, the state |R,1〉 always gets absorbed
by the wall at the first measurement. Hence after the first
walk, the no projective measurement collapses the state into
|L, − 1〉 with a probability of 1

2 . The same thing happens
for the initial state |L,0〉. The subsequent walks will then
begin from the same state |L, − 1〉. Hence, the survival
probability values for both cases are the same. In general, if the
initial coin state is |ϕ〉 = cos θ |L〉 + eiφ sin θ |R〉, after the first
walk, the state will evolve to 1√

2
(cos θ + eiφ sin θ )|L, − 1〉 +

1√
2
(cos θ − eiφ sin θ )|R,1〉. Subsequently, the no projective

measurement collapses the state to |L, − 1〉 with probability
1
2 | cos θ + eiφ sin θ |2. So for v � 0, the survival probability for
an arbitrary initial coin state |ϕ〉, P surv

|ϕ〉 (t)|v�0, is related to the
survival probability for initial coin state |R〉, P surv

|R〉 (t)|v�0, by
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the following equation:

P surv
|ϕ〉 (t)

∣∣
v�0 = 1/2| cos θ + eiφ sin θ |2

1/2
P surv

|R〉 (t)
∣∣
v�0

= | cos θ + eiφ sin θ |2P surv
|R〉 (t)

∣∣
v�0, (15)

where |ϕ〉 = cos θ |L〉 + eiφ sin θ |R〉. For v � 0, the maximum
survival probability is obtained for initial coin state 1√

2
(|L〉 +

|R〉) while the minimum is obtained for initial coin state
1√
2
(|L〉 − |R〉).
Figure 1 shows that there exists a value of wall velocity

above which the survival probability of the classical random
walks is higher than that of the quantum walks with initial
coin state |R〉. This value has been numerically determined
from the data as v ≈ 0.22. It is also observed numerically that
the crossover between the quantum survival probability with
initial coin state |L〉 and its classical counterpart happens at
v ≈ 0.67.

To calculate the survival probability for quantum walks with
an absorbing boundary moving with velocity −1 < v < 1, one
can also consider the dynamics of the walks from the wall’s
reference frame. In this frame, the wall is stationary and the
particle performs biased quantum walks with right-step length
1 − v and left-step length 1 + v. If the values of 1 + v and
1 − v are rational numbers, we can multiply these two values
by a common rescaling factor κ to make them become integer
numbers. After the rescaling, the left-step and the right-step
length will become l and r respectively, where l,r ∈ Z+ and
the initial position of the wall will rescaled to κ . The walks can
then be viewed as biased quantum walks on a rescaled lattice
in the presence of a stationary absorbing boundary. Looking
at the walks from this perspective, we can write the absorption
probability as

P abs
|R〉 (t) =

t∑
t ′=1

r−1∑
i=0

∣∣〈R,κ + i|Ws

(

κ

noWs

)t ′−1|R,0〉∣∣2
(16)

where Ws = Ts · (H ⊗ I ) and

Ts = |R〉〈R| ⊗
∑

i

|i + r〉〈i| + |L〉〈L| ⊗
∑

i

|i − l〉〈i|.
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FIG. 2. (Color online) The survival probability versus time plots
for classical random walks (CRW) and quantum walks with initial
coin state |R〉 (QWR) in the presence of stationary absorbing wall
(v = 0) placed at position 1. The particle is initially placed at
position 0.

From the absorption probability, we can then calculate the
survival probability by simply subtracting the absorption
probability from unity.

From the simulation, we observe that the asymptotic
behavior of the survival probability for the quantum walks
differs from that for the classical random walks. As can be
seen from Fig. 2, the survival probability for classical random
walks decays as 1/

√
t in the long time limit while the survival

probability for quantum walks reaches the asymptotic value
faster than its classical counterpart. This is due to the fact that
the quantum walk behaves as two moving wave packets, one
moving to the right and the other one moving to the left. The
right-moving wave packet moves ballistically toward the wall.
As soon as it is absorbed by the wall, the survival probability
reaches its asymptotic value as the left-moving wave packet
always moves away from the wall hence it will never be
absorbed by the wall. On the other hand for the classical walk,
the particle spreads diffusely, which explains the slower rate
of convergence of the classical survival probability compared
to its quantum counterpart.

