Now showing 1 - 7 of 7
  • Publication
    Restricted
    Developing a translating educational neuroscience Clearinghouse for the differentiated instruction of diverse learners
    (Office of Education Research, National Institute of Education, Singapore, 2024) ;
    Chen, Annabel Shen-Hsing
    ;
    ; ;
    Walker, Zachary
    ;
    Hale, James B.

    With increasing interest in the possible contributions of neuroscience research to educational practice, the field of ‘educational neuroscience’ has emerged. Educational neuroscience (also known as ‘mind, brain, and education’ or ‘neuroeducation’) integrates the disciplines of neuroscience, cognitive psychology, and education, and it seeks to study the relationship between the brain, mental processes, and behaviours using a combination of neuroscience and behavioural methods (Szűcs & Goswami, 2007). Neuroscience and behavioural data can inform our understanding of learning and can therefore inform educational practice (Howard-Jones et al., 2016). Some examples are: neuroscience data alongside behavioural data constrain psychological theories (Gabrieli, 2016), neuroscience provides new insights into the learning processes (De Smedt, 2018), and neuroscience leads to the development of new instructions (Howard-Jones et al., 2016). However, challenges exist in applying theoretical knowledge from neuroscience research to inform educational practice in order to impact classroom outcomes in the real world (Bowers, 2016a, 2016b; De Smedt, 2018; Thomas, Ansari, & Knowland, 2019).

    A major challenge in applying neuroscience research to inform educational practice is that there is a gap between the study of how the brain works and the practice in classroom, i.e., the neuroscience-education gap. Neuroscientists understand the relationship between brain and behaviour, but they have little knowledge about classroom instruction; educators understand classroom instruction, but they have little knowledge about the relationship between brain and behaviour (Ansari, De Smedt, & Grabner, 2012). The different languages used in the fields of neuroscience and education make the communication between the two fields and the understanding of each other difficult. Misinterpretations can occur when neuroscientists who have little knowledge about classroom instruction turn an experimental task into a classroom intervention or when educators who have little knowledge about the relationship between brain and behaviour over-interpret brain imaging findings (De Smedt, 2018). As a result, efforts to translate neuroscience research into meaningful educational practice have been quite limited.

    Bridges can be built at multiple levels to bring the neuroscience-education gap closer, and one way of applying neuroscience research to inform educational practice is by developing educator brain literacy (Ansari & Coch, 2006). Brain literacy is the understanding of the relationship between brain and behaviour; developing educator brain literacy is helping educators understand how the brain learns. The rationale for developing educator brain literacy is: (1) the brain is constantly changing in response to the environment (e.g., Dubinsky, Roehrig, & Varma, 2013); (2) cognitive diversity is the norm (i.e., there are individual differences in the ability to learn) for all children (e.g., Hale, Fiorello, Kavanagh, Holdnack, & Aloe, 2007); and (3) designing instruction based on the understanding of cognitive diversity maximises a student’s learning and potentially prevents learning difficulties from developing into a lifelong disability (e.g., Koziol, Budding, & Hale, 2013).

    Given that teaching changes the brain, brain literacy is potentially very useful for educators (Walker, Chen, Poon, & Hale, 2017). First, brain literacy can sensitise educators to individual differences in the ability to learn, which can help them differentiate instruction to meet the needs of diverse learners (e.g., Tomlinson, 2014). Specifically, brain literacy can help educators develop the skills to serve all students by recognising the impact of individual differences in the ability to learn on their instructional processes and student outcomes. Brain literate educators are more likely to understand and meet the diverse learning needs of students by recognising the signs and symptoms exhibited by students and applying alternative instructional strategies. Second, brain literacy enables educators to consider both brain and behavioural information when designing curriculum and instruction to improve student outcomes. Considering both brain and behavioural information may be more beneficial compared to considering behavioural information alone (Gabrieli, Ghosh, & Witfield-Gabrieli, 2015). Therefore, acquiring brain literacy has potential to empower teachers to re-evaluate the effects of their practices (Schwartz et al., 2019) in light of newfound neuroscience evidence, which although has yet to be empirically tested, may be beneficial for their students.

