Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/17658
Title: 
Authors: 
Subjects: 
Chromatic polynomials
X-unique
X -closed
Polygon-tree
Issue Date: 
2004
Citation: 
Dong, F., Teo, K. L., Little, C. H. C., Hendy, M., & Koh, K. M. (2004). Chromatically unique multibridge graphs. Electronic Journal of Combinatorics, 11(1): R12. http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i1r12/pdf
Abstract: 
Let (a1, a2, · · · , ak) denote the graph obtained by connecting two distinct vertices with k independent paths of lengths a1, a2, · · · , ak respectively. Assume that 2 ≤ a1 ≤ a2 ≤ · · · ≤ ak. We prove that the graph θ
(a1, a2, · · · , ak) is chromatically unique if ak < a1 +a2, and find examples showing that θ
(a1, a2, · · · , ak) may not be chromatically unique if ak = a1 + a2.
URI: 
ISSN: 
1077-8926 (online)
File Permission: 
Open
File Availability: 
With file
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
EJC-11-1-R12.pdf120.01 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s) 50

204
checked on Jun 5, 2023

Download(s) 50

66
checked on Jun 5, 2023

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.