Author	Liew, Voon Hooi
Title	On the triviality of $\lambda \phi^4$ model : numerical studies in different dimensions
Institute	Thesis (Ph.D.) National Institute of Education, Nanyang Technological University
Year	2008
Supervisor	Foong, See Kit

On the Triviality of $\lambda \phi^4$ Model – Numerical studies in different dimensions

Liew Voon Hooi

Natural Sciences and Science Education Academic Group National Institute of Education Nanyang Technological University

Abstract

The aim of this thesis is to study the long standing problem of triviality of the four dimensional $\lambda \varphi^4$ model. We adopted the DeWitt's Ansatz proposed for the two-point function on the lattice: $\tilde{\Gamma}^{\bar{k}\bar{k}'} = Z\delta_{\bar{k},-\bar{k}'}/(\mu_{Reff}^2 + K^2(\bar{k}) + \alpha [\mu_{Reff}^2 + K^2(\bar{k})]^2)$ where α is a parameter that measures the departure from triviality. Our approach is different from the traditional method which relied on the analysis of the renormalized coupling constant λ_R . DeWitt's Ansatz was tested in a parallel study by L. Kuppan[46] in 2D $\lambda \varphi^4$ model and has proved to be effective. In this work, Monte Carlo simulations for the 4D Euclidean $\lambda \varphi^4$ model were performed and the simulation results were then fitted with the Ansatz; evidence of non-triviality was found upon evaluating the continuum limit. In addition, consistent preliminary simulation results for 5D $\lambda \varphi^4$ model were obtained. This together with the previous 2D results serves as consistency check on our approach. We also adopted the Chen-Ferrenberg-Landau[44] method to determine accurately the critical point μ_c^2 for different dimensions.