Please use this identifier to cite or link to this item:
http://hdl.handle.net/10497/17658
Title: | Authors: | Subjects: | Chromatic polynomials X-unique X -closed Polygon-tree |
Issue Date: | 2004 |
Citation: | Dong, F., Teo, K. L., Little, C. H. C., Hendy, M., & Koh, K. M. (2004). Chromatically unique multibridge graphs. Electronic Journal of Combinatorics, 11(1): R12. http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i1r12/pdf |
Abstract: | Let (a1, a2, · · · , ak) denote the graph obtained by connecting two distinct vertices with k independent paths of lengths a1, a2, · · · , ak respectively. Assume that 2 ≤ a1 ≤ a2 ≤ · · · ≤ ak. We prove that the graph θ (a1, a2, · · · , ak) is chromatically unique if ak < a1 +a2, and find examples showing that θ (a1, a2, · · · , ak) may not be chromatically unique if ak = a1 + a2. |
URI: | ISSN: | 1077-8926 (online) |
File Permission: | Open |
File Availability: | With file |
Appears in Collections: | Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
EJC-11-1-R12.pdf | 120.01 kB | Adobe PDF | View/Open |
Page view(s) 50
204
checked on Jun 5, 2023
Download(s) 50
66
checked on Jun 5, 2023
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.