Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/17691
Title: 
Authors: 
Issue Date: 
2002
Citation: 
Dong, F., Teo, K. L., Little, C. H. C., & Hendy, M. (2002). Zeros of adjoint polynomials of paths and cycles. Australasian Journal of Combinatorics, 25, 167-174.
Abstract: 
The chromatic polynomial of a simple graph G with n > 0 vertices is a polynomial Σnk =1α(G, k)(x)k of degree n, where (x)k = x(x−1) . . . (x−k+1) and α(G, k) is real for all k. The adjoint polynomial of G is defined to be Σnk=1α(G, k)μk, where G is the complement of G. We find the zeros of the adjoint polynomials of paths and cycles.
URI: 
ISSN: 
1034-4942
Website: 
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
AJC-25-167.pdf85.55 kBAdobe PDFThumbnail
View/Open
Show full item record

Page view(s)

45
Last Week
0
Last month
1
checked on Apr 24, 2019

Download(s) 50

43
checked on Apr 24, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.