Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/17691
Title: 
Authors: 
Issue Date: 
2002
Citation: 
Dong, F., Teo, K. L., Little, C. H. C., & Hendy, M. (2002). Zeros of adjoint polynomials of paths and cycles. Australasian Journal of Combinatorics, 25, 167-174. http://ajc.maths.uq.edu.au/pdf/25/ajc-v25-p167.pdf
Abstract: 
The chromatic polynomial of a simple graph G with n > 0 vertices is a polynomial Σnk =1α(G, k)(x)k of degree n, where (x)k = x(x−1) . . . (x−k+1) and α(G, k) is real for all k. The adjoint polynomial of G is defined to be Σnk=1α(G, k)μk, where G is the complement of G. We find the zeros of the adjoint polynomials of paths and cycles.
URI: 
ISSN: 
1034-4942
File Permission: 
Open
File Availability: 
With file
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
AJC-25-167.pdf85.55 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s) 20

230
checked on Mar 27, 2023

Download(s) 50

90
checked on Mar 27, 2023

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.