Options
Lee, Paul Choon Keat
- PublicationOpen AccessOn the plume splitting of pulsed laser ablated Fe and AI plasmas(American Institute of Physics, 2010)
;Mahmood, S.; ;Darby, M. S. B. ;Zakaullah, M.; ; A time resolved imaging study of pulsed laser ablated Fe and Al plasma plumes with specific interest in the splitting of plumes into the slow and fast moving components as they expand through the background argon gas at different pressures is reported. The material ablation was achieved using a Q-switched Nd:YAG yttrium aluminum garnet laser operating at 532 nm with a pulse duration of 8 ns full width at half maximum and a fluence of 30 Jcm−2 at the target surface. Typical time resolved images with low magnification show that the splitting occurs at moderate background gas pressures 0.5 and 1.0 mbar for Fe, and 0.2 mbar for Al plasma plumes. The plume splitting did not occur for higher background gas pressures.WOS© Citations 36Scopus© Citations 42 340 322 - PublicationOpen AccessComputing plasma focus pinch current from total current measurement(American Institute of Physics, 2008)
;Lee, Sing ;Saw, Sor Heoh; ; Schmidt, H.The total current Itotal waveform in a plasma focus discharge is the most commonly measured quantity, contrasting with the difficult measurement of Ipinch. However, yield laws should be scaled to focus pinch current Ipinch rather than the peak Itotal. This paper describes how Ipinch may be computed from the Itotal trace by fitting a computed current trace to the measured current trace using the Lee model. The method is applied to an experiment in which both the Itotal trace and the plasma sheath current trace were measured. The result shows good agreement between the values of computed and measured Ipinch.
WOS© Citations 52Scopus© Citations 63 232 334 - PublicationOpen AccessBackward high energy ion beams from plasma focus(American Institute of Physics, 2009)
;Roshan, M. V.; ;Lee, Sing ;Talebitaher, A.; High energy neutrons, more than 2.45 MeV from deuteron-deuteron fusion reaction, have been measured in backward direction of plasma focus devices in many laboratories. However the experimental evidence for high energy deuterons responsible for such neutrons has not been reported so far. In this brief communication, backward high energy deuteron beam from NX2 plasma focus [M. V. Roshan et al., Phys. Lett. A 373, 851 (2009)] is reported, which was measured with a direct and unambiguous technique of nuclear activation. The relevant nuclear reaction for the target activation is 12C (d, n)13N , which has a deuteron threshold energy of 328 keV.
WOS© Citations 14Scopus© Citations 16 394 184 - PublicationOpen AccessBroad-energy oxygen ion implantation controlled magnetization dynamics in CoFeTaZr(Elsevier, 2021)
;Vas, Joseph Vimal ;Medwal, Rohit ;Chaudhuri, Ushnish ;Mishra, Mayank ;Chaurasiya, Avinash ;Mahendiran, Ramanathan ;Piramanayagam, S. N.; In this paper, a novel pulsed broad energy spectrum ion-implantation technique, using the dense plasma focus device (DPF), for uniform oxygen-ion doping along the thickness of a ~250 nm thick magnetic CoFeTaZr layer is investigated. A new operational regime of the dense plasma focus – the off-focus mode – is explored to avoid the surface damage of the exposed sample by the high energy plasma streams/jets and instability accelerated ions, typically observed in conventional efficient-focus mode operation. The faraday cup measurements shows the increase in ion fluence from 3.83 × 1013 ion/cm2 for efficient-focus mode to 8.76 × 1013 ion/cm2 for off-focused mode operation in the broad-ion-energy range of 1–100 keV. The x-ray photoelectron spectroscopy (XPS) of the unexposed sample shows the presence of Co in Co0, Co2+ and Co3+, Fe in Fe0, Fe2+ and Fe3+, and Ta in Ta0 and Ta2+ oxidation states while Zr was observed with only metallic Zr binding energy peaks indicating the surface oxidation of the unexposed sample. The exposure to oxygen plasma in DPF device led to the increase in the higher oxidation states of Co, Fe and Ta with reduction in metallic binding energy peak and the deconvolution of oxygen XPS spectrum confirmed the bonding of oxygen to Co, Fe and Ta. The magnetization dynamics of unexposed and oxygen-ion doped samples was studied using magnetoimpedance measurements in the 1–2.5 GHz frequency range. Gilbert’s damping factor, in-plane anisotropy and effective magnetization of the magnetic substrate were calculated and it is found that these properties can be modulated with a lighter ion dosage using this novel pulsed broad-energy-ion implantation technique. It is concluded that the off-focus mode DPF operation can provide the ions of required energy and fluence to implant oxygen ions across the thickness of the CoFeTaZr magnetic thin film to modulate its magnetic properties.WOS© Citations 4Scopus© Citations 4 265 80 - PublicationOpen AccessCurrent sheath formation dynamics and structure for different insulator lengths of plasma focus deviceThe breakdown phase of the UNU-ICTP plasma focus (PF) device was successfully simulated