Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/24671
Title: 
Authors: 
Keywords: 
Parkinson disease
Electroencephalography
Machine learning
Biomarker
Phenotype
Issue Date: 
2022
Citation: 
Shirahige, L., Leimig, B., Baltar, A., Bezerra, A., de Brito, C. V. F., do Nascimento, Y. S. O., Gomes, J. C., Teo, W.-P., dos Santos, W. P., Cairrão, M., Fonseca, A., & Monte-Silva, K. (2022). Classification of Parkinson's disease motor phenotype: A machine learning approach. Journal of Neural Transmission, 129(12), 1447-1461. https://doi.org/10.1007/s00702-022-02552-y
Journal: 
Journal of Neural Transmission
Abstract: 
To assess the cortical activity in people with Parkinson’s disease (PwP) with different motor phenotype (tremor-dominant—TD and postural instability and gait difficulty—PIGD) and to compare with controls. Twenty-four PwP (during OFF and ON medication) and twelve age-/sex-/handedness-matched healthy controls underwent electrophysiological assessment of spectral ratio analysis through electroencephalography (EEG) at resting state and during the hand movement. We performed a machine learning method with 35 attributes extracted from EEG. To verify the efficiency of the proposed phenotype-based EEG classification the random forest and random tree were tested (performed 30 times, using a tenfolds cross validation in Weka environment). The analyses based on phenotypes indicated a slowing down of cortical activity during OFF medication state in PwP. PD with TD phenotype presented this characteristic at resting and the individuals with PIGD presented during the hand movement. During the ON state, there is no difference between phenotypes at resting nor during the hand movement. PD phenotypes may influence spectral activity measured by EEG. Random forest machine learning provides a slightly more accurate, sensible and specific approach to distinguish different PD phenotypes. The phenotype of PD might be a clinical characteristic that could influence cortical activity.
URI: 
ISSN: 
0300-9564 (print)
1435-1463 (online)
DOI: 
Grant ID: 
IBPG-1548-4.01/16
308291/2015-8
Funding Agency: 
Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE), Brazil
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil
File Permission: 
None
File Availability: 
No file
Appears in Collections:Journal Articles

Show full item record

Page view(s)

39
checked on Jun 9, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.