Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/24121
Title: 
Authors: 
Issue Date: 
2022
Citation: 
Yao, X., Song, X., Zhang, F., Ma, J., Jiang, H., Wang, L., Liu, Y., Ang, E. H., & Xiang, H. (2022). Enhancing cellulose‑based separator with polyethyleneimine and polyvinylidene fluoride‑hexafluoropropylene interpenetrated 3D network for lithium metal batteries. ChemElectroChem. Advance online publication. https://doi.org/10.1002/celc.202200390
Journal: 
ChemElectroChem
Abstract: 
Aside from the electrolyte, a separator is another important component in lithium-based batteries that has a direct impact on the safety feature and electrochemical performances. To overcome the thermal shrinkage and poor electrolyte affinity of commonly used polyolefin separators, cellulosed-based separators are appealing due to their abundant polar functional groups, thermal stability, and environmental friendliness, especially for large-sized and high-energy-density batteries. Herein, a porous 3D network of polymer cellulose-based separator modified with polyethyleneimine and polyvinylidene fluoride-hexafluoropropylene was created using a non-solvent induced phase separation approach. The lithium metal batteries consisting of PIC separator can deliver up to a specific capacity of 114 mAh g -1 even at high C-rate of 8 C (1.36 A g -1 ) after 300 cycles. Such superior performances of the lithium metal batteries can be attributed to the good wetting ability (390% electrolyte absorption) and high ionic conductivity (0.754 mS cm -1 ) of the as-prepared PIC separator. More importantly, the introduction of polyethyleneimine as a cross-linking agent significantly improves the mechanical strength of the separator, promote the uniform deposition of lithium and compatibility with high voltage (4.4 V) cathode materials LiNi 0.8 Mn 0.1 Co 0.1 O 2 . This work demonstrates a new strategy for the separator design towards high-performance lithium metal battery applications.
URI: 
ISSN: 
2196-0216 (online)
DOI: 
File Permission: 
None
File Availability: 
No file
Appears in Collections:Journal Articles

Show full item record

SCOPUSTM   
Citations

3
checked on Jun 4, 2023

WEB OF SCIENCETM
Citations

2
checked on Jun 4, 2023

Page view(s)

88
checked on Jun 10, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.