using the electromagnetic particle in cell method. A clear uplift of the current sheath (CS) layer was observed near the insulator surface, accompanied with an exponential increase in the plasma density. Both phenomena were found to coincide with the surge in the electric current, which is indicative of voltage breakdown. Simulations performed on the device with different insulator lengths showed an increase in the fast ionization wave velocity with length. The voltage breakdown time was found to scale linearly with the insulator length. Different spatial profiles of the CS electron density, and the associated degree of uniformity, were found to vary with different insulator lengths. The ordering, according to the degree of uniformity, among insulator lengths of 19, 22, and 26 mm agreed with that in terms of soft X-ray radiation yield observed from experiments. This suggests a direct correlation between CS density homogeneity near breakdown and the radiation yield performance. These studies were performed with a linearly increasing voltage time profile as input to the PF device.
WOS© Citations 6Scopus© Citations 6 234 227 - PublicationOpen AccessOrder of magnitude enhancement in neutron emission with deuterium-krypton admixture operation in miniature plasma focus device(American Institute of Physics, 2008)
;Verma, Rishi; ;Lee, Sing; ; ; Krishnan, M.The effect of varied concentrations of deuterium-krypton (D2 - Kr) admixture on the neutron emission of a fast miniature plasma focus device was investigated. It was found that a judicious concentration of Kr in D2 can significantly enhance the neutron yield. The maximum average neutron yield of (1 ± 0.27) x 104 n/shot for pure D2 filling at 3 mbars was enhanced to (3.14 ± 0.4) x 105 n/shot with D2 + 2% Kr admixture operation, which represents a ˃ 30-fold increase. More than an order of magnitude enhancement in the average neutron yield was observed over the broader operating range of 1–4 mbars for D2 + 2 % Kr and D2 + 5% Kr admixtures.
WOS© Citations 28Scopus© Citations 50 408 300 - PublicationOpen AccessA 160 kJ dual plasma focus (DuPF) for fusion-relevant materials testing and nano-materials fabrication(World Scientific, 2014)
;Saw, Sor Heoh ;Damideh, Vahid ;Chong, Perk Lin; ; Lee, SingThis paper summarizes PF-160 Dual Plasma Focus (DuPF) numerical experiments using the Lee Model code and preliminary 3D design drawings using SolidWorks software. This DuPF consists of two interchangeable electrodes enabling it to be optimized for both Slow Pinch Mode (SFM) and Fast Pinch Mode (FFM); the latter using a speed factor (SF) of 90 kA cm-1 Torr-0.5 for FFM in deuterium [S Lee et al, IEEE Trans Plasma Science 24, 1101-1105 (1996)]; and the former with SF of less than half that value for SFM. Starting with available 6 x 450 μF capacitors rated at 11kV (10% reversal), numerical experiments indicate safe operation at 9 kV, 6 Torr deuterium with FFM anode of 5 cm radius; producing intense ion beam and streaming plasma pulses which would be useful for studies of potential fusion reactor wall materials. On the other hand operating at 5 kV, 10 Torr deuterium with SFM anode of 10 cm radius leads to long- duration, uniform large-area flow which could be more suitable for synthesis of nano-materials. The dual plasma focus design is illustrated here with two figures showing FFM and SFM electrodes.554 186 - PublicationMetadata onlySpin-casted (Gd–Zn) Co-doped BiFeO3 thin films for sustainable oxide-electronics(Elsevier, 2021)
;Surbhi Gupta ;Feng, L. J. ;Rohit Medwal ;Jospeh Vimal Vas ;Mishra Mayank ;Roshan Deen Ghulam; The emerging paradigm of oxide-based devices are reshaping the frontiers of sustainable electronics and enabling new functionalities like ferroelectric-photovoltaics, photo-catalytic activity, ferroelectric logics, and terahertz-scale actuation. The intriguing advantages of BiFeO3 (BFO) based oxide electronics offers the possibility of combining electric and magnetic degrees of freedom and is of interest in applications ranging from non-volatile random-access memories, multiple state storage media, tunnelling barriers, actuation, and sensors. Here, we investigate structural evolution and device performance of a cost-effective and unexplored BFO doped derivative i.e. (Gd, Zn) co-doped BFO thin films synthesized using commercially viable spin-casting technique. Owing to the competing change in dopant cation sizes w.r.t. Host lattice, ABO3 rhombohedral perovskite structure of the BFO did not transform while the optical band gap sequentially reduced from 2.65 to 2.53 eV with increasing Gd–Zn co-dopant concentration. Further, the effects of co-doping and asymmetric electrodes on the IV-characteristics of capacitors and the underlying conduction mechanism of these devices are investigated. Photoconductivity studies show three orders larger photocurrent arising from grain-boundary contributions in 2% (Gd, Zn) – BFO film exhibiting rapid, stable and repeatable photo-response which makes them useful for photosensitive capacitor applications.