For each time step, the probability distribution for the
particle’s position changes and hence the average position of
the particle also varies with time. From the simulation results,
we calculate the rate of change of average position of the
particle in the long time limit. The average position of
the particle 〈x〉 is calculated as follows. The probability
distribution for the position is continuously renormalized to
unity at each time step to take into account those probabilities
that have been absorbed by the wall. The average position
at each time step is then calculated from this renormalized
probability. From the values of the average position obtained,
we compute the rate of change of average position of the
particle. Figure 3 displays the graph of the rate of change of
the particle’s average position 〈x〉

t
in the long time limit versus

the wall velocity v.
As shown in Fig. 3 for the classical case, the value of

〈x〉
t

, in the long time limit, does not change for v > 0 and
it is equal to the wall velocity v for v < 0. The reason for
the above observation can be argued as follows. For v > 0,
where the wall moves away from the particle, the long time
limit probability distribution for the particle’s position can
be approximated as a truncated Gaussian distribution where

1.0 0.5 0.0 0.5 1.0
1.0

0.8

0.6

0.4

0.2

0.0

0.2

velocity v

x
t

FIG. 3. (Color online) The rate of change of the particle’s average
position as a function of the velocity of the wall v for classical (open
squares) and quantum walks with initial coin state |R〉 (red dots) and
|L〉 (blue down triangles).
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the truncation happens at the tail of the distribution. In the
long time limit, the probability that the particle is absorbed by
the wall at each time step is small compared to the survival
probability, hence the truncated Gaussian distribution does
not change with time when the remaining probabilities are
renormalized. As a result, the average position of the particle
also remains unchanged with time.

On the other hand, for v < 0, which corresponds to
the case where the wall moves toward the particle, at
each time step the probability that the particle is absorbed
by the wall is no longer small compared to the survival
probability. However, from the simulation result, it is ob-
served that the renormalized probability distribution can
still be approximated by a truncated Gaussian distribution,
where the truncation occurs at the position of the wall
Nt = 1 + vt .

Figure 4 shows the probability distributions for several
values of v. From the figure, we can see that the probability
distributions for a classical random walk with a moving
absorbing wall are well approximated by the Gaussian dis-
tributions. For v < 0, it is also observed from the simulation
that the peak of each Gaussian distribution drifts with a
velocity equal to the wall velocity v. So, the peak position
of the Gaussian distribution at time t can be expressed as
μ(v) = vt + α(v), where α(v) is a constant whose value
depends on the wall velocity. To a good approximation, the
renormalized probability distribution can be approximated by

f (x) = 1

Z

1

σ (v)
√

2π
exp

[
− 1

2

(
x − μ(v)

σ (v)

)2 ]
(17)

where Z = ∫ 1+vt

−∞
1

σ (v)
√

2π
exp[− 1

2 ( x−μ(v)
σ (v) )2]dx. For v < 0, the

average position for the classical random walk is then given
by

〈x〉 =
∫ 1+vt

−∞
xf (x)dx

=
∫ 1+vt

−∞

1

Z

1

σ (v)
√

2π
x exp

[
− 1

2

(
x − μ(v)

σ (v)

)2 ]
dx

≈ μ(v) − 1

Z

σ (v)√
2π

exp

[
− 1

2

(
1 + vt − μ(v)

σ (v)

)2 ]

〈x〉
t

= v + α(v)

t
− 1

Zt

σ (v)√
2π

exp

[
− 1

2

(
1 + vt − μ(v)

σ (v)

)2 ]
t→∞−→ v. (18)

So, in the long time limit, for v < 0 the rate of change of
the particle’s average position is equal to the wall velocity
v. This agrees with the numerical simulation results plotted
in Fig. 3. For v > 0, the rate of change of the average
position goes asymptotically (with t) to zero since the peak
of the Gaussian distribution remains stationary at position
0. Moreover, it can also be seen from Fig. 3 that the value
of 〈x〉

t
for classical and quantum walks are the same for

v � −0.7. There is a bifurcation between the classical and
quantum graphs at v ≈ −0.7. This can be attributed to the
reason that for −1 � v � −0.7, the probability distributions
induced by these two types of walks can be approximated by a
truncated Gaussian distribution, which can be verified from the
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(a) Wall velocity v = −0.6
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(b) Wall velocity v = 0
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(c) Wall velocity v = 0.6

FIG. 4. (Color online) The probability distribution of the parti-
cle’s position for classical random walks with a moving absorbing
boundary after 1000 time steps. The wall moves with a velocity v and
is initially placed at position 1.

simulation. Outside this velocity range, the average position
for the quantum and classical walks changes with different
rate.

For quantum walks with wall velocity v � 0, the rate of
change of the particle’s average position is the same for all
initial coin states. The reason is that regardless of the initial
coin state, the surviving state after the first measurement is
always |L,−1〉. Hence, the subsequent evolutions after the
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first measurement will give rise to the same renormalized
probability distribution for all initial coin states.

