Publication:
Zeros of adjoint polynomials of paths and cycles

No Thumbnail Available
Date
2002
Authors
Dong, F. M.
Teo, Kee Leong
Little, Charles H. C.
Hendy, Michael
Journal Title
Journal ISSN
Volume Title
Publisher
Research Projects
Organizational Units
Journal Issue
Abstract
The chromatic polynomial of a simple graph G with n > 0 vertices is a polynomial Σnk =1α(G, k)(x)k of degree n, where (x)k = x(x−1) . . . (x−k+1) and α(G, k) is real for all k. The adjoint polynomial of G is defined to be Σnk=1α(G, k)μk, where G is the complement of G. We find the zeros of the adjoint polynomials of paths and cycles.
Description
Keywords
Citation
Dong, F. M., Teo, K. L., Little, C. H. C., & Hendy, M. D. (2002). Zeros of adjoint polynomials of paths and cycles. Australasian Journal of Combinatorics, 25, 167-174. http://ajc.maths.uq.edu.au/pdf/25/ajc-v25-p167.pdf
Collections