Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/17302
Title: Multicomponent Bell inequality and its violation for continuous-variable systems
Authors: Chen, Jing-Ling
Wu, Chunfeng
Kwek, Leong Chuan
Kaszlikowski, Dagomir
Zukowski, Marek
Oh, Choo Hiap
Issue Date: 2005
Citation: Chen, J. L., Wu, C., Kwek, L. C., Kaszlikowski, D., Żukowski, M., & Oh, C. H. (2005). Multicomponent Bell inequality and its violation for continuous-variable systems. Physical Review A, 71(3), 032107.
Abstract: Multicomponent correlation functions are developed by utilizing d -outcome measurements. Based on multicomponent correlation functions, we propose a Bell inequality for bipartite d -dimensional systems. Violation of the Bell inequality for continuous-variable (CV) systems is investigated. The violation of maximally entangled states can exceed the Cirel’son bound; the maximal violation is 2.969 81. For finite values of the squeezing parameter, the violation strength of CV states increases with dimension d . Numerical results show that the violation strength of CV states with finite squeezing parameters is stronger than that of maximally entangled states.
URI: http://hdl.handle.net/10497/17302
ISSN: 1094-1622 (online)
1050-2947 (print)
Other Identifiers: 10.1103/PhysRevA.71.032107
Website: http://dx.doi.org/10.1103/PhysRevA.71.032107
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
PRA-71-3-032107.pdf65.96 kBAdobe PDFView/Open
Show full item record

Page view(s)

21
checked on Sep 25, 2017

Download(s)

20
checked on Sep 25, 2017
Altmetric