For the quantum case, it is also observed that the value of
〈x〉
t

is about −0.612 when v = 0, but it is different for different
initial coin states for v > 0. For the initial coin state |R〉, 〈x〉

t

is zero when v ≈ 0.6 and asymptotically approaches 0.2929
when v increases to 1. It is likely that the value for 〈x〉

t
is

zero at v = 0.612. This is because the particle is drifting with
an average speed of 0.612 away from the wall when it is not
moving, so when the wall is moving at 0.612, the speed of the
particle will be nearly zero, the relative speed being the same.
For the initial coin state |L〉, 〈x〉

t
is always negative because

the left wave packet, having a higher peak than the right wave
packet, always moves to the left. The value of 〈x〉

t
for coin state

|L〉 asymptotically approaches -0.2929 when v increases to 1.
For v � 1, there are effectively no boundaries and for a

quantum walk with initial coin state |R〉, the probability density
function fR(X), Eq. (5) [17,18] with α = 0 and β = 1 and
Hadamard coin operator, is given by

fR(X) = 1

π (1 − X)
√

1 − 2X2
, (19)

for −1/
√

2 � X � 1/
√

2, giving an asymptotic rate of change
of average position as 2−√

2
2 ≈ 0.2929 (Table I). For the initial

coin state |L〉, the probability density function fL(X) for
−1/

√
2 � X � 1/

√
2 is

fL(X) = 1 − X

π (1 − X2)
√

1 − 2X2
, (20)

giving an asymptotic value of 〈x〉
t

for v � 1 as −2+√
2

2 ≈
−0.2929 (Table I).

Figure 5 shows the rate of change of standard deviation
versus the wall velocity v for quantum walks with initial
coin state |L〉 and |R〉. For both cases, the value of σ (x)

t
is√

(
√

2 − 1)/2 ≈ 0.4551 for v � 1. For 0 < v < 1, the value

of σ (x)
t

is greater for coin state |R〉 because in this velocity
range, the probability distribution for coin state |R〉 is more

1.0 0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

velocity v

σ
x

t

FIG. 5. (Color online) The rate of change of the standard
deviation of the particle’s position for quantum walks with initial
coin state |R〉 (red dots) and |L〉 (blue down triangles) as a function
of the velocity of the wall v. The graph approaches the value of√

(
√

2 − 1)/2 as v increases to 1. For the classical case, the rate of

change of the standard deviation is proportional to 1/
√

t which goes
to zero as t → ∞.

spread out, which can be verified from the numerical results.
In contrast to the quantum case, the rate of change of standard
deviation for a classical random walk follows 1√

t
behavior, so

that the value approaches zero as t → ∞.

V. ONE-DIMENSIONAL RANDOM WALK WITH A
MOVING ABSORBING LEFT BOUNDARY AND A
STATIONARY ABSORBING RIGHT BOUNDARY

In this section, we consider classical and quantum walks
on a line with one stationary and one moving absorbing
semi-infinite wall. The stationary wall has its boundary placed
at position N = 1 and extends infinitely to the right, while
the moving absorbing wall extends infinitely to the left
with its boundary initially placed at position −M , where
−M ∈ Z−. The particle is initially located at the origin. As
the particle walks, the left wall moves with a constant velocity
vM (measured in the unit of lattice spacing). The velocity vM

is positive if the wall moves to the right and negative if it
moves to the left. So at time t , the position of the left wall is
Mt = −M + vMt and the particle’s position x is constrained
in the region where �Mt
 � x � 0.

For the quantum case, the projective measurements are
given as follows


1
yes = I ⊗

∑
j�1

|j 〉〈j |,


�Mt �
yes = I ⊗

∑
i��Mt �

|i〉〈i|, and


(1,�Mt �)
no = I − 
1

yes − 
�Mt �
yes ,

where �x� is floor (x), a function that gives an integer not larger
than x. The projective operator 
1

yes corresponds to asking
the question of whether the particle hits the right stationary
absorbing wall at position 1. Similarly, the projective operator



�Mt �
yes corresponds to asking the question of whether the

particle hits the left-moving absorbing wall whose boundary
is at location Mt at time t . The third projective measurement



(1,�Mt �)
no gives an answer no to the question “Does the particle

hit either of the absorbing walls?”.
For this model, we are interested in finding out the

probability that the particle is absorbed by the right stationary
wall P abs(t) in the long time limit. The absorption probability
of the right wall for an arbitrary initial coin state |ϕ〉 can be
written as