4 - PublicationOpen AccessCoded aperture imaging of alpha source spatial distribution(Elsevier, 2012)
;Alireza Talebitaher; ; ; The Coded Aperture Imaging (CAI) technique has been applied with CR-39 nuclear track detectors to image alpha particle source spatial distributions. The experimental setup comprised: a 226Ra source of alpha particles, a laser-machined CAI mask, and CR-39 detectors, arranged inside a vacuum enclosure. Three different alpha particle source shapes were synthesized by using a linear translator to move the 226Ra source within the vacuum enclosure. The coded mask pattern used is based on a Singer Cyclic Difference Set, with 400 pixels and 57 open square holes (representing ρ = 1/7 = 14.3% open fraction). After etching of the CR-39 detectors, the area, circularity, mean optical density and positions of all candidate tracks were measured by an automated scanning system. Appropriate criteria were used to select alpha particle tracks, and a decoding algorithm applied to the (x, y) data produced the de-coded image of the source. Signal to Noise Ratio (SNR) values obtained for alpha particle CAI images were found to be substantially better than those for corresponding pinhole images, although the CAI-SNR values were below the predictions of theoretical formulae. Monte Carlo simulations of CAI and pinhole imaging were performed in order to validate the theoretical SNR formulae and also our CAI decoding algorithm. There was found to be good agreement between the theoretical formulae and SNR values obtained from simulations. Possible reasons for the lower SNR obtained for the experimental CAI study are discussed.WOS© Citations 4Scopus© Citations 6 373 268 - PublicationEmbargoPulsed fast neutron yield measurements based on 79BR activation in LaBr3(CE)(Elsevier, 2024)
; ; ;Singaravelu, R. S. ;Verma, R.This work aims to test the concept of an activation detector for pulsed DD fusion neutron sources, based on the production of metastable 79m within a LaBr3(Ce) scintillator crystal via (n, n') inelastic scattering. The pulsed neutron source employed is the NX3 Plasma Focus (PF) device operated in deuterium gas, which yields about 109 neutrons per shot. A range of D2 gas pressures, from 1 to 13 mbar are used to vary the test conditions. For the sake of comparison, a beryllium fast-neutron activation detector is used simultaneously with the LaBr3(Ce), and for each NX3 PF shot we derive neutron yield values from both Be and LaBr3(Ce) detectors, denoted YnBe and YnLaBr. The two detectors are positioned in the equatorial plane (θ=90˚) of the NX3 to expose them to bursts of neutrons with energies close to 2.5 MeV, to simulate a thermonuclear DD fusion source. Overall, the shot-to-shot values of YnBe and YnLaBr obtained compare reasonably well. At each D2 gas pressures the 10-shot averaged values〈YnBe〉 and 〈YnLaBr〉are mostly within 10% of one another; for the worst case (10 mbar)〈YnLaBr〉is 25% higher than〈YnBe〉. Overall, it is concluded that LaBr3(Ce) scintillation detectors can function as a capable and readily obtainable fast-neutron activation detector for measuring neutron yields from pulsed DD fusion sources.
44 3