      10  36
  • Publication
    Open Access
    Developing a translating educational neuroscience clearinghouse for the differentiated instruction of diverse learners.
    (National Institute of Education (Singapore), 2019) ;
    Chen, Annabel Shen-Hsing
    ;
    ; ;
    Walker, Zachary
    ;
    Hale, James B.
      395  295
  • Publication
    Open Access
    Meta-analytic connectivity modelling of functional magnetic resonance imaging studies in autism spectrum disorders
    (2023) ;
    Low, Li Tong
    ;
    Fox, Peter T.
    ;
    Fox, Peter Mickle
    ;
    ;
    Bhowmick, Sourav S.
    ;
    Chen, Annabel Shen-Hsing
    Social and non-social deficits in autism spectrum disorders (ASD) persist into adulthood and may share common regions of aberrant neural activations. The current meta-analysis investigated activation differences between ASD and neurotypical controls irrespective of task type. Activation likelihood estimation meta-analyses were performed to examine consistent hypo-activated and/or hyper-activated regions for all tasks combined, and for social and non-social tasks separately; meta-analytic connectivity modelling and behavioral/paradigm analyses were performed to examine co-activated regions and associated behaviors. One hundred studies (mean age range = 18–41 years) were included. For all tasks combined, the ASD group showed significant (p < .05) hypo-activation in one cluster around the left amygdala (peak − 26, -2, -20, volume = 1336 mm3, maximum ALE = 0.0327), and this cluster co-activated with two other clusters around the right cerebellum (peak 42, -56, -22, volume = 2560mm3, maximum ALE = 0.049) Lobule VI/Crus I and the left fusiform gyrus (BA47) (peak − 42, -46, -18, volume = 1616 mm3, maximum ALE = 0.046) and left cerebellum (peak − 42, -58, -20, volume = 1616mm3, maximum ALE = 0.033) Lobule VI/Crus I. While the left amygdala was associated with negative emotion (fear) (z = 3.047), the left fusiform gyrus/cerebellum Lobule VI/Crus I cluster was associated with language semantics (z = 3.724) and action observation (z = 3.077). These findings highlight the left amygdala as a region consistently hypo-activated in ASD and suggest the potential involvement of fusiform gyrus and cerebellum in social cognition in ASD. Future research should further elucidate if and how amygdala-fusiform/cerebellar connectivity relates to social and non-social cognition in adults with ASD.
    WOS© Citations 4Scopus© Citations 5  77  45
  • Publication
    Open Access
    Evidence of high-intensity exercise on lower limb functional outcomes and safety in acute and subacute stroke population: A systematic review
    (2022)
    Mah, Shi Min
    ;
    ;
    Seow, Hui Chueng
    ;
    This systematic review investigated the effects of high-intensity exercise (HIE) on lower limb (LL) function in acute and subacute stroke patients. A systematic electronic search was performed in PubMed, CINAHL and the Web of Science from inception to 30 June 2022. Outcomes examined included LL function and measures of activities of daily living such as the Barthel index, 6 min walk test (6MWT), gait speed and Berg balance scale (BBS), adverse events and safety outcomes. The methodological quality and the quality of evidence for each study was assessed using the PEDro scale and the Risk of Bias 2 tool (RoB 2). HIE was defined as achieving at least 60% of the heart rate reserve (HRR) or VO2 peak, 70% of maximal heart rate (HRmax), or attaining a score of 14 or more on the rate of perceived exertion Borg scale (6–20 rating scale). This study included randomized controlled trials (RCTs) which compared an intervention group of HIE to a control group of lower intensity exercise, or no intervention. All participants were in the acute (0–3 months) and subacute (3–6 months) stages of stroke recovery. Studies were excluded if they were not RCTs, included participants from a different stage of stroke recovery, or if the intervention did not meet the pre-defined HIE criteria. Overall, seven studies were included that used either high-intensity treadmill walking, stepping, cycling or overground walking exercises compared to either a low-intensity exercise (n = 4) or passive control condition (n = 3). Three studies reported significant improvements in 6MWT and gait speed performance, while only one showed improved BBS scores. No major adverse events were reported, although minor incidents were reported in only one study. This systematic review showed that HIE improved LL functional task performance, namely the 6MWT and gait speed. Previously, there was limited research demonstrating the efficacy of HIE early after stroke. This systematic review provides evidence that HIE may improve LL function with no significant adverse events report for stroke patients in their acute and subacute rehabilitation stages. Hence, HIE should be considered for implementation in this population, taking into account the possible benefits in terms of functional outcomes, as compared to lower intensity interventions.
    WOS© Citations 3Scopus© Citations 4  50  55
  • Publication
    Metadata only
    Neuroplasticity and adult learning
    (2023)
    Chen, Annabel Shen-Hsing
    ;

    The malleability of the adult brain to adapt in response to experience (termed neuroplasticity) is well documented. However, the capacity in which the aging trajectory and experiential factors impact neuroplasticity and learning over the lifespan remains an ongoing topic of research. Advancements in non-invasive human neuroimaging allow for the quantification of neurobiological mechanisms underpinning lifespan cognitive trajectories, including a deeper understanding of constructs such as cognitive and brain reserve, compensation, and resilience. While the theoretical models underpinning these constructs continue to evolve, cognitive reserve typically refers to an individual’s ability to sustain adequate levels of cognitive performance in the face of natural and/or pathological neurodegeneration. This chapter provides a review of the literature around factors that influence neuroplasticity over the adult lifespan. We propose that while cognitive trajectories could play a role in adult learning, they are also modifiable through neurobiological, sociocultural, environmental, and lifestyle factors.

