Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/17658
Title: Chromatically unique multibridge graphs
Authors: Dong, Fengming
Teo, Kee Leong
Little, Charles H. C.
Hendy, Michael
Koh, Khee Meng
Keywords: Chromatic polynomials
X-unique
X -closed
Polygon-tree
Issue Date: 2004
Citation: Dong, F., Teo, K. L., Little, C. H. C., Hendy, M., & Koh, K. M. (2004). Chromatically unique multibridge graphs. Electronic Journal of Combinatorics, 11(1): R12.
Abstract: Let (a1, a2, · · · , ak) denote the graph obtained by connecting two distinct vertices with k independent paths of lengths a1, a2, · · · , ak respectively. Assume that 2 ≤ a1 ≤ a2 ≤ · · · ≤ ak. We prove that the graph θ (a1, a2, · · · , ak) is chromatically unique if ak < a1 +a2, and find examples showing that θ (a1, a2, · · · , ak) may not be chromatically unique if ak = a1 + a2.
URI: http://hdl.handle.net/10497/17658
ISSN: 1077-8926 (online)
Website: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i1r12/pdf
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
EJC-11-1-R12.pdf120.01 kBAdobe PDFView/Open
Show full item record

Page view(s) 20

46
checked on Sep 23, 2017

Download(s)

14
checked on Sep 23, 2017