Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/4585
Title: 
Two results on real zeros of chromatic polynomials
Authors: 
Issue Date: 
Nov-2004
Citation: 
Dong, F. M., & Koh, K. M. (2004). Two results on real zeros of chromatic polynomials. Combinatorics, Probability and Computing, 13(06), 809-813.
Abstract: 
This note presents two results on real zeros of chromatic polynomials. The first result states that if G is a graph containing a q-tree as a spanning subgraph, then the chromatic polynomial P(G, λ) of G has no non-integer zeros in the interval (0, q). Sokal conjectured that for any graph G and any real λ > Δ(G), P(G, λ) > 0. Our second result confirms that it is true if Δ(G) ≥ [n/3] − 1, where n is the order of G.
URI: 
ISSN: 
0963-5483
Other Identifiers: 
10.1017/S0963548304006418
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
CPC-13-6-809.pdf73.62 kBAdobe PDFView/Open
Show full item record

Page view(s)

22
Last Week
0
Last month
1
checked on Jan 19, 2019

Download(s) 50

43
checked on Jan 19, 2019

Altmetric