P abs
|ϕ〉 (t) =

�|Mt+M|
∑
i=1

� i
|vM | �∑

t ′=� i−1
|vM | �+1

×
∑
j�1

|〈R,j |�i(t
′)|ϕ,0〉|2�H (t − t ′)
. (21)

The operator �i(t ′) in Eq. (21) is given by

�i(t
′) = (


(1,−1+ i sgn(vM )−�H (vM )�)
no W

)
t ′−� i−1

|vM | �−1

×
i−1∏
k=1

(

(1,−1+k sgn(vM )−�H (vM )�)

no W
)� k

|vM | �−� k−1
|vM | �

,
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FIG. 6. (Color online) The absorption probability of the right wall
versus left wall velocity vM plots for two-boundaries classical random
walks with the left wall having different initial position −M and the
right stationary wall placed at position 1. The results are obtained
from running the simulation for 1000 time steps.

where W is the walk operator given by W = T · (H ⊗ I ),
H (v) and sgn(v) are the Heaviside step function and signum
function defined in Eqs. (12) and (13), respectively.

To obtain the absorption probability of the right wall P abs(t)
for different velocity vM and initial position of the left wall −M ,
we run the simulation for 1000 time steps. The simulation
results obtained for the classical and quantum case are shown
in Figs. 6 and 7, respectively.

For the quantum case, we consider the initial coin state
|R〉. The simulation results obtained for vM = 0, which
corresponds to two stationary absorbing boundaries case, are
exactly the same as the analytical results given in Ref. [19].
From the simulation results, a comparison is made between
the absorption probability for the two walls case and that
for the one stationary absorbing wall case. This comparison
reveals that the presence of the left wall at position −M � −2,
moving with a velocity −1 < v � 0, increases the value of
the absorption probability of the right stationary wall beyond
the absorption probability value of 2/π = 0.6366 for the one
stationary boundary case. This is due to the reason that the

 0
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 0.6

 0.8

 1
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FIG. 7. (Color online) The absorption probability of the right wall
versus left wall velocity vM plots for two-boundaries quantum walks
with the left wall having different initial position −M and the right
stationary wall placed at position 1. The results are obtained from
running the simulation of quantum walks with initial coin state |R〉
for 1000 time steps.

presence of the left wall disturbs the interference pattern of the
particle’s state in such a way that it increases the absorption
probability of the right wall. For the case where vM = 0,
one can show that, by using the method given in [19], the
absorption probability of the right wall follows the conjecture
given in [18], where

P abs
|R〉 = 1√

2
× (3 + 2

√
2)M − 1

(3 + 2
√

2)M + 1
, for M � 0. (22)

For the model considered here, the absorption probability is
the same for the initial coin state |R〉 and |L〉. This fact can be
deduced from looking at the evolution of the particle’s state.
Following the same reasoning given for the one stationary
boundary case, we can obtain the absorption probability for an
arbitrary initial coin state |ϕ〉 from the absorption probability
for the initial coin state |R〉 as follows. After the first walk,
the initial state |R,0〉 will evolve to 1√

2
(|L, − 1〉 − |R,1〉).

The state |R,1〉 is then absorbed with probability 1/2 and
the state |L, − 1〉 is measured with another half of the
probability. For the initial state |ϕ〉 ⊗ |0〉, after the first
walk, the state will evolve to 1√

2
(cos θ + eiφ sin θ )|L, − 1〉 +

(cos θ − eiφ sin θ )|R,1〉). The |R,1〉 state is then absorbed
by the right wall with probability 1

2 |(cos θ − eiφ sin θ )|2.
Subsequently, the evolution will begin from the state |L, − 1〉
with probability amplitude (cos θ + eiφ sin θ ). Thus, for the
first measurement, the absorption probability for initial coin
state |ϕ〉 is the same as the absorption probability for coin
state |R〉 multiplied by | cos θ − eiφ sin θ |2. After the first
measurement, the probability absorbed at each time step for
initial coin state |ϕ〉 is then equal to the probability absorbed
for the initial coin state |R〉 multiplied by | cos θ + eiφ sin θ |2.
Therefore, the absorption probability for an arbitrary coin state
|ϕ〉 can be written as

P abs
|ϕ〉 (t = t ′) = | cos θ − eiφ sin θ |2P abs

|R〉 (t = 1) + | cos θ

+ eiφ sin θ |2[P abs
|R〉 (t = t ′) − P abs

|R〉 (t = 1)
]

= (| cos θ − eiφ sin θ |2 − | cos θ + eiφ sin θ |2) 1
2

+ | cos θ + eiφ sin θ |2P abs
|R〉 (t = t ′)

= −2 cos θ sin θ cos φ + | cos θ

+ eiφ sin θ |2P abs
|R〉 (t = t ′), (23)

where P abs
|ϕ〉 (t = t ′) and P abs

|R〉 (t = t ′) are the absorption proba-
bility of the right wall at time t ′ for arbitrary initial coin state
|ϕ〉 and |R〉, respectively. In the third line of Eq. (23), we have
used the fact that P abs

|R〉 (t = 1) = 1
2 .

