Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/22535
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLatella, Christopheren
dc.contributor.authorTeo, Wei-Pengen
dc.contributor.authorSpathis, Jemimaen
dc.contributor.authorvan den Hoek, Danielen
dc.date.accessioned2020-11-20T08:21:34Z-
dc.date.available2020-11-20T08:21:34Z-
dc.date.issued2020-
dc.identifier10.1519/JSC.0000000000003657-
dc.identifier.citationLatella, C., Teo, W. P., Spathis, J., & van den Hoek, D. (2020). Long-term strength adaptation: A 15-year analysis of powerlifting athletes. Journal of Strength and Conditioning Research, 34(9), 2412–2418. https://doi.org/10.1519/JSC.0000000000003657en
dc.identifier.issn1064-8011 (print)-
dc.identifier.issn1533-4287 (online)-
dc.identifier.urihttp://hdl.handle.net/10497/22535-
dc.description.abstractStrength is a fundamental component of athletic performance and development. This investigation examined the long-term strength development of powerlifting (PL) athletes. The rate of strength gain/day was assessed in 1897 PL athletes (F = 626, M = 1,271) over a 15-year period (2003–2018). Independent T-tests explored sex differences in baseline absolute (kg) and relative strength (kg·body mass<sup>−1</sup> [bm]) recorded from the first competition, and strength gain/day (kg·d<sup>−1</sup>). Analyses based on initial strength quartiles were conducted using one-way analysis of variances with significance set at p < 0.05. Bivariate correlational analysis tested for relationships between strength gain/day and baseline strength, the number of competitions, and mean days between competitions. Males had greater absolute (M: 513.3 ± 99.8 kg, F: 289.4 ± 55.7 kg, p < 0.001) and relative (M: 5.89 ± 1.04 kg·bm<sup>−1</sup>, F: 4.27 ± 0.85 kg·bm<sup>−1</sup>, p < 0.001) strength at baseline. Overall, strength gain/day (F: 0.12 ± 0.69 kg·d<sup>−1</sup>, M: 0.15 ± 0.44 kg·d<sup>−1</sup>, p = 0.318) was similar between sexes. However, the strongest males showed a lower rate of strength improvement (0.102 kg·d<sup>−1</sup>) compared with least strong males (0.211 kg·d<sup>−1</sup>), p = 0.010. No differences were observed across quartiles for females. Correlational analyses revealed significant but weak negative relationships between strength gain/day and the mean days between competitions for females (r2 = −0.120, p = 0.003) and males (r2 = −0.190, p < 0.001). Similar relationships were observed for baseline strength (r2 = −0.073, p = 0.009) and the number of competitions (r2 = −0.111, p < 0.001) for males. The results suggest similar strength adaptation between sexes. The strongest males improve more slowly, possibly due to a ceiling effect. Collectively, the findings provide novel evidence of real-world long-term strength adaptations that may be particularly useful to understand athlete development, to aid periodized programming, and to benchmark strength over time.en
dc.description.urihttps://doi.org/10.1519/JSC.0000000000003657-
dc.language.isoenen
dc.titleLong-term strength adaptation: A 15-year analysis of powerlifting athletesen
dc.typeArticleen
Appears in Collections:Journal Articles
Files in This Item:
File Description SizeFormat 
JSCR-34-9-2412.pdf454.13 kBAdobe PDFThumbnail
View/Open
Show simple item record

Page view(s)

4
checked on Nov 24, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.