Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/22478
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKulkarni, Pranaven
dc.contributor.authorGeetha Balakrishnaen
dc.contributor.authorDebasis Ghoshen
dc.contributor.authorRawat, Rajdeep Singhen
dc.contributor.authorRohit Medwalen
dc.contributor.authorChowdari, B.V.R.en
dc.contributor.authorZaghib Karimen
dc.contributor.authorReddy, M. V.en
dc.date.accessioned2020-10-14T09:01:35Z-
dc.date.available2020-10-14T09:01:35Z-
dc.date.issued2020-
dc.identifier.citationKulkarni, P., Balkrishna, R. G., Ghosh, D., Rawat, R. S., Medwal, R., Chowdari, B. V. R., Karim, Z., & Reddy, M. V. (2020). Molten salt synthesis of CoFe2O4 and its energy storage properties. Materials Chemistry and Physics, 123747. https://doi.org/10.1016/j.matchemphys.2020.123747en
dc.identifier.issn0254-0584 (print)-
dc.identifier.urihttp://hdl.handle.net/10497/22478-
dc.descriptionThis is the final draft, after peer-review, of a manuscript / book chapter published in Materials Chemistry and Physics. The published version is available online at [link to published version on journal’s website and use the https://doi.org/10.1016/j.matchemphys.2020.123747en
dc.description.abstractIn this article, we report simple and scalable one-pot molten salt synthesis of CoFe<sub>2</sub>O<sub>4</sub> as electrode material for Lithium ion batteries. X-ray diffraction studies along with Rietveld analysis showed a pure phase of CoFe<sub>2</sub>O<sub>4</sub> with space group Fd-3m and crystallite size of 54 nm. As an anode material CoFe<sub>2</sub>O<sub>4</sub> showed high initial discharge/charge capacity of 1556/1093 mA h g<sup>−1</sup> and a reversible capacity of 926 mA h g<sup>−1</sup> after 30 cycles with columbic efficiency of 99%. A relatively high reversible capacity of 594 mA h g<sup>−1</sup> was observed at high current density of 1C (916 mA g<sup>−1</sup>) which shows the better reversibility of CoFe<sub>2</sub>O<sub>4</sub> at high current density. As the current was reduced to 0.1C reversible capacity of 899 mA h g<sup>−1</sup> was retained suggesting high rate performance of CoFe<sub>2</sub>O<sub>4</sub>. The long-term stability test, carried out using galvanostatic charge/discharge (GC) at a current density of 0.5C, showed a reversible capacity of 369 mA h g<sup>−1</sup> at the end of 200th cycle. The structural and morphological evaluation of the sample after cycling, using ex-situ X-ray diffraction and ex-situ transmission electron microscopy, confirmed structural degradation and formation of metal nanoparticles, Li<sub>2</sub>O and amorphous nature of electrode material. The one-pot molten salt synthesis approach is quite simple and can be extended for large-scale production of electrode materials.en
dc.language.isoenen
dc.subjectCoFe2O4en
dc.subjectMolten salt synthesisen
dc.subjectLithium batteriesen
dc.subjectAnodeen
dc.subjectEx-situ XRDen
dc.subjectEx-situ TEMen
dc.subjectImpedance spectroscopyen
dc.titleMolten salt synthesis of CoFe2O4 and its energy storage propertiesen
dc.typeArticleen
dc.identifier.doi10.1016/j.matchemphys.2020.123747-
dc.grant.idNIE AcRF Grant RI 4/16 RSRen
dc.grant.idDST Nanomission Ref. No: SR/ NM/NS-20/2014en
dc.grant.fundingagencyNational Institute of Education, Singaporeen
local.message.claim2021-12-22T11:38:33.426+0800|||rp00046|||submit_approve|||dc_contributor_author|||None*
item.cerifentitytypePublications-
item.grantfulltextOpen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith file-
item.languageiso639-1en-
Appears in Collections:Journal Articles
Files in This Item:
File Description SizeFormat 
MCP-2020-123747.pdf2.14 MBAdobe PDFThumbnail
View/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.