Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/22085
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Yingen
dc.contributor.authorOuyang, Boen
dc.contributor.authorZhang, Boweien
dc.contributor.authorBoluo, Yadianen
dc.contributor.authorHuang, Yizhongen
dc.contributor.authorRaju V. Ramanujanen
dc.contributor.authorOstrikov, Kostya (Ken)en
dc.contributor.authorRawat, Rajdeep Singhen
dc.date.accessioned2020-04-22T02:29:20Z-
dc.date.available2020-04-22T02:29:20Z-
dc.date.issued2020-
dc.identifier.citationWang, Y., Ouyang, B., Zhang, B., Boluo, Y., Huang, Raju V. Ramanujan, Ostrikov, K. & Rawat, R. S. (2020). Atmospheric microplasma based binary Pt3Co nanoflowers synthesis. Journal of Physics D: Applied Physics, 53(22), Article 225201. https://doi.org/10.1088/1361-6463/ab7797en
dc.identifier.issn0022-3727 (print)-
dc.identifier.issn1361-6463 (online)-
dc.identifier.urihttp://hdl.handle.net/10497/22085-
dc.descriptionThis is the final draft, after peer-review, of a manuscript published in Journal of Physics D: Applied Physics. The published version is available online at https://doi.org/10.1088/1361-6463/ab7797en
dc.description.abstractThe atmospheric microplasma in the gas-liquid phase technique serves as a new potential efficient and green catalyst preparation technique to fabricate nanomaterials. Due to the presence of diverse reactive species, this technique can promote rapid complex reactions in solutions, which are typically sluggish in traditional chemical processes. Here, atmospheric microplasma induced liquid chemistry (AMILC) is applied to fabricate three-dimensional (3D) binary Pt3Co nanoflowers. Nano-architectures of Pt3Co bimetals (2D nanosheets and 3D nanoflowers) can be formed by tuning the initial cobalt molar concentration in the solution. 3D nanoflowers show a 'nano-bouquet' like nanostructure with Co-oxide forming leaves and Pt3Co forming waxberries. 3D nanoflowers show promising electrocatalytic behavior towards ethanol and glucose sensing in alkaline condition. Additionally, AMILC takes less synthesis duration (~10 min) without hazardous chemicals for Pt3Co bimetal nanostructure preparation compared to conventional chemical approaches (>2 h), indicating that AMILC is a potential candidate with better energy efficiency, lower carbon footprint and green plasma chemistry process for 3D nanostructure material synthesis in catalyst applications.en
dc.language.isoenen
dc.subjectAtmospheric microplasmaen
dc.subjectBinary Pt-Co nanoflowersen
dc.subject3D nanostructureen
dc.subjectElectrocatalysten
dc.titleAtmospheric microplasma based binary Pt3Co nanoflowers synthesisen
dc.typePostprinten
dc.identifier.doi10.1088/1361-6463/ab7797-
local.message.claim2021-12-22T11:38:33.426+0800|||rp00046|||submit_approve|||dc_contributor_author|||None*
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith file-
item.languageiso639-1en-
item.openairetypePostprint-
item.grantfulltextOpen-
item.cerifentitytypePublications-
Appears in Collections:Journal Articles
Files in This Item:
File Description SizeFormat 
JPDAP-53-22-225201.pdf1.88 MBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

67
checked on Nov 24, 2022

Download(s)

15
checked on Nov 24, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.