Now showing 1 - 10 of 21
  • Publication
    Open Access
    Effect of post-exercise massage on passive muscle stiffness measured using myotonometry: A double-blind study
    (2018) ;
    Chua, Yao H.
    ;
    Kawabata, Masato
    ;
    ;
    Cai, Congcong
    It is commonly believed that massage can reduce muscle stiffness and is desirable for recovery from exercise. However, the effect massage on muscle stiffness following eccentric exercises is currently unknown. This study aimed to examine the effect of postexercise massage on passive muscle stiffness over a five-day period. A randomised cross-over study design was adopted. After 40 minutes of downhill running, 18 male recreational runners had one leg received a 16-minute massage and the contralateral leg received a 16-minute sham ultrasound treatment. Passive stiffness for four leg muscles (rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius) was assessed using myotonometry at baseline, immediately post-run, post-treatment, 24, 48, 72, and 96 hours post-run. A 2 (treatment) × 7 (time) mixed ANOVA was conducted with a robust procedure on the myotonometry data of each leg muscle to examine the effect of treatment on stiffness. Passive stiffness for all muscles changed over time but no treatment effect was found. Stiffness increased at 24 hours post-run and remained elevated from baseline levels for up to 96 hours across all four muscles. Significant treatment × time interaction was only found in the tibialis anterior but no post-hoc differences were identified. Passive stiffness of major leg muscles increased after a bout of unaccustomed eccentric exercise and remained elevated for up to four days post-exercise. Compared with the placebo treatment, post-exercise massage had no beneficial effect in alleviating altered muscle stiffness in major leg muscles.
      180  102
  • Publication
    Open Access
    Education about movement: Development of an intermittent shuttle test to determine fitness and fatigue in badminton
    (Office of Education Research, National Institute of Education, Singapore, 2020) ; ;
    Chia, Jingyi Shannon
    There were three objectives to this proposal: (i) to develop an ecologically valid match­fitness test for badminton players -the badminton intermittent shuttle test (BIST); (ii) to determine the reliability and physiological validity of the test; and (iii) to examine the influence of fatigue, induced by the BIST, on badminton performance.
      341  45
  • Publication
    Open Access
    Effect of caffeine ingestion on free-throw performance in college basketball players
    (2020)
    Tan, Zhi Sen
    ;
    ;
    Pan, Jingwen
    ;
    Background: It is currently unclear whether pre-exercise caffeine ingestion can improve free-throw shooting performance, a vital skill in basketball. The purpose of this study was to investigate the effects of caffeine on free-throw shooting performance in college-aged basketball players.

    Methods: Twelve males (23.1 ± 1.9 years; 180.1 ± 8.8 cm; 77.1 ± 12.4 kg) and six females (22.0 ± 1.3 years; 169.4 ± 8.9 cm; 67.0 ± 11.1 kg) who competed at the college level ingested 6 mg per kg of body mass of (a) caffeine or (b) maltodextrin (placebo) on two separate occasions in a random order. After 60 min, they performed five sets of a match-simulated basketball protocol comprising six sideline-tosideline sprints on a standard basketball court followed by two free-throws after each set. The number of successful shots was counted. Heart rate and rating of perceived exertion (RPE) after each sprint set were also recorded.
    Results: Caffeine ingestion did not improve overall free-throw success (caffeine = 6.1 ± 1.7 vs. placebo = 5.5 ± 2.0; p = 0.34) compared with placebo across all five sets. There was no change in shooting accuracy across sprint sets in either trial despite significant increases in both heart rate and RPE. Caffeine increased heart rate (p = 0.02) but had no effect on RPE (p = 0.57) across five sets compared with placebo.
    Conclusions: Ingestion of 6 mg of caffeine per kg of body mass did not improve basketball free-throw performance. Free-throw performance did not deteriorate with increasing number of sprint sets.