Now, let us compare the results between the quantum
and the classical case. As shown in Fig. 7, for quantum
walks the absorption probability of the right wall has only
a weak dependence on the initial position of the left wall. The
reason is that regardless of the initial position of the left wall,
only the right-moving wave packet is absorbed by the right
wall while the left-moving wave packet always moves away
from the right wall. On the other hand, for classical random
walks the absorption probability of the right wall depends
strongly on the left wall’s initial position, as can be seen from
Fig. 6. This is because for the classical case the particle moves
randomly to the left or to the right, which gives rise to a
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probability distribution that broadens with time but has a peak
remaining stationary at the initial position of the particle. If
the left wall’s position is closer to the initial position of the
particle, the particle has a higher chance to be absorbed by
the left wall, hence the absorption probability of the right wall
decreases.

VI. CONCLUSION

We have discussed one-dimensional classical and quantum
walks in the presence of a moving absorbing wall. These two
types of walks differ in the probability distribution, survival
probability, and the rate of change of average and standard
deviation of the particle’s position. For the case of the discrete
classical random walk with a moving absorbing boundary
initially placed at position N = 1, the survival probability
vanishes for v � 0 while the survival probability for its
quantum counterpart only goes to zero when the wall moves
toward the particle with a velocity v � −0.7. Furthermore, as
the wall velocity v increases to 1, there is a crossover between
the survival probability for the classical and quantum case. The
value of the wall velocity v at which this crossover happens is
dependent on the initial coin state of the quantum walks. For
initial coin state |R〉, this happens at v ≈ 0.22 while for initial
coin state |L〉, it happens at v ≈ 0.67.

Moreover, we have also shown that for v � 0, the survival
probability for quantum walks with an arbitrary initial coin
state |ϕ〉 can be related by a simple expression to the survival
probability for initial coin state |R〉. In terms of its asymptotic
behavior, the survival probability for the classical case decays
as 1/

√
t while that for the quantum case approaches its

asymptotic value faster than this rate.
Besides the survival probability, we have also studied the

rate of change of the average position for quantum and classical
random walks with a moving absorbing boundary. For wall
velocity −1 � v < 0, the rate of change of the average position
for the classical random walks is equal to the wall velocity v

while for v > 0, the average position of the particle does not
move at all. For quantum walks, the value of 〈x〉

t
depends on

the initial coin state for v > 0. The values for the classical
and quantum walks are identical for v < −0.7. The difference

between quantum and classical walks is also reflected in the
standard deviation of the position. For quantum walks, the
standard deviation is proportional to t , while for classical walk,
it is proportional to

√
t .

For the case of quantum walks with one stationary and
one moving absorbing boundary, we have shown that the
absorption probability for an arbitrary initial coin state |ϕ〉
is related to that for initial coin state |R〉 in a simple way.
For the trivial case where the velocity of the left wall is zero,
we reproduce the analytical result obtained in the literature.
Furthermore, it is also observed that the presence of the left
wall at position −M � −2 moving with velocity −1 � v � 0
increases the absorption probability of the right stationary
wall, which is placed at position N = 1, beyond the absorption
probability value for the one stationary boundary case.

To end the discussion, here we suggest a few possible
directions for future research. One natural extension of the
study of random walks on a line is the study of the walk
on a general graph and higher dimension, which may reveal
other interesting features of the quantum walk dynamics.
Moreover, it is also interesting to extend the study to the
case of continuous-time quantum walks. The results obtained
from these studies may help us to understand more about the
differences between the quantum and classical case.

Classical random walks with moving absorbing boundary
are widely used to model a variety of phenomena such as
the deposition, coalescence, diffusion capture process, etc.
[20]. Therefore, we expect the quantum walks with moving
absorbing boundary to play a significant role in simulating
various physical phenomena at quantum level. Future study
on this subject may reveal more of the power of quantum
walks as a modeling tool for physical phenomena.
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