Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/17658
Title: 
Chromatically unique multibridge graphs
Authors: 
Keywords: 
Chromatic polynomials
X-unique
X -closed
Polygon-tree
Issue Date: 
2004
Citation: 
Dong, F., Teo, K. L., Little, C. H. C., Hendy, M., & Koh, K. M. (2004). Chromatically unique multibridge graphs. Electronic Journal of Combinatorics, 11(1): R12.
Abstract: 
Let (a1, a2, · · · , ak) denote the graph obtained by connecting two distinct vertices with k independent paths of lengths a1, a2, · · · , ak respectively. Assume that 2 ≤ a1 ≤ a2 ≤ · · · ≤ ak. We prove that the graph θ
(a1, a2, · · · , ak) is chromatically unique if ak < a1 +a2, and find examples showing that θ
(a1, a2, · · · , ak) may not be chromatically unique if ak = a1 + a2.
URI: 
ISSN: 
1077-8926 (online)
Website: 
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
EJC-11-1-R12.pdf120.01 kBAdobe PDFView/Open
Show full item record

Page view(s) 20

89
checked on Dec 13, 2018

Download(s)

18
checked on Dec 13, 2018