Repository logo
  • Log In
Repository logo
  • Log In
  1. Home
  2. NIE Publications & Research Output
  3. Electronic Academic Papers
  4. Journal Articles
  5. Comparing list-color functions of uniform hypergraphs with their chromatic polynomials (ii)
 
  • Details
Options

Comparing list-color functions of uniform hypergraphs with their chromatic polynomials (ii)

URI
https://hdl.handle.net/10497/28953
Loading...
Thumbnail Image
Type
Article
Files
 DM-347-113701.pdf (955.52 KB)
Citation
Zhang, M., & Dong, F. (2024). Comparing list-color functions of uniform hypergraphs with their chromatic polynomials (ii). Discrete Mathematics, 347(1), Article 113701. https://doi.org/10.1016/j.disc.2023.113701
Author
Zhang, Meiqiao
•
Dong, F. M. 
Abstract

For any r-uniform hypergraph H with m (≥ 2) edges, let P(H, k) and Pl(H, k) be the chromatic polynomial and the list-color function of H respectively, and let ρ(H) denote the minimum value of |e \ e′| among all pairs of distinct edges e, e′ in H. We will show that if r ≥ 3, ρ(H) ≥ 2 and m ≥ ρ(H)3/2 +1, then Pl(H, k) = P(H, k) holds for all integers k ≥ 2.4(m−1) / ρ(H) log(m−1).

Keywords
  • List-coloring

  • List-color function

  • Chromatic polynomial

  • Hypergraph

Date Issued
2024
Publisher
Elsevier
Journal
Discrete Mathematics
DOI
10.1016/j.disc.2023.113701
Project
RP 2/22 DFM
Funding Agency
Ministry of Education, Singapore
  • Contact US
  • Terms of Use
  • Privacy Policy

NTU Reg No: 200604393R. Copyright National Institute of Education, Nanyang Technological University (NIE NTU), Singapore

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science