Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/25204
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLu, Jingen
dc.contributor.authorZhao, Binen
dc.contributor.authorWang, Kaiyunen
dc.contributor.authorZhao, Dongshengen
dc.date.accessioned2023-05-24T00:57:01Z-
dc.date.available2023-05-24T00:57:01Z-
dc.date.issued2022-
dc.identifier.citationLu, J., Zhao, B., Wang, K., & Zhao, D. (2022). Quasicontinuous spaces. Commentationes Mathematicae Universitatis Carolinae, 63(4), 513-526. https://doi.org/10.14712/1213-7243.2023.005en
dc.identifier.issn0010-2628 (print)-
dc.identifier.issn1213-7243 (online)-
dc.identifier.urihttp://hdl.handle.net/10497/25204-
dc.descriptionThe open access publication is available at: https://doi.org/10.14712/1213-7243.2023.005-
dc.description.abstractWe lift the notion of quasicontinuous posets to the topology context, called quasicontinuous spaces, and further study such spaces. The main results are: (1) A $T_{0}$ space $(X,\tau)$ is a quasicontinuous space if and only if $SI(X)$ is locally hypercompact if and only if $(\tau_{SI},\subseteq)$ is a hypercontinuous lattice; (2) a $T_{0}$ space $X$ is an $SI$-continuous space if and only if $X$ is a meet continuous and quasicontinuous space; (3) if a $C$-space $X$ is a well-filtered poset under its specialization order, then $X$ is a quasicontinuous space if and only if it is a quasicontinuous domain under the specialization order; (4) there exists an adjunction between the category of quasicontinuous domains and the category of quasicontinuous spaces which are well-filtered posets under their specialization orders.-
dc.language.isoenen
dc.relation.ispartofCommentationes Mathematicae Universitatis Carolinaeen
dc.titleQuasicontinuous spacesen
dc.typeArticleen
dc.identifier.doi10.14712/1213-7243.2023.005-
dc.subject.keywordQuasicontinuous spaceen
dc.subject.keywordHypercontinuous latticeen
dc.subject.keyword$SI$-continuous spaceen
dc.subject.keywordLocally hypercompact spaceen
dc.subject.keywordMeet continuous spaceen
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo file-
item.grantfulltextNone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Journal Articles
Show simple item record

Page view(s)

22
checked on Jun 10, 2023

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.