    The aim of this chapter is to provide insights into adult learning through the lens of neuroplasticity. We first discuss age-related trajectories of cognitive abilities and evidence for structural and functional neuroplasticity over the adult lifespan. The chapter then discusses adult learning in the context of the environment, including the influence of prior knowledge and sociocultural beliefs. Literature surrounding healthy brain aging, with a focus on the role of lifestyle factors such as exercise, diet, and sleep on neuroplasticity and learning is then presented. Lastly, this chapter presents directions for future research, highlighting the importance of a holistic approach in understanding mediators of adult neuroplasticity and learning. We provide suggestions for the application of adult learning programs which can be grounded in a neurobiological framework of how the adult brain adapts, rewires, and acquires new skills over the lifespan.

      37
  • Publication
    Metadata only
    Brain activation associated with low‐ and high‐intensity concentric versus eccentric isokinetic contractions of the biceps brachii: An fNIRS study
    (Wiley, 2023)
    Studies have shown that neural responses following concentric (CON) and eccentric (ECC) muscle contractions are different, which suggests differences in motor control associated with CON and ECC contractions. This study aims to determine brain activation of the left primary motor cortex (M1) and left and right dorsolateral prefrontal cortices (DLPFCs) during ECC and CON of the right bicep brachii (BB) muscle at low- and high-contraction intensities. Eighteen young adults (13M/5F, 21–35 years) were recruited to participate in one familiarization and two testing sessions in a randomized crossover design. During each testing session, participants performed either ECC or CON contractions of the BB (3 sets × 8 reps) at low- (25% of maximum ECC/CON, 45°/s) and high-intensity (75% of maximum ECC/CON, 45°/s) on an isokinetic dynamometer. Eleven-channel functional near-infrared spectroscopy was used to measure changes in oxyhemoglobin (O2Hb) from the left M1, and left and right DLPFC during ECC and CON contractions. Maximum torque for ECC was higher than CON (43.3 ± 14.1 vs. 46.2 ± 15.7 N m, p = 0.025); however, no differences in O2Hb were observed between contraction types at low or high intensities in measured brain regions. High-intensity ECC and CON contractions resulted in greater increases in O2Hb of M1 and bilateral DLPFC compared to low-intensity ECC and CON contractions (p = 0.014). Our findings suggest no differences in O2Hb responses between contraction types at high and low intensities. High-contraction intensities resulted in greater brain activation of the M1 and bilateral DLPFC, which may have implications for neurorehabilitation to increase central adaptations from exercise.
      20
  • Publication
    Metadata only
    Treadmill walking maintains dual-task gait performance and reduces frontopolar cortex activation in healthy adults
    (2023)
    Chai, Keller Xin-Yu
    ;
    ;
    Leuk, Jessie Siew Pin
    ;
    Studies examining dual-task gait (DTG) have used varying conditions such as overground or treadmill walking, however it is not known whether brain activation patterns differ during these conditions. Therefore, this study compared oxyhaemoglobin (O2Hb) responses of the prefrontal cortex (PFC) during overground and treadmill walking. A total of 30 participants (14M/16F) were recruited in a randomized crossover study comparing overground and treadmill walking under single- and dual-task (STG and DTG) conditions. The DTG consisted of performing walking and cognitive (serial subtraction by 7’s) tasks concurrently. A portable 24-channel functional near-infrared spectroscopy system was placed over the PFC, corresponding the left and right dorsolateral PFC and frontopolar cortices (DLPFC and FPC) during overground and treadmill STG and DTG. Results showed a reduction in gait speed during DTG compared to STG on overground but not treadmill walking, while cognitive performance was maintained during DTG on both overground and treadmill walking. A reduction in O2Hb was seen in the FPC during DTG compared to a cognitive task only, and on the treadmill compared to overground walking. Increased activation was seen in the left and right DLPFC during DTG but did not differ between treadmill and overground walking. Our results support the concept of improved gait efficiency during treadmill walking, indicated by the lack of change in STG and DTG performance and concomitant with a reduction in FPC activation. These findings suggest different neural strategies underpinning treadmill and overground walking, which should be considered when designing gait assessment and rehabilitation interventions.
      45