    WOS© Citations 11Scopus© Citations 13  160  115
  • Publication
    Metadata only
    Acute and chronic effects of blood flow restricted high-intensity interval training: A systematic review
    (2022)
    Chua, Man Tong
    ;
    Sim, Alexiaa
    ;
    Background The implementation of blood flow restriction (BFR) during exercise is becoming an increasingly useful adjunct method in both athletic and rehabilitative settings. Advantages in pairing BFR with training can be observed in two scenarios: (1) training at lower absolute intensities (e.g. walking) elicits adaptations akin to high-intensity sessions (e.g. running intervals); (2) when performing exercise at moderate to high intensities, higher physiological stimulus may be attained, leading to larger improvements in aerobic, anaerobic, and muscular parameters. The former has been well documented in recent systematic reviews, but consensus on BFR (concomitant or post-exercise) combined with high-intensity interval training (HIIT) protocols is not well established. Therefore, this systematic review evaluates the acute and chronic effects of BFR + HIIT. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to identify relevant studies. A systematic search on 1 February 2022, was conducted on four key databases: ScienceDirect, PubMed, Scopus and SPORTDiscus. Quality of each individual study was assessed using the Physiotherapy Evidence Database (PEDro) scale. Extraction of data from included studies was conducted using an adapted version of the 'Population, Intervention, Comparison, Outcome' (PICO) framework. Results A total of 208 articles were identified, 18 of which met inclusion criteria. Of the 18 BFR + HIIT studies (244 subjects), 1 reported both acute and chronic effects, 5 examined acute responses and 12 investigated chronic effects. Acutely, BFR challenges the metabolic processes (vascular and oxygenation responses) during high-intensity repeated sprint exercise—which accelerates central and peripheral neuromuscular fatigue mechanisms resulting in performance impairments. Analysis of the literature exploring the chronic effects of BFR + HIIT suggests that BFR does provide an additive physiological training stimulus to HIIT protocols, especially for measured aerobic, muscular, and, to some extent, anaerobic parameters. Conclusion Presently, it appears that the addition of BFR into HIIT enhances physiological improvements in aerobic, muscular, and, to some extent, anaerobic performance. However due to large variability in permutations of BFR + HIIT methodologies, it is necessary for future research to explore and recommend standardised BFR guidelines for each HIIT exercise type.
    Scopus© Citations 1  49
  • Publication
    Open Access
    The effect of beetroot ingestion on high-intensity interval training: A systematic review and meta-analysis
    (2021)
    Wong, Tak Hiong
    ;
    Sim, Alexiaa
    ;
    Dietary nitrate supplementation has shown promising ergogenic effects on endurance exercise. However, at present there is no systematic analysis evaluating the effects of acute or chronic nitrate supplementation on performance measures during high-intensity interval training (HIIT) and sprint interval training (SIT). The main aim of this systematic review and meta-analysis was to evaluate the evidence for supplementation of dietary beetroot—a common source of nitrate—to improve peak and mean power output during HIIT and SIT. A systematic literature search was carried out following PRISMA guidelines and the PICOS framework within the following databases: PubMed, ProQuest, ScienceDirect, and SPORTDiscus. Search terms used were: ((nitrate OR nitrite OR beetroot) AND (HIIT or high intensity or sprint interval or SIT) AND (performance)). A total of 17 studies were included and reviewed independently. Seven studies applied an acute supplementation strategy and ten studies applied chronic supplementation. The standardised mean difference for mean power output showed an overall trivial, non-significant effect in favour of placebo (Hedges’ g = −0.05, 95% CI −0.32 to 0.21, Z = 0.39, p = 0.69). The standardised mean difference for peak power output showed a trivial, non-significant effect in favour of the beetroot juice intervention (Hedges’ g = 0.08, 95% CI -0.14 to 0.30, Z = 0.72, p = 0.47). The present meta-analysis showed trivial statistical heterogeneity in power output, but the variation in the exercise protocols, nitrate dosage, type of beetroot products, supplementation strategy, and duration among studies restricted a firm conclusion of the effect of beetroot supplementation on HIIT performance. Our findings suggest that beetroot supplementation offers no significant improvement to peak or mean power output during HIIT or SIT. Future research could further examine the ergogenic potential by optimising the beetroot supplementation strategy in terms of dosage, timing, and type of beetroot product. The potential combined effect of other ingredients in the beetroot products should not be undermined. Finally, a chronic supplementation protocol with a higher beetroot dosage (>12.9 mmol/day for 6 days) is recommended for future HIIT and SIT study.
    WOS© Citations 12Scopus© Citations 13  78  105
  • Publication
    Open Access
      293  371
  • Publication
    Open Access
    A case study to overcome barriers and enhance motivations through experience of a variety of exercises: Theory-based intervention on an overweight and physically inactive adult
    A 5-month exercise intervention using self-determination theory was conducted for a physically inactive male adult with a body mass index >25 kg/m2 to overcome perceived exercise barriers and increase autonomous motivation to exercise through a variety of exercise programs. The participant underwent three different forms of exercise programs: trainer guided, self-guided via YouTube channels, and accustomed exercises for 3 hr weekly. The participant completed a questionnaire and body mass index measurement at baseline and during the second, fourth, and fifth months of intervention and kept an exercise log throughout the 5 months. Consultations were conducted during the second and fourth months. At the end of the program, a semistructured interview was conducted. The data showed that psychological needs satisfaction, autonomous motivation, and exercise behavior had improved, while perceived barriers had decreased. This case study provides insight into how a theory-based intervention could effectively promote exercise behavior by targeting psychological factors.
      267  104
  • Publication
    Open Access
    Timing of caffeine ingestion does not improve three-point shooting accuracy in college basketball players
    (Human Kinetics, 2024)
    Tan, Zhi Sen
    ;
    Sim, Rachelle Yahn Yee
    ;
    Masato Kawabata
    ;
    Low, Dorrain Yanwen
    ;
    Wang, Yulan
    ;
    This study investigated the effects of the timing of caffeine (3 mg/kg body mass) ingestion on three-point shooting accuracy and other performance parameters during a basketball exercise simulation test (BEST). Eighteen college basketball players (mean ± SD: age = 24.4 ± 1.5 years, height = 181.7 ± 9.5 cm, body mass = 80.9 ± 13.2 kg) underwent one familiarization trial and three main conditions in a randomized order: (a) placebo (maltodextrin) and placebo, (b) caffeine and placebo, and (c) placebo and caffeine. Participants ingested either the placebo or caffeine pill 75 and 15 min before performing four quarters of the BEST and a three-point shooting protocol. During each quarter, participants completed 16 rounds of the BEST and ten three-point shots. Vertical jump height, 6 m sprint timing, BEST completion timing, three-point shooting accuracy, heart rate, rate of perceived exertion, blood glucose, blood lactate, and psychological measures pertaining to performance were measured. The BEST completion timing differed among conditions (placebo and placebo = 26.4 ± 2.0 s, caffeine and placebo = 25.8 ± 2.0 s, placebo and caffeine = 25.9 ± 2.1 s; p = .031) but not three-point shooting accuracy (placebo and placebo = 12.33 ± 4.10; caffeine and placebo = 12.61 ± 2.81; placebo and caffeine = 11.67 ± 3.77; p = .648), vertical jump height, or sprint times. Manipulating ingestion timing of caffeine did not improve three-point shooting accuracy, vertical jump height, or 6 m sprint timings, but caffeine can improve performance times during simulated basketball exercise irrespective of ingestion timing.
      10  140
  • Publication
    Open Access
      317  75
  • Publication
    Open Access
    The effects of nitrate ingestion on high-intensity endurance time-trial performance: A systematic review and meta-analysis
    (2022)
    Wong, Tak Hiong
    ;
    Sim, Alexiaa
    ;
    Background/Objective Dietary nitrate ingestion extends endurance capacity, but data supporting endurance time-trial performance are unclear. This systematic review and meta-analysis evaluated the evidence for dietary nitrate supplementation to improve high-intensity endurance time-trial performance over 5–30 min on the premise that nitrate may alleviate peripheral fatigue over shorter durations. Methods A systematic literature search and data extraction was carried out following PRISMA guidelines and the PICOS framework within five databases: PubMed, ProQuest, ScienceDirect, Scopus and SPORTDiscus. Search terms used were: (nitrate OR nitrite OR beetroot) AND (high intensity OR all out) AND (time trial or total work done) AND performance. Results Twenty-four studies were included. Fifteen studies applied an acute supplementation strategy (4.1 mmol–15.2 mmol serving on one day), eight chronic supplementation (4.0 mmol–13.0 mmol per day over 3–15 days), and one applied both acute and chronic supplementation (8.0 mmol on one day and over 15 days). Standardised mean difference for time-trial ranging from 5 to 30 min showed an overall trivial effect in favour of nitrate (Hedges'g = 0.15, 95% CI -0.00 to 0.31, Z = 1.95, p = 0.05). Subgroup analysis revealed a small, borderline effect in favour of chronic nitrate intervention (Hedges'g = 0.30, 95% CI -0.00 to 0.59, Z = 1.94, p = 0.05), and a non-significant effect for acute nitrate intervention (Hedges'g = 0.10, 95% CI -0.08 to 0.28, Z = 1.11, p = 0.27). Conclusion Chronic nitrate supplementation improves time-trial performance ranging from 5 to 30 min.
    WOS© Citations 3Scopus© Citations